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Lung cancer is a devastating public health threat and a leading cause of cancer-

related deaths. Therefore, it is imperative to develop sophisticated techniques for

the non-invasive detection of lung cancer. Extracellular vesicles expressing

programmed death ligand-1 (PD-L1) markers (PD-L1@EVs) in the blood are

reported to be indicative of lung cancer and response to immunotherapy. Our

approach is the development of a colorimetric aptasensor by combining the rapid

capturing efficiency of (Fe3O4)-SiO2-TiO2 for EV isolation with PD-L1 aptamer-

triggered enzyme-linked hybridization chain reaction (HCR) for signal amplification.

The numerous HRPs catalyze their substrate dopamine (colorless) into

polydopamine (blackish brown). Change in chromaticity directly correlates with

the concentration of PD-L1@EVs in the sample. The colorimetric aptasensor was

able to detect PD-L1@EVs at concentrations as low as 3.6×102 EVs/mL with a wide

linear range from 103 to 1010 EVs/mL with high specificity and successfully detected

lung cancer patients’ serum from healthy volunteers’ serum. To transform the

qualitative colorimetric approach into a quantitative operation, we developed an

intelligent convolutional neural network (CNN)-powered quantitative analyzer for

chromaticity in the form of a smartphone app named ExoP, thereby achieving the

intelligent analysis of chromaticity with minimal user intervention or additional

hardware attachments for the sensitive and specific quantification of PD-L1@EVs.

This combined approach offers a simple, sensitive, and specific tool for lung cancer

detection using PD-L1@EVs. The addition of a CNN-powered smartphone app

further eliminates the need for specialized equipment, making the colorimetric

aptasensor more accessible for low-resource settings.
KEYWORDS
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1 Introduction

Lung cancer globally reigns as the deadliest form of cancer,

causing over a million deaths each year (1). The threat of lung

cancer is exacerbated by limitations in diagnostic capabilities,

resulting in the disease being mostly detected in the late stages

and thus becoming resistant to treatment more frequently.

Approximately 15% of cases are diagnosed early, while the rest

are diagnosed during the locally advanced or metastatic stage (2). In

this context, it is pertinent to find biomarkers that facilitate the early

diagnosis of lung cancer. Extracellular vesicles (EVs) have attracted

immense attention as next-generation candidate biomarkers for

pathologies such as cancer (3).

EVs are nanoscale vesicles with a double membrane ranging in

size from 50 to 1,000 nm. All major types of cells are the

fountainhead of EVs. EVs are abundant and stable in the

majority of body fluids, such as blood, saliva, cerebrospinal fluid,

tears, and urine (4). EVs contain versatile cargoes of proteins,

nucleic acids, and lipids. Cancer cells have been shown to

produce more EVs than normal cells. EVs can be valuable

indicators of cancer progression and can serve as potential liquid

biopsy-based non-invasive diagnostic biomarkers. Extensive

research recognizes the fact that EVs are offering a new frontier

for cancer diagnosis and treatment (3). EVs exhibit specific surface

markers associated with distinct cancer types. Additionally, their

cargo reflects the originating cancer’s molecular characteristics.

Therefore, EVs are easily accessible, non-invasive, and sustainable

packets of diagnostic and therapeutic information; EVs are simply a

nanosized array of diagnostic and therapeutic tools (5).

Some cancers, such as lung cancer, can develop mechanisms to

escape the immune system. Cancer cells accomplish this by

expressing membrane proteins such as programmed death ligand-

1 (PD-L1) to inactivate immune cells such as CD8+ T cells. Similar

to cellular PD-L1, PD-L1-positive EVs released by cancer cells can

also promote tumor growth by blocking PD-1 on CD8+ immune

cells. Recent research suggests that tumor-derived exosomes appear

in the bloodstream even during the early stages of tumor

development and can influence the microenvironment, potentially

promoting metastasis (6). Intriguingly, exosomes from lung cancer

patients frequently display high levels of PD-L1 on their surfaces.

This finding raises the possibility that PD-L1-expressing EVs (PD-

L1@EVs) could serve as a biomarkers for the detection of lung

cancer (7). Moreover, quantification of PD-L1@EVs can be valuable

for forecasting the efficacy of the immunotherapy (8).

Because of the enormous potential of PD-L1@EVs as

biomarkers, various techniques have been employed for its

detection. Techniques such as flow cytometry (9), ELISA (10),

and Western blotting (11) have shown promising results but

suffer from limitations such as long laborious operation and large

sample volume requirement. Nanoparticle tracking analysis (NTA)

technology can also provide information on EVs’ size and

abundance; however, it lacks the ability to precisely pinpoint the

presence of tumor-specific markers adorning the EVs’ surface (12).

Recent times have witnessed the gradual adoption of advance

techniques like surface plasmon resonance (SPR) (13),

microfluidic sensors (14), and surface-enhanced Raman
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spectroscopy (SERS) (15) for EV detection. Despite their promise,

these emerging approaches suffer from significant drawbacks.

However, ELISA remains the dominant approach for quantifying

exosomal PD-L1, despite its limitations, for instance, high sample

consumption and insufficient detection sensitivity (16). PD-L1@

EVs levels are often lower than those of other exosomal marker

proteins, hindering their detection by ELISA. Researchers have

explored alternative methods to address these issues, including

SPR—this technique offers promising sensitivity, but further

development is needed for wider adoption (13). Electrochemical,

fluorescent, and other technologies hold potential, but their

application to PD-L1@EVs quantification is still under

investigation (17–20). A crucial challenge across most detection

methods is the pre-isolation of EVs through another laborious or

expensive tool before detection (21). Researchers have reported

magnetic beads with TiO2 capable of rapidly capturing EVs directly

from the serum through a TiO2-membrane-phosphate mechanism

(19, 22–24), eliminating the need for expensive instruments or

reagents for EV isolation. Some techniques utilize PD-L1

antibodies, aptamers, or specific peptides to isolate PD-L1@EVs.

However, these methods may be susceptible to interference from

soluble PD-L1 (s-PD-L1), compromising the accuracy of

detection (10).

Aptamers are short oligonucleotides that stand out for their

exceptional ability to bind specifically to non-nucleic acid targets,

earning them the title of “chemical antibodies”. However, compared

to antibodies, aptamers offer several advantages, including lower

product ion costs , reduced r isk of immune response

(immunogenicity), exceptional stability, and faster synthesis (25).

The field of biosensors is witnessing a surge in the use of aptamers

for the detection of diverse analytes ranging from proteins to RNA

molecules. Integration of signal amplification strategies such as

hybridization chain reaction (HCR) into aptamer-based biosensors

presents a promising solution for enhancing the sensitivity (26).

HCR was first introduced by Dirks and Pierce in 2004 (27).

HCR utilizes strategically designed hairpin DNA strands to achieve

sensi t ive target detect ion. The HCR design includes

oligonucleotides such as two hairpins (H1 and H2) and an

initiator. The mode of operation is that the H1 stem loop

structure is opened by the initiator, resulting in hybridization to

develop a sticky end of H1, which, in turn, hybridizes with H2 to

generate another sticky end. The process continues until H1 and H2

are depleted or the process reaches its threshold. Thus, HCR

generates long double-stranded DNA helices containing

numerous repetitive units (28). Remarkably, a single initiator

molecule can spark this chain reaction, significantly amplifying

the signal for robust target identification. HCR offers several

advantages that have propelled it to the forefront of practical

applications. Unlike traditional methods, it operates under

isothermal conditions, simplifying the process and minimizing

the environmental impact (29).

Furthermore, the exceptional ability of a few initiators to trigger

the formation of numerous hairpins positions HCR as a compelling

alternative to other DNA-based amplification techniques like

polymerase chain reaction (PCR), rolling circle amplification

(RCA), and catalytic hairpin assembly (CHA). Unlike PCR, RCA,
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and CHA, which rely on enzymes and temperature fluctuations for

signal amplification, HCR offers a distinct advantage owing to its

isothermal and enzyme-free operation (30). Moreover, HCR serves

as a probe amplification technique, amplifying reporter molecules

instead of the target itself. This approach minimizes the risk of

cross-contamination often encountered in methods such as PCR

and RCA, where amplicon carryover can lead to false-positive

results. In recent years, HCR has found extensive application in

the development of diverse biosensors, encompassing various

detection methods, for instance, colorimetry, fluorescence, and

chemiluminescence (31).

Colorimetric approaches have been used extensively for the

detection of a wide range of analytes and are hailed for their

simplicity, cost-effectiveness, portability, and sensitivity (32). In

colorimetry, the color change can be observed with the naked eye

and is qualitative in nature; however, for further quantitative

analysis of chromaticity, a benchtop instrument such as a

spectrophotometer or custom-designed reader is needed. As in

colorimetric approaches, the signal can be detected with the

naked eye; therefore, advanced image analysis techniques can

eliminate the need for a spectroscopy device, avoid subjectivity,

and enable quantitative analysis that is not possible through the

naked eye. To deal with this situation, deep learning under the

machine learning branch of artificial intelligence offers an

interesting avenue. Deep learning models, such as convolutional

neural networks (CNNs), can automatically analyze images with

high accuracy, extract data, recognize patterns, and be precise

prediction models (33). With the widespread usage of

smartphones across the globe and their rapidly advancing

capabilities, they have also found entry into the field of

biosensing. They can assist both in capturing images and in deep-

learning-based image analysis in the form of applications (apps) to

pave the way for advanced detection (34). Such an approach has

been successfully incorporated in detection strategies for many

biological molecules such as enzymes (35), cells (36), nucleic

acids (37), antigen–antibodies (38), and microorganisms (39).

Recent literature shows smartphone integration, mainly with

colorimetric and fluorescence assays (40). Images are taken to

assess the color change, mostly a custom-made smartphone app

leveraging the power of specifically trained deep learning or

machine learning algorithms that quantitate the chromaticity

through image analysis, and the result of the testing is displayed

on the interface of the smartphone app; thus, the smartphone acts as

an intelligent quantitative analyzer. CNN can automatically

perform robust image processing and colorimetric data analysis,

eliminating the need for various image condition optimizations

such as lighting and other complicated adjustments to a certain

extent, greatly saving resources and manpower, thus useful for the

development of an intelligent framework for chromaticity analysis

with minimal user intervention or additional hardware

attachments (41).

Herein, we designed a simple colorimetric aptasensor for the

detection of EVs@PD-L1 by combining (Fe3O4)-SiO2-TiO2 mag-

nanoparticles with PD-L1 aptamer-triggered HCR, resulting in the

addition of numerous HRPs. HRP uses dopamine (colorless) as a

substrate and converts it into polydopamine (blackish brown
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colored) in the presence of H2O2 (a 300-fold enhanced reaction

in a short time) (42). The change in chromaticity corresponds to the

quantity of PD-L1@EVs. For the transformation of the qualitative

colorimetric approach into a quantitative operation, we developed

an intelligent deep-learning-powered quantitative analyzer for

chromaticity in the form of a smartphone app named ExoP,

thereby achieving an intelligent analysis of chromaticity with

minimal user intervention or additional hardware attachments for

the sensitive and specific quantification of PD-L1@EVs.
2 Materials and methods

2.1 Reagents

The reagents used in various experiments in this research are

detailed here. Bovine serum albumin (BSA) was obtained from

Sangon Biotech (Shanghai) Co., Ltd. PD-L1 aptamer (H0) and HI

and H2 (both simple and biotin labeled) sequences obtained from

reference (43) were ordered from Sangon Biotech (Shanghai) Co.,

Ltd and are tabulated in Supplementary Table S1. Other auxiliary

reagents such as HEPES buffer and SuperBlock blocking buffer (cat

log no: 37581) were ordered from ThermoFisher Scientific, and

Streptavidin-labeled horseradish peroxidase (HRP) was from Bioss

Antibodies. Tetraethoxysilane (TEOS) and tetrabutyltitanate

(TBOT) were purchased from Sinopharm Chemical Reagent Co.,

Ltd (China). Dopamine was purchased from Sigma-Aldrich.

Tween-20 was acquired from Beyotime. Salmon sperm DNA was

ordered from Invitrogen. For the preparation of various buffers used

in this study, we used pure water obtained through the Milli-Q

benchtop water purification system. All chemicals were of analytical

grade and were used as received without further purification.
2.2 Cell lines for EV isolation

A549 (human lung adenocarcinoma cells), BEAS-2B (human

lung epithelial cells), and H596 cells were purchased from Shanghai

Cell Bank, Chinese Academy of Sciences. To culture the cells,

Gibco’s Dulbecco’s modified Eagle’s medium (DMEM) was used.

Fetal bovine serum (FBS) and exosome-depleted FBS were delivered

by Gibco and System Bioscience, respectively. The culturing of the

cells (A549, H596, and BEAS-2B) was achieved at 37°C in 5% CO2

and 95% air using DMEM containing 10% FBS (44). Once the

growing cells covered almost 85% of the culture plate surfaces, we

discarded the used media, washed the plates thrice with PBS, and

added fresh media (DMEM) supplemented with 10% exosome-

depleted FBS. After the 24- to 48-h incubation time, the media was

poured into 50-mL conical tubes, stored at −20°C, and later

subjected to ultracentrifugation to collect EVs (45).

Ultracentrifugation-based isolation of EVs from media involves

spinning of culture media successively at 300 × g for 10 min, then

2,000 × g for 10 min, and 10,000 × g for 30 min (in Beckman

Coulter, Allegra X-30R) at 4°C to mitigate unwanted components

such as cells, dead cells, and cell debris, respectively. Following these

steps, the clarified supernatant was filtered using a 0.2-μm syringe
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filter. This filtered solution was then ultracentrifuged (100,000 × g

for 90 min) at 4°C using a Beckman Coulter Optima XPN-100

centrifuge. The supernatant was removed, while the remaining

pellet, enriched in EVs, was resuspended in 1 mL of PBS and

subjected to another round of ultracentrifugation (100,000 × g for

90 min) at 4°C using a TYPE 90 Ti Rotor. Finally, the supernatant

was removed and the precious EV pellet was resuspended in 100 μL

of sterile-filtered (0.22 μm filter) PBS before being stored at −20°C

for experiments to be conducted immediately and at −80°C for

experiments to be performed later.
2.3 Production of (Fe3O4)-SiO2-TiO2
mag-nanoparticles

The (Fe3O4)-SiO2-TiO2 mag-nanoparticles were prepared

following a combination of previously published protocols (19, 46).

We prepared (Fe3O4)-SiO2-TiO2 mag-nanoparticles using Li et al.’s

(24) protocol, including a classic recipe: the Stöber method. First, we

took 0.3 g of Fe3O4 and mixed it up with 0.5 L of ethanol, 0.15 L of

deionized water, and 0.01 L of ammonia. It was exposed to sonication

for 15 min. Then, we added 4 mL of TEOS and continued to stir

(1,500 rpm) the whole concoction for 10 h at 25°C.

Finally, (Fe3O4)-SiO2-TiO2 was made using a kinetics-

controlled coating process. We started by taking 0.05 g of our

(Fe3O4)-SiO2 and mixed it with an amalgam of 0.1 L of ethanol and

0.3 mL of ammonia (28%). Similar to before, the mixture was

sonicated for 15 min. Then, we added 0.75 mL of TBOT in ethanol

while constantly stirring (2000 rpm, 24 h, 45°C) the mix. Finally, the

(Fe3O4)-SiO2-TiO2 mag-nanoparticles were washed 3× with water

and ethanol and then dried in an oven overnight at 70°C, making

them ready for utilization in future experiments.
2.4 Profiling and concentration of EVs

EVs’ shape and structure (morphology) were confirmed using

transmission electron microscopy (TEM). Approximately 20 mL of

the EV sample was carefully placed onto a copper grid. Next, we

employed filter paper to gently remove any excess liquid. To enhance

the contrast of the EVs in the image, a 2% phosphotungstic acid

solution was dropped (5 min). Following that was a washing step

using double-distilled water (5×) and then the copper grid was

allowed to dry completely. Finally, the EVs were visualized using a

high-powered JEM-2200CX TEM microscope from JEOL. For WB,

protein concentration was assessed using a Qubit fluorometer from

Invitrogen. Next, the EVs were subjected to a lysing step, by heating

them in loading buffer at 95°C for 5 min. This process essentially

breaks down the EVs and releases their protein cargo. The lysed

proteins were then loaded onto a specialized gel (10% SDS-PAGE gel

ordered from Sangon Biotech) specifically designed to separate

proteins based on their size.

To capture these separated proteins, a polyvinylidene difluoride

(PVDF) membrane, also ordered from Sangon Biotech, was

employed to faithfully transfer the protein bands from the gel

during a subsequent step. Subsequently, the membrane was
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blocked using a 2% non-protein blocking solution for 2 h. After

blocking, the membrane was washed and dunked into a mixture of

primary antibodies [CD9, TSG101 (ab275018 by Abcam), and PD-

L1 by Proteintech] and kept at 4°C for 12 h. Excessive primary

antibodies were washed (3×) away and the membrane was dunked

in the solution of appropriate secondary antibodies (goat anti-

rabbit, Abcam) at room temperature for 2 h.

Finally, the bands were visualized using the enhanced

chemiluminescence (ECL) kit ordered from Sangon Biotech. To

determine the EVs’ concentration and size distribution, we used an

NTA machine (ZetaView, Particle Metrix, Diessen, Germany). EV

samples were serially diluted (typically 1:100 to 1:1,000) using

filtered PBS to ensure that the EV samples fell within the

detectable range of the NTA machine. Subsequently, the

ZetaView® software automatically analyzed all the captured

frames, ensuring that the outliers discarded the most relevant

parameters; that is, the concentration of EVs and their average

size were calculated.
2.5 Confocal microscopy and zetapotential

Performed via Leica Microsystems confocal microscope

equipped with a 100× oil immersion objective, EVs were dyed

using PKH26 dye following the manufacturer’s instructions. PBS

was used as the control. A Zetasizer Nano series (Nano-ZS)

instrument from Malvern was engaged to evaluate the surface

charge of (Fe3O4)-SiO2-TiO2 mag-nanoparticles (0.5 mg), A549

cell-released EVs (108 EVs/mL), and the complex formed between

the mag-nanoparticles and EVs (0.5 mg/mL).
2.6 Magneto-capturing of EVs

EVs enriched from the A549 cell culture media were combined

with (Fe3O4)-SiO2-TiO2 mag-nanoparticles for testing their EVs’

capturing strength, using a previously reported method based on

the PKH26 dye (19). According to the method, we made two

samples with the same number of EVs isolated from A549 cells.

In both samples, EVs were dyed with PKH26 dye following the

manufacturer’s instructions. A specific concentration of EVs (108

EVs/mL) was used for this step. The fluorescence of these dyed EVs

was then measured using a spectrophotometer. Next, the dyed EVs

were mixed with (Fe3O4)-SiO2-TiO2 mag-nanoparticles. After

separating the mag-nanoparticles and the attached EVs using a

magnet, the fluorescence of the solution (supernatant) was

measured. For accuracy, the experiment was repeated three times.

Now, to test that how well the (Fe3O4)-SiO2-TiO2 captured the

EVs, we calculated the capture efficiency (%) using the following

formula: capture efficiency (%) = (F2/F1) × 100. Here, F1 represents

the initial fluorescence of the EVs solution before being enriched

with the (Fe3O4)-SiO2-TiO2 mag-nanoparticles, and F2 represents

the fluorescence after enrichment. The experiment was further

expanded to determine the ideal concentration of (Fe3O4)-SiO2-

TiO2 mag-nanoparticles and the optimal incubation time needed to

achieve the best capture efficiency.
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2.7 Gel electrophoresis analysis

To visualize the HCR product, we performed agarose gel

electrophoresis and PAGE (Vazyme kit). For agarose gel

electrophoresis, 2% agarose was used. H1 and H2 were separately

pre-heated (at 95°C) for a short time and then left to cool at room

temperature for an hour. For HCR, H0 (0.6 μM), H1 (2 μM), and

H2 (2 μM) were mixed. Ten microliters was taken from each sample

mixed with 2 μL of loading buffer. To load onto the gel, we took 10

μL from each sample and performed electrophoresis. Likewise for

PAGE, 10 μL was taken from each sample and 2 μL of ×6 loading

buffer was mixed. Later, 10 μL of the mixture was loaded into a 12%

PAGE. Running was done at 100 V for 2 h in ×1 TBE buffer. After

that, the gel was stained for 10 min in 50 mL ×1 TBE buffer with 5

mL of ×10,000 Gel-Red nucleic acid gel stain. The gels were then

photographed using a Tanon 2500R gel imaging system.
2.8 Clinical testing

We obtained ethical approval and written consent from the

participants to use their serum samples, which were collected at the

clinical laboratory of the Drum Tower Hospital affiliated with

Nanjing Medical University. A total of 42 samples were acquired

from 21 healthy and 21 lung cancer patient samples; their clinical

details are tabulated in Supplementary Table S1 (Supplementary

Data Sheet 1). Initially, a 0.22-μm filter attached to a syringe was

used to filter the serum. Then, approximately 50 μL of the unaltered

serum was incubated with (Fe3O4)-SiO2-TiO2 for 10 min to capture

EVs. Subsequently, the remaining steps of the designed colorimetric

aptasensor were performed. We used PBS as a blank control

for comparison.

For comparison purposes, we followed the conventional plate

ELISA protocol of Chen et al. (10) for PD-L1@EVs, with slight

modifications. PD-L1 antibody (5 μg/mL) was coated to the wells of

the plate and kept at 4°C overnight. The SuperBlock solution was used

for blocking for 2 h. EVs isolated from clinical samples were added to

the wells and incubated overnight. The detection antibody was added

at a concentration of 1 mg/mL per well and incubated for 1 h at room

temperature. Afterward, 100 mL of HRP-streptavidin, diluted 1:10,000

in SuperBlock blocking buffer, was added to each well and incubated

for 15 min at room temperature before measurement.
2.9 Deep learning model for
results analysis

Deep learning is preferred for complex tasks as it automatically

extracts information from raw data to learn and train and then

utilizes those data to make decisions about new unexposed data

(47). Therefore, a deep learning model was established for

chromaticity analysis. We acquired images of tubes from PD-L1@

EVs concentrations ranging from 0, 103, 104, 105, 106, 107, 108, 109,

and 1010 EVs/mL. The images were obtained through three different

types of smartphones (iPhone X, Huawei mate 30 pro and Redmi
Frontiers in Immunology 05
Note 12 Turbo) under standard lab lights using different shooting

angels and default camera settings from 40 cm height. However, the

background was consistently kept white. Moreover, through data

augmentation, we increased the images to 3,000 for better training

of the deep learning model using various conditions such as color

temperature, brightness modulation, contrast, pixel, image

sharpening, Gaussian noise, and motion blur. Moreover, we

consistently used 1.5 mL of Flex-Tube by Eppendorf throughout

these experiments.

The deep learning model needs the optimization of the data

format and parameters (48). It was trained using the TensorFlow

and Keras frameworks (49, 50). The images were converted into

NumPy arrays suitable for TensorFlow processing, and later

converted from an RGB to an HSV format. Color thresholding

was adjusted to define a broader hue range ([5, 40]) to capture light

brownish to blackish colors. Saturation ([30, 255]) remains high to

ensure a strong color presence. The value ([20, 255]) allows for

variations in brightness within the color range. Focusing on the

colored region (our sample) was achieved using the

find_largest_contour function and the center of gravity. Based on

the center of gravity, the images were first cropped to 600 × 600

pixels and then resized to 128 × 128 pixels. The pixels were

normalized between 0 and 1 and saved as.pkl file. Then, we

randomly divided the data between the training set (80%, 2,400

images) and the testing set (20%, 600 images).

CNN typically has convolution and pooling layers. The function

of the convolution layer is to extract features from the images (51, 52).

Then, it has a maxpooling layer to select the maximum value within a

receptive field (53). After that, fully connected layers combine the

features obtained by the previous two layers. Fully connected layers

consist of a denser connection of neurons that are connected with

neurons in the following layer (54). A CNN achieves nonlinearity by

the application of an activation function. In general, CNN use

rectified linear units (ReLU), but here we used a scaled exponential

linear unit (SELU) activation function. SELU is a self-normalizing

activation function. It is preferred for faster learning and prevention

of gradient vanishing (55). The model configuration is tabulated in

Supplementary Table S2.
2.10 Smartphone app (ExoP) development

The next step after training the model was the development of

an app. For this purpose, we used our efficiently trained CNNmodel

and TensorFlow Lite converter API to convert our Keras model into

a TensorFlow Lite model (.tflite file), making it suitable for mobile

phone devices. An app was developed using Android studio and

Java. To integrate TensorFlow Lite, we used the TensorFlow Lite

library for Android. For images obtained through the app to match

the image size used for model development, we also preformed

image preprocessing operation on the images imported through the

app using the OpenCV_for_andriod library. Java was used to write

images cropping from 600 × 600 to 128 × 128 pixels, as that of the

image dimensions used for CNN training. BitmapFactory in Java

programming language Android SDK (software development kit)
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was used to mitigate the impact on the image pixel quality. Finally,

through the model’s prediction, the app’s user interface displays the

estimated concentration of PD-L1@EVs.
3 Results

3.1 Design of the colorimetric aptasensor

The main design of the colorimetric aptasensor of EVs coupled

with an intelligent deep-learning-powered smartphone app for

quantitative analysis of chromaticity is depicted in Figure 1. As

depicted in Figure 1A, EVs were magneto-captured by (Fe3O4)-

SiO2-TiO2 mag-nanoparticles. After blocking with SuperBlock for

60 min, the PD-L1 aptamer that binds to EVs with the PD-L1

marker was added. Once the PD-L1 aptamer is attached, the

addition of H1 and H2 (biotinylated) initiates the HCR reaction
Frontiers in Immunology 06
(PD-L1 apt + H1 + H2), forming a long self-assembled DNA

concatemer. The numerous HRPs (streptavidin-conjugated)

attached to the long strand then produce a colored signal upon

the addition of the HRP substrate. HRP uses dopamine (colorless)

as a substrate and converts it into polydopamine in the presence of

H2O2 (a 300-fold enhanced reaction in a short time) (42). The

change in chromaticity (absorbance at 400) corresponds to the

quantity of PD-L1@EVs. To transform the qualitative colorimetric

approach into a quantitative operation, we developed an intelligent

deep-learning-powered quantitative analyzer for chromaticity in

the form of a smartphone app named ExoP, thereby achieving the

intelligent analysis of chromaticity with minimal user intervention

or additional hardware attachments for the sensitive and specific

quantification of PD-L1@EVs (Figure 1B). We envision that our

smartphone app ExoP can fill in the gap between quantitative and

qualitative measurements. Using a smartphone app as a portable

quantitative analyzer of chromaticity is helpful to overcome the
FIGURE 1

The schematic representation of a colorimetric aptasensor coupled with an intelligent deep-learning-powered smartphone App for quantitative
analysis of chromaticity. (A) The aptasensor design combining the rapid magneto-capturing of EVs by (Fe3O4)-SiO2-TiO2 mag-nanoparticles.
Aptamer recognition of PD-L1@EVs resulting in initiations of HCR with the addition of biotin-labeled H1 and H2 and streptavidin-labeled HRP for
signal amplification through many HRPs. Change in chromaticity, as HRP converts dopamine to polydopamine in the presence of H2O2, corresponds
to the concentration of PD-L1@EVs. (B) The deep learning (CNN)-powered smartphone app ExoP acts as a quantitative analyzer of chromaticity for
predicting the concentration of PD-L1@EVs through image analysis.
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limitations of the colorimetric technique and improve quantitative

analysis. From successful initial investigations, it can be postulated

that the proposed methods hold promise for the rapid and accurate

analysis of PD-L1-EVs in clinical serum samples, potentially paving

the way for improved lung cancer detection.
3.2 Characterization and performance of
Fe3O4-SiO2-TiO2 Mag-nanoparticles

The first important element of the colorimetric aptasensor is the

development of (Fe3O4)-SiO2-TiO2 mag-nanoparticles. To analyze

the morphology and composition of our (Fe3O4)-SiO2-TiO2 mag-

nanoparticles, we employed the powerful duo of SEM and EDS.

SEM generates a detailed image of the nanoparticle surface,

revealing their size, shape, and overall morphology. EDS, on the

other hand, reveals the elemental makeup of the nanoparticles,

identifying the specific types of atoms that are present.

Supplementary Figure S1A shows the images taken with SEM and

revealed that the (Fe3O4)-SiO2-TiO2 nanoparticles were uniformly

round with a bumpy surface made of many tiny clumps of TiO2.

Furthermore, EDS (Supplementary Figure S1B) confirmed the

formation of (Fe3O4)-SiO2-TiO2. The silica layer acted as a

bridge, allowing for the later addition of TiO2.

The XRD report shown in Supplementary Figure S1C suggests

that the particles are crystalline and have the anatase phase. Peaks at

2 theta 30.88, 35.22, 43.06, 53.5, 57.1, 62.72, and 74 correspond to

the planes of the cubic phase of Fe3O4 and anatase phase of TiO2

(JCPDS No. 21-1272). The diffraction peak of (Fe3O4)-SiO2 showed

no significant change compared with Fe3O4 because the coating

layer SiO2 also belongs to an amorphous body. The XRD results

suggest the successful formation of (Fe3O4)-SiO2-TiO2. FTIR-based

examination of (Fe3O4)-SiO2-TiO2 nanoparticles (Supplementary

Figure S1D) showed peaks at 802 and 1,068 cm−1, which confirm

the presence of silica coating on the magnetic nanoparticles. After

the addition of TiO2 to the surface, a new peak appeared in the FTIR

spectrum at 970 cm−1. This new peak indicates vibrations between

the titanium and oxygen atoms, proving the presence of the TiO2

layer. Peaks in the range of 500–700 cm−1 can be attributed to Ti–

O–Ti and Ti–O–Si vibration.
3.3 Characterization of EVs with PD-L1

It has been recommended by MISEV 2023 guidelines to provide

detailed profiling of EVs and their concentration. EVs acquired

from A549 cells were assessed as cancer-specific EVs. While EVs

obtained from the Beas-2B cells were assessed as normal control.

TEM is one of the most widely used technologies for assessing the

morphology of EVs. TEM is hailed for its prowess in detecting EVs,

irrespective of size. The images obtained via TEM confirmed the

presence of vesicular structures (Figure 2A). Another important

aspect of EVs is to confirm the presence of EV-specific markers and

cancer-specific markers. WB has been widely recommended for the

detection of proteins in EV-containing preparations. It can be seen

in Figure 2B that markers specific to EVs such as CD9 and TSG 101
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are present. Likewise, the negative marker calnexin can also be

observed to be present on cells but missing on EVs. We also

observed the presence of PD-L1 markers both on lung cancer cell

lysate (A549) and the EVs derived from those cells. NTA is an

optical technique that provides information about EVs’ size and

abundance. Figures 2C, D show the NTA analysis of the

concentration and size of EVs obtained from BEAS-2B (108

particles/mL) and A549 cells (1011 particles/mL), respectively. In

Figure 2E, EVs can be seen visualized through confocal microscopy

using a membrane binding specific dye, PKH26. From the above

panels, it can be concluded that we obtained both BEAS-2B EVs and

A549-derived EVs at high concentrations for conducting

further experiments.
3.4 Rapid capturing of EVs by (Fe3O4)-
SiO2-TiO2

One of the cornerstones of colorimetric aptasensor design is

(Fe3O4)-SiO2-TiO2-mediated EV capture. Hence, we used the

zetapotential techniques to confirm this. A significant change in

the potential of mag-nanoparticles can be observed after the

introduction of EVs, providing evidence of mag-nanoparticles

binding the EVs (Figure 3A). Next, we systematically investigated

the optimum quantity of (Fe3O4)-SiO2-TiO2 and the incubation

time required for optimal capture efficiency. Varying

concentrations of (Fe3O4)-SiO2-TiO2 (0.2–1.6 mg) were

employed to determine the amount necessary for maximum

capturing of PKH26-labeled EV. The fluorescence intensity was

measured before and after the addition of (Fe3O4)-SiO2-TiO2. As

depicted in Figure 3B, a dosage of 1 mg yielded an optimal capture

efficiency exceeding 90%. Further increments in bead concentration

resulted in negligible improvements.

Incubation time of the (Fe3O4)-SiO2-TiO2 for peak capture

efficiency was optimized using PKH26-labeled EVs. Incubation

durations ranging from 2 to 20 min were evaluated. The

maximum capture efficiency was attained at 10 min, with

negligible gains observed beyond this point (Figure 3C). In

addition, the temperature for best capture efficiency of (Fe3O4)-

SiO2-TiO2 was optimized using various temperature conditions (4°

C, 26°C, and 37°C). The mag-nanoparticles exhibited the best

capturing efficiency at 25°C (Figure 3D).
3.5 HCR optimization experiments

To visually confirm the HCR, we performed Agarose gel

electrophoresis (Figure 4A) and PAGE (Figure 4B). Both

experiments provided visual proof of the HCR.

The PD-L1 aptamer (H0) has a central role for the successful

initiation of HCR. A series of aptamer concentrations (H0

concentration from 0.2 to 1 μM) were evaluated against a

constant concentration of EVs (109 EVs/mL) as the experimental

sample, with PBS acting as a blank control. The optimal signal-to-

noise ratio was achieved at 0.6 μM concentration (Figure 4C).

Subsequently, the optimal incubation time for the HCR reaction
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was optimized to maximize the S/N ratio. Three durations (30, 45,

and 60 min) were tested. As illustrated in Figure 4D, the highest S/N

ratio was attained at 45 min, with progressively higher background

signals observed for longer HCR times.
3.6 Analytical performance of the
colorimetric aptasensor for PD-L1@EVs

After optimization, we explored the sensor’s analytical

parameters such as sensitivity, specificity, and accuracy for

detecting PD-L1@EVs.
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A broad range of A549 EVs concentrations (103–1010 EVs/mL)

were used for analysis. The peak absorbance at 400 nm, indicative of

color intensity, was precisely calibrated using a spectrophotometer.

A change in color and the corresponding absorbance (at 400 nm)

were recorded for various concentrations of A549-EVs as well as for

a blank sample containing PBS without EVs as in Figures 5A, B.

It can also be seen in Figure 5C that the change in color intensity/

absorbance and the concentration of PD-L1@EVs are related in a

linear fashion ranging from 103 to 108 EVs/mL following the

equation Y = 0.3167*Log N + 0.4031, where Y stands for peak

absorbance and N stands for the number of EVs. Similarly, the LOD

was estimated by incorporating the typical three times the standard
FIGURE 2

Characterization of extracellular vesicles. (A) TEM images of EV morphology, (B) Western blot confirmation of EV markers. NTA analysis of the
concentration and size distribution of (C) BEAS-2B EVs and (D) N A549 EVs. (E) Membrane labeling of EVs using the PKH26 dye.
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deviation of blank samples in the above equation. The LOD was

estimated to be 3.6×102 EVs/mL. It is of paramount importance for

the sensor to be highly specific for target detection. We checked the

sensor’s specificity by using EVs obtained from a variety of sources,

such as EVs from the serum of a healthy volunteer (HS EVs), EVs

from BEAS-2B cells (PD-L1-negative EVs), A549 cells, and H596

cells (two PD-L1-positive EVs). As can be seen in Figure 5D, high

absorbance was recorded for the PD-L1@ EVs as compared to BEAS-

2B EVs and FBS-derived EVs. Thus, it can be inferred that the

designed colorimetric aptasensor demonstrated high specificity for

the detection of PD-L1@EVs.
3.7 Colorimetric aptasensor performance
with clinical samples

A critical aspect is to test the performance of the designed

colorimetric aptasensor using complex clinical samples, such as

serum. We tested the colorimetric aptasensor using a total of 42

clinical serum samples, of which 21 samples belonged to the healthy

individuals and 21 belonged to the lung cancer patient group.

Detailed clinical information is provided in Supplementary Table
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S1 (Supplementary Materials). In Figure 6A, the absorbance values

were significantly lower (p< 0.001, Mann–Whitney U test) for the

serum samples belonging to the healthy group compared to the lung

absorbance recorded for serum samples belonging to the lung

cancer patients’ group. We also explained the differences between

the absorbance values of serum of healthy and lung cancer patients

through a heatmap. The heatmap in Figure 6B visually

differentiated between healthy and lung cancer samples, with

darker colors representing high concentrations of PD-L1@EVs.

The ROC curve was also established to evaluate the performance

of the aptasensor with the clinical samples as shown in Figure 6C.

These findings corroborate the established notion that serum from

lung cancer patients harbors the greatest abundance of PD-L1@EVs

than healthy controls lacking detectable PD-L1@EVs concentration

(56). To validate the performance of the newly designed aptasensor,

we compared it with the conventional plate ELISA for PD-L1

proposed by Chen et al. (10), using six clinical serum samples,

comprising three healthy and three lung cancer samples

(Figure 6D). Both methods showed similar results in

differentiating lung cancer serum samples from healthy samples,

but our method takes a shorter time than the conventional plate

ELISA and does not require a separate purification step.
FIGURE 3

Magneto-capturing of EVs by (Fe3O4)-SiO2-TiO2. (A) Changes in the zetapotential of the (Fe3O4)-SiO2-TiO2 after binding EVs. (B) Selection of the
ideal amount of (Fe3O4)-SiO2-TiO2 mag-nanoparticle for EV capturing. (C) Selection of ideal time duration for (Fe3O4)-SiO2-TiO2 mag-nanoparticles
required for EV capturing. (D) Selection of optimum temperature required for (Fe3O4)-SiO2-TiO2 mag-nanoparticles to capture EVs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1479403
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Khan et al. 10.3389/fimmu.2024.1479403
3.8 Performance evaluation of the deep
learning CNN model

The proposed model (the architecture is shown in Figure 7A)

was checked for its ability to quantify the concentration of the PD-

L1@EVs by analyzing the chromaticity of the tubes. We utilized a

distinct confusion matrix derived from four matrices (1): true

positives (TP), (2) true negatives (TN), (3) false negatives (FN),

and (4) false positives (FP). TP indicates the correct identification of

the actual concentration of PD-L1@EVs. TN indicates the correct

identification of blank tubes without PD-L1@EVs. FN indicates

incorrect prediction of PD-L1@EVs concentration as blank. FP

indicates the incorrect prediction of the actual concentrations of

PD-L1@EVs.

Using the values of the aforementioned four metrics, we further

evaluated the following performance metrics for our deep learning

model. A very straightforward metric for model evaluations is

accuracy. It can be evaluated as
Frontiers in Immunology 10
Accuracy =
TP + TN

TP + TN + FP + FN
  (1)

In Figure 7B, it can be clearly seen that our deep learning model

showed excellent accuracy (99%) in predicting the concentration of

PD-L1@EVs by analyzing the chromaticity of the tube. Mean

absolute error (MAE) measures the performance of the model as

the average magnitude of the difference between predicted values

and actual values. It can be calculated as:

MAE =
1
mo

m
i−1j(pi − yi)j (2)

Here, m denotes the number of samples, yi denotes the true

value, and pi denotes the predicted value. The MAE value shown in

Figure 7C confirms the excellent capability of the model.

Another important graph is the precision–recall curve (PRC),

which visually represents the effectiveness of a classification model

at different levels of sensitivity. It assesses the relationship between

two crucial aspects: precision and recall. Precision provides an
FIGURE 4

Selection of ideal concentration of aptamer and time for HCR. (A) Agarose gel confirmation for HCR reaction. (B) PAGE (polyacrylamide gel
electrophoresis) confirmation of HCR. (C) Selection of ideal aptamer concentration of HCR. (D) Selection of ideal time duration required for
HCR reaction.
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assessment of the proportion of accurate positive predictions made

by a model. In simpler terms, it gauges the accuracy of a model in

predicting genuine positive cases. Recall, on the other hand, denotes

the actual concentrations that have been accurately identified by the

model (Figure 7D).

For a better understanding of model performance, we evaluated

the F1 score. The F1 score is the harmonic mean of precision and

recall. Precision, recall, and F1 score can be evaluated using the

following equations, respectively:

Precision =
TP

TP + FN
(3)

Recall =
TP

TP + FN
(4)

F1 Score = 2� Precision� Recall
Precision + Recall

(5)

The area under the receiver operating characteristic curve

(AUROCC) is a frequently used metric for assessing a model’s

ability to discriminate across classes. A model with a higher

AUROC is generally considered more useful and robust (Figure 7E).

To further validate our model’s ability to accurately identify the

concentration of PD-L1@EVs, we used 10 images for each PD-L1@

EVs concentration ranging from 0 to log 10 EVs/mL to find out the

performance of the deep learning model (Figure 8).

As can be seen in the confusion matrix showing the relationship

between the actual (true) concentration and predicted concentration
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of PD-L1@EVs (Figure 8A), 1 out of 10 tested samples at log 3 EVs/

mL were misclassified as no concentration, 1 out of 10 tested samples

at log 5 EVs/mL were misclassified as log 6 EVs/mL, and 2 out of 10

tested samples were misclassified as log 8 EVs/mL. The other

concentration results are located diagonally in the confusion

matrix, which means that they were correctly classified. Figure 8B

depicts the model metrics for various concentrations of PDL1@EVs.

From the exceptional metrics results, it can be inferred that the model

functioned exceptionally well.
3.9 Performance evaluation of the ExoP
smartphone app

To ensure consistent evaluation of our colorimetric aptasensor

readouts, we also designed a smartphone app called ExoP utilizing a

CNN that can robustly predict the concentration of PD-L1@EVs by

analyzing the chromaticity of the tubes from the images. The ExoP

user interface can be seen in Figure 9. This eliminates discrepancies

associated with the colorimetric approach, such as lack of quantitative

data without specialized equipment and inter-observer variability due

to human subjectivity during visual interpretation (57). The key

component behind the ExoP app is the CNN model, which has

superior capabilities in gathering information from input data for

learning and has been able to perform the task of distinguishing

different concentrations of PD-L1@EVs from the tubes’ chromaticity

on which it was not trained before. In essence, the ExoP app

automates the quantitative interpretation of colorimetric aptasensor
FIGURE 5

Visualization of colorimetric aptasensor analytical performance. (A) Change in chromaticity with the increase in the concentration of PD-L1@EVs.
(B) Aptasensor analytical performance using various concentrations of A549 EVs (0–1010). (C) Sensitivity of the aptasensor and the linear relationship of
chromaticity (absorbance at 400) with the increasing concentration of A549-EVs. (D) Graphical representation of aptasensor specificity (FBS, fetal bovine
serum). **,*** P less than 0.05 and P less than or equal to 0.0001.
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chromaticity for PD-L1@EVs concentration, making it more

convenient and guaranteeing uniformity in the results. It is worth

noting that the deep learning model can accurately analyze tube

chromaticity, and the ExoP app can provide real-time quantitative

values on the phone screen with high precision and accuracy.

Figure 10A shows that the intelligent ExoP detected a

concentration of PD-L1@EVs that was quite close to the

concentration detected using the aptasensor univariate analysis.

Similarly, we also tested the ExoP performance using 10 clinical

samples (5 healthy volunteers and 5 lung cancer patients). It can be

seen in Figure 10B that there was no significant difference between

the quantitative values of chromaticity revealed by the colorimetric

aptasensor and the ExoP app for PD-L1@EVs.
4 Discussion

A huge chunk of research provides evidence that EVs are

promising liquid biopsy markers for cancers, including lung

cancer (19, 58). EVs are regarded as ideal biomarkers for their

stability, non-invasive mode of acquisition, rich content, and

recognition as a representative of the pathophysiological status of

the originating cells (59). PD-L1@EVs have been recognized for
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their role in immunotherapy for lung cancer (60). Monitoring of

PD-L1@EVs can also provide information about the response of

tumors to treatment. PD-L1@EVs have been indicated as diagnostic

and prognostic markers for lung cancer (61). In addition,

conventionally, PD-L1 expression analysis is performed using the

sample obtained through tissue biopsy, but it is not always feasible

in the initial sample due to the insufficient quantity of tumor

material and the difficulties in performing a new invasive biopsy.

Therefore, PD-L1@EV analysis through liquid biopsy can be a

valuable approach because it may better reflect tumor heterogeneity

compared with the tissue biopsy and also due to its non-invasive

nature (62).

Therefore, the simple and accurate detection of PD-L1@ EVs

is crucial. To achieve the above objective, we developed a

colorimetric aptasensor by integrating rapid capturing of EVs by

(Fe3O4)-SiO2-TiO2 mag-nanoparticles with an HCR signal

ampl ificat ion s trategy to detect PD-L1-posi t ive EVs

colorimetrically, achieving high sensitivity (LOD 3.6×102 EVs/

mL) and specificity. To further simplify the quantitative analysis

of chromaticity, we trained and tested a CNN-based deep learning

model and integrated it into a user-friendly smartphone app

(named ExoP). Both the model and ExoP showed excellent

accuracy in predicting the concentration of PD-L1@EVs by
FIGURE 6

Colorimetric aptasensor performance on clinical samples. (A) A significant deviation exhibited in absorbance at 400 nm for healthy (n = 21) and lung
cancer (n = 21) patients. (B) Heatmap-based visualization of absorbance difference between healthy and lung cancer patients. (C) ROC curve for the
aptasensor performance on the clinical samples. (D) Colorimetric aptasensor performance comparison with conventional ELISA for PD-L1@EVs using
clinical samples. *** P less than 0.05 and P less than or equal to 0.0001.
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analyzing the chromaticity of the tubes. As reported by Tania (41),

deep learning approaches integrated into smartphone apps can

provide efficient tools that can be helpful in eliminating the

subjectivity of chromaticity interpretation and can provide

quantitative information without any additional instrument.

Many of the strategies used for detecting EVs have involved a

time-consuming ultracentrifugation process or the use of

commercial kits to isolate EVs from clinical samples before

detection, which can result in a lengthy process and an

increased risk of contamination (21). Some of these methods

have been validated using simulated serum or diluted serum

with added EVs, or by detecting EVs in cell culture medium.

However, the colorimetric aptasensor demonstrated highly
Frontiers in Immunology 13
accurate results when testing real, undiluted serum samples. The

colorimetric aptasensor for PD-L1@EVs showed excellent

performance: a wide linear range from 103 to 108 EVs/mL and

an LOD as low as 3.6×102 EVs/mL compared to the majority of

previous methods, as tabulated in Table 1. Detection approaches

involving immune-affinity-based capturing of EVs by membrane

markers can be excellent in sensitivity and reproducibility, making

them ideal for biomarker discovery. However, immune-affinity

methods are not feasible for large-volume samples as biological

ligands are costly. Another drawback is the heterogeneity of the

EV population; for instance, a CD63 membrane marker is absent,

but PD-L1 is present on the surface of EV, which can risk the

missing of a specific population of EVs (70).
FIGURE 7

The architecture of CNN model and its performance evaluation. (A) Proposed CNN model architecture. (B) Accuracy, (C) MAE, (D) precision and
recall curve, and (E) AUROC (AUROC, area under the receiving operating curve; MAE, mean absolute error).
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FIGURE 8

Model evaluation using 10 samples of various concentrations. Confusion matrix (A, B) precision, recall, and F1 score of the trained CNN model to
performance analysis of chromaticity images for quantification of PD-L1@EVs.
FIGURE 9

The user interface of the ExoP app.
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TABLE 1 Comparison with previous methods.

Method
LOD

(EVs/mL)
Sample type

Prior isolation
(UC/kit/UF)

Linear range
(EVs/mL)

Ref.

Electrochemical 2.67 × 104 Spiked serum Yes 5 × 104–5 × 109 (63)

Electrochemical 1.5 × 106 FBS Yes 2 × 106–4 × 108 (64)

Fluorescence 7.6 × 106 Culture medium Yes 1.6 × 107–4.2 × 1010 (65)

Colorimetric 13.5 × 108 Diluted serum Yes 1.9 × 109–3.38 × 1010 (66)

Chemiluminescence 2.63 × 108 Undiluted serum No 2.9 × 108–2.8 × 1011 (67)

Chemiluminescence 2.85 × 105 Undiluted serum No 105−108 (23)

Mass spectrometry 3.05 × 105 Plasma No 1 × 106–5 × 107 (68)

Impedance 1.4 × 104 Serum Yes 1.0 × 105–1.0 × 109 (69)

Colorimetric 3.6 × 102 Serum No 103–108 This work
F
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FIGURE 10

The ExoP smartphone app performance evaluations with colorimetric aptasensor spectroscopic readings. (A) The ExoP app performance along with
the colorimetric aptasensor (absorbance at 400 nm) on the various concentrations of PD-L1@EVs. (B) ExoP app performance compared to
aptasensor in quantifying PD-L1@EVs concentration from chromaticity.
TABLE 2 Performance comparisons of our model with previous models following the same approach.

Target Approach Images Model Performance Ref.

Urine glucose Colorimetry Smartphone Faster-RCNN R2 = 0.97 (57)

Living cells Colorimetry Smartphone Mask-CNN Accuracy = 95% (73)

Lactate Colorimetry Smartphone CNN Accuracy = 99% (74)

Virus Fluoresce Smartphone CNN Accuracy = 98% (75)

E. coli Colorimetric Smartphone CNN Accuracy = 97% (76)

Bacterial biomarker Raman spectroscopy Spectra CNN R2 = 0.97
MAE = 0.27

(77)

PCA3 Electrochemical SEM images SVM Accuracy = 99% (78)

PD-L1@EVs Colorimetry Smartphone CNN Accuracy = 99%
AUROC = 0.99
MAE = 0.01
R2 = 0.99

This work
SVM, Support vector machine; MAE, mean absolute error.
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Therefore, efficient, rapid capturing of EVs through the lipid

bilayer by TiO2 is highly valuable (19, 22), and it can be commonly

applied to a wide range of biological samples to accelerate the

development of EV detection platforms with clinical application.

Colorimetric approaches are preferred for their simplicity and

robust naked-eye qualitative detection. However, qualitative

determination by the naked eye can lead to significantly biased

readings and unreliable analyses. Therefore, many scientific groups

have developed smartphone app-based image capturing and deep

learning analysis for colorimetric approaches in the area of disease

diagnosis (71). The GlucoSensing app was developed utilizing

machine learning with a remote server for image processing and

feature extraction to predict the level of glucose in unknown saliva

samples (72). Another study revealed the use of a CNN-assisted app

for the prediction of glucose levels in urine from images of

colorimetric sensors using gold nanoparticles. In Table 2, we

tabulated different articles using machine learning algorithms and

smartphone images for various detection approaches and targets.

Our deep learning model has shown excellent output for various

performance metrics, thereby validating its utility. We believe that

the addition of the deep-learning-powered smartphone app has

converted our colorimetric aptasensor into an intelligent

colorimetric aptasensor capable of predicting the concentration of

PD-L1@EVs based on the underlying decision system. Smartphone

apps based on deep learning models pave the way for quantitative

colorimetric detection with higher accuracy and repeatability (79).

The potential of EVs for lung cancer diagnosis has been proven by a

series of studies, and by combining the advantages of non-invasive

EV-based detection with existing tests such as LDCT and other

molecular markers, we can have the advantage of detecting and

diagnosing lung cancer much earlier than through conventional,

invasive, and risky tissue biopsy (3).
5 Conclusion

To summarize, a versatile colorimetric aptasensor for PD-L1@

EVs was developed by harnessing (Fe3O4)-SiO2-TiO2 mag-

nanoparticles to rapidly capture EVs from cell culture and patient

serum. The specific PD-L1 marker on the EVs was recognized

through an aptamer (PD-L1 aptamer) that provides an initiation

sequence for HCR, resulting in long strands with many HRPs for

signal amplification. HRPs catalyze the conversion of the substrate

DA into PDA, resulting in a color change. The change in

chromaticity corresponds to the concentration of PD-L1@EVs.

The colorimetric aptasensor was able to detect PD-L1@EVs at

concentrations as low as 3.6 × 102 EVs/mL and a linear range of

103–108 EVs/mL. Colorimetric approaches still require instruments

such as a spectrophotometer to quantify the results. To overcome

this problem, a deep learning (CNN) model was trained and tested

using the pre-obtained images for chromaticity analysis that can

later automatically quantify the chromaticity of the new unseen

images. The learned model was embedded into a custom-designed

smartphone app named ExoP.

We envision that such an approach can provide a reliable

alternative to traditional laboratory-based analytical instrumentation
Frontiers in Immunology 16
such as a spectrophotometer, which is generally a bulky and costly

object and often requires a separate computer to function and skilled

personnel to operate. No prior methodology was able to demonstrate

an intelligent deep-learning-powered app such as ExoP for the

quantification of chromaticity using images of the colorimetric

aptasensor for EVs. The designed framework for chromaticity

analysis with minimal user intervention or additional hardware

attachments can be a useful intervention. We believe that EV-based

non-invasive liquid biopsy approaches can be vital for the detection of

lung cancer at earlier stages, which are amenable to treatment

compared to traditional, highly invasive, and risky tissue biopsy.
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