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Signal transducer and activator of transcription 4 (STAT4) is a member of the

STAT family, which is a group of transcription factors that regulate cytokine

signaling. Genetic polymorphisms in STAT4 strongly influence immune

responses and disease outcomes, especially in cancer and autoimmune

diseases. Several studies have indicated that certain STAT4 gene variants are

associated with alterations in STAT4 expression and/or activity and that there is a

close relationship between STAT4 polymorphisms and drug efficacy. However,

the underlying mechanisms are complex, and the roles of these polymorphisms

in disease acquisition, progression, and severity are of widespread concern.

Therefore, we provide an overview of the clinical significance of

polymorphisms in STAT4 and the mechanisms by which these STAT4 variants

are involved in various diseases.
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1 Introduction

STAT4 plays a central role in signal transduction, particularly in facilitating the

production of biomolecules closely associated with autoimmune diseases. Studies have

shown that mice lacking STAT4 exhibit a higher resistance to inflammatory conditions

such as colitis, arthritis, diabetes, myocarditis, and experimental autoimmune encephalitis

(1–6). In the human genetic system, the STAT4 gene is located on chromosome 2q32.2,

with its DNA sequence spanning approximately 220 kilobases (kb) and containing 24 exons

and 23 introns. The protein encoded by the STAT4 gene has a molecular weight of

approximately 84 kDa and consists of 748 amino acids. Among its family members, the

STAT4 protein exhibits the highest tissue specificity and is highly expressed in the lymph

nodes, myeloid lineage, testicular tissue, and skin. Structurally, STAT4 resembles other

STAT proteins in that it is composed of multiple conserved regions in both structure and
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function, including the N-terminal domain (NTD), the coiled-coil

domain (CCD), the DNA-binding domain (DBD), a linker domain

(LD), the Src-homology 2 (SH2) domain, and the C-terminal

transcription activation domain (TAD) (7). Functionally, the

active form of STAT4 is primarily activated through

phosphorylation by Janus kinase 2 (JAK2) and tyrosine kinase 2

(TYK2), forming pSTAT4, which promotes STAT4 dimerization,

nuclear translocation, and transcriptional activation of its target

genes (8, 9). Notably, during this process, the SH2 domains of

STAT4 proteins bind to tyrosine-phosphorylation sites (pYs) on

receptor complexes as well as pYs on other STAT proteins and work

together with the NTD to mediate the formation of homodimers or

heterodimers by STAT4. Notably, studies indicate that STATs

lacking the NTD cannot form tetramers at DNA-binding sites

(10), which potentially impedes the full transcriptional activation

of many STAT target genes (11). The CCD and TAD domains allow

the STAT4 protein to bind to other transcription factors or co-

activators, and depending on the presence of the TAD domain,

there can be two spliced variants of STAT4: STAT4a, which
contains the TAD, and STAT4b, which lacks it (12).

Although both STAT4a and STAT4b can activate transcription in
primary cells and cell lines, studies have demonstrated that the absence

of the TAD domain in STAT4b canmarkedly alter its function (12). In

addition, studies have indicated that genetic polymorphisms in STAT4

also influence immune responses and disease susceptibility. For

example, unstimulated cells transfected with STAT4 H623Y or

A635V variants exhibited greater accumulation of STAT4 in the

nucleus (13). Therefore, this review aims to summarize various

reports on STAT4 polymorphisms, the effects of these

polymorphisms on disease susceptibility and treatment effectiveness,

and the mechanisms through which these STAT4 variants are

involved in these diseases.
2 Biological effects of STAT4

As shown in Figure 1, STAT4 is mainly activated within the

cytoplasm by cytokines such as IL-12, IL-23, and type I interferons,

via the JAK2 and TYK2 kinase pathways and/or the p38/MKK6

signaling cascade. This, in turn, leads to the phosphorylation of

STAT4 on tyrosine and/or serine residues, thereby promotes

STAT4 dimerization, nuclear translocation. Ultimately, this leads

to the transcriptional activation of STAT4’s target genes, fulfilling

its functional role. Studies have indicated that JAK activation most

likely results in the phosphorylation of tyrosine residue 693 on

STAT4, which facilitates STAT4 dimerization and nuclear

translocation. Mutation at this site completely abrogates IL-12-

induced STAT4 transcriptional activity. In contrast, activation of

the p38/MKK6 signaling pathway leads to phosphorylation of

STAT4 at serine residue 721. Unlike tyrosine phosphorylation, it

has been proposed serine phosphorylation of STAT4 is dispensable

for nuclear translocation or DNA binding of STAT4, but is required

for STAT4 full transcriptional activation (14). Furthermore, it was

suggested that serine phosphorylation of STAT4 is partially

dependent on precedent tyrosine phosphorylation of STAT4,

whereas tyrosine phosphorylation of STAT4 can be seen even in
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the absence of serine phosphorylation (15), which further implying

that the phosphorylation of STAT4 by p38 occurs in the nucleus.

Additionally, the phosphorylation of residues serine 733, 743, and

713 is also closely associated with the activation of STAT4. It is

speculated that these non-canonical serine phosphorylations may

cause the dissociation of STAT4 from the Leukemia Inhibitory

Factor Receptor (LIFR), enabling its subsequent nuclear

translocation (16).

Although numerous immune cells do not express STAT4 in

their basal state (17, 18), the regulation of STAT4 expression

appears to play a crucial role in the immune response. For

example, STAT4 expression is rarely detected in immature DCs

(iDCs) and mucosal mast cells (MMCs), while highly expressed in

matured DCs, connective tissue-type mast cells (CTMCs) and

activated monocytes (19, 20). Besides, Stat4 expression in T cells

is greatly influenced by their state of activation. Human peripheral

blood T cells do not have Stat4 in their basal state, but its expression

is markedly induced following stimulation (18). It is worth noting

that there are differences in the activation mechanisms of STAT4

among different species. For example, in mice, STAT4 can only be

activated by IL-12, whereas in humans, STAT4 is not only activated

by IL-12 but also phosphorylated by IFN-a (21, 22). Moreover, the

activators of STAT4 may vary among different cell types, with

monocyte-expressed STAT4 responding to IFN-a but not IL-

12 (17).

As shown in Figure 2, the function of STAT4 in the immune

system mainly encompasses both innate and adaptive immune

responses. In particular, for T helper (Th) cells, STAT4 is vital in

regulating their development and effector functions. It was suggested

STAT4 promotes the differentiation of Th1 cells mainly through

upregulating the expression of interleukin-12 receptor b2 (IL-12Rb2)
and enhancing IL-12Rb2-mediated signaling (23–25). STAT4 is also

necessary for follicular helper T (Tfh) cell development, and increased

activation of STAT4 in these cells leads to abnormal production of IL-

21 and IFN-g (26, 27). Moreover, STAT4 is involved in the process by

which IL-12 drives the differentiation of human regulatory T (Treg)

cells into T follicular regulatory (Tfr) cells (28). In contrast, CD4+

T cells lacking STAT4 have a greater tendency to differentiate into Th2

cells (3, 29), and STAT4 also demonstrates a potent ability to inhibit the

development of Th17 precursor cells by inducing their conversion into

IFN-g-producing cells (30). In terms of CD8+ T cells, STAT4 plays a

vital role in the homeostatic self-renewal of CD8+ T cells and IL-12–

induced STAT4 is crucial for the proliferation of effector CD8+ T cells

in an mTOR-dependent manner, and upregulated STAT4 expression

significantly enhances their survival capacity and infiltration (31–34).

Conversely, its absence impairs its effector functions (32, 35).

Furthermore, the activation of natural killer (NK) cells also strictly

depends on STAT4, which influences NK cell function by regulating

the production of IFN-g and perforin (36–38). High levels of STAT4

contribute to the maintenance of memory NK cell generation, as the

number of NK cells in wild-type (WT) mice is greater compared to

those in STAT4-deficient mice after infections with mouse

cytomegalovirus (MCMV) (39). Meanwhile, pSTAT4 is necessary for

the Be1 polarization of human naive B cells (40).

While, STAT4 not only actively participates in the

differentiation of lymphocytes but also plays a key role in the
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activation of myeloid cells such as monocytes and dendritic cells.

For instance, studies have shown that the alternative activation

(M2) of macrophages is enhanced in diet-induced obese mice due to

the lack of STAT4 (41). STAT4 is required for intrinsic signaling in

mature dendritic cells (mDCs) function (42), and STAT4-deficient

plasmacytoid dendritic cells (pDCs) exhibit defects in the

production of IFN-g (43). Contradictorily, despite research

indicating that STAT4 regulates IL-6 through an autocrine

mechanism to inhibit the proliferation of CTMCs, it plays a

crucial role in mast cell immune response (20, 44, 45).

Furthermore, recent research has shown that neutrophil-specific

deletion of STAT4 resulted in enhanced susceptibility to

methicillin-resistant Staphylococcus aureus (MRSA) (46). This

discovery indicates that STAT4 also plays a crucial role in

neutrophil function. Specifically, it has been found to exert

important effects through multiple aspects such as the production

of reactive oxygen species (ROS), chemotaxis, and the formation of

neutrophil extracellular traps (NETs).
3 Polymorphisms in the STAT4 gene

Various polymorphisms within and surrounding the STAT4

gene sequence have been identified. These variations can be broadly

categorized into three classes: those in intron regions, those in the

5′-flanking DNA, and those within the open reading frame.

Currently, STAT4 polymorphisms and their potential links to

diseases have been reported in more than one hundred studies

from various countries. These are illustrated in Figure 3.
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3.1 Single nucleotide polymorphisms
in introns

Presently, the majority of known STAT4 gene variations occur

within introns. During RNA processing, the intron sequences of the

primary RNA transcripts derived from both normal and variant

alleles are excised, resulting in the production of identical STAT4

mRNAs and subsequent synthesis of identical STAT4 proteins.

Notably, however, SNPs within the introns of STAT4, particularly

the rs7574865 polymorphism in intron 3, play an important role in

regulating STAT4 expression. For example, studies have indicated

that patients with systemic lupus erythematosus (SLE) carrying the

rs7574865 T allele have increased levels of STAT4 mRNA in

osteoblasts and peripheral blood mononuclear cells (PBMCs) (47,

48), and when T cells from these patients are stimulated with IL-12

and IFN-a, the levels of STAT4 protein and its phosphorylated

form, pSTAT4, are markedly increased (49). Besides, mutations

within the STAT4 third intron contain many elements that may

alter CD4+ T cell activation induced by IL-12, which may affect the

rates of STAT4 transcription and consequently IFNg production in

CD4+ T cells (50). In addition, research has revealed a significant

correlation between this risk allele and the methylation status at

position -172 of the STAT4 promoter (51). In addition, the SNPs

rs3821236, located in intron 16, and rs3024866, located in intron 13,

have also been correlated with increased STAT4 expression (48).

However, the effects of genetic variants appear to be context-

specific, such as significantly elevated STAT4 levels in the serum

and peritumoral tissue of hepatocellular carcinoma (HCC) patients

with the rs7574865 GG genotype (52). Furthermore, research
FIGURE 1

The activation of STAT4 and its mainly signaling pathway. JAK, Janus kinase; TYK2, Tyrosine kinase 2; STAT*, Signal transducer and activator of
transcription 4 or other STAT; MKK6, MAP kinase kinase 6.
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suggests that rs4853540 located in the STAT4 gene may map to an

enhancer of STAT1 (53). And there exists a genotype-dependent

repressive element in the DNA surrounding rs11889341. The risk

allele rs11889341C enhances HMGA1 binding capability, resulting

in reduced repressor activity and consequently higher levels of

STAT1 expression (54).
3.2 Single nucleotide polymorphisms in 5′-
flanking DNA

A second type of allelic variation occurs within the 5’-flanking

region of the STAT4 promoter. Shin HJ and his colleagues
Frontiers in Immunology 04
demonstrated evidence for allelic variation (−149A/G) in

noncoding exon 1 of the STAT4 gene, which is located in the 5’-

flanking region of the essential promoter. Subsequently, direct

sequencing analysis revealed that this noncore promoter region

allelic variation frequently appeared in patients with rheumatoid

arthritis (RA) and asthma. However, luciferase reporter gene assays

of genes transcriptionally controlled by either the wild-type STAT4

promoter or the variant promoter revealed that this polymorphism

had no significant effect on promoter activity (55).

In addition, another SNP located at the edge of the 5’ promoter

region of STAT4 (rs897200) has been identified (56). Notably,

through analysis using the Regulomedb database and predictions

made with ALGGEN PROMO software (57), it was discovered that
FIGURE 2

Divergent roles of STAT4/p-STAT4 in different immune cells.
FIGURE 3

Reported polymorphisms (SNPs) in the STAT4 gene associated with disease occurrence.
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the site at which this SNP occurs could potentially serve as a

transcription factor-binding site. In line with this, subjects with

the AA genotype presented significantly higher STAT4 mRNA

levels in PBMCs and skin cells than did subjects with the GG

genotype, and luciferase activity was notably increased in cells

harboring the A allele (58).
3.3 Single nucleotide polymorphisms
in extrons

A third type of allelic variation has been identified in exons

within the STAT4 open reading frame. This type of polymorphism

has the potential to affect both protein structure and function,

which is different from the effects of reported STAT4

polymorphisms in noncoding sequences. Recently, several SNPs

have been identified in exons.

Through a genome-wide association study (GWAS),

Saevarsdottir S and colleagues reported that a rare missense

variant in STAT4, rs140675301-A, causes a 2.27-fold increase in

the risk of seropositive RA. Specifically, this genetic variant causes

the replacement of hydrophilic glutamic acid with hydrophobic

valine (Glu128Val) in a conserved surface-exposed loop between

the N-terminal domain and the helical coiled coil domain (59),

although the direct impact of the mutation at this site on protein

function remains unknown.

Remarkably, three other heterozygous polymorphisms (STAT4

c.1904 C→T, c.1949C→A, and c.1867C→T), resulting in A635V,

A650D, and H623Y amino acid substitutions, respectively, in a

specific region of the gene that encodes STAT4 were identified. All

of these polymorphisms, occur in the region of the STAT4 gene that

encodes the SH2 domain. They also discovered that, in

unstimulated cells containing STAT4 variants, there was greater

accumulation of STAT4 in the nucleus, and the levels of pSTAT4

were increased, and compared with those in control cells, the levels

of pSTAT4 not only increased but also remained elevated for a

comparatively longer duration in the interferon-stimulated cells. In

addition, they found that mutant STAT4 dimers are more stable

than wild-type STAT4 dimers (13), but little is known about how

these mutations promote the phosphorylation of STAT4 and

maintain the stability of its dimers. Regardless, this experiment

further suggested that the SH2 domain is strongly linked to the

activity of STAT4, indicating that mutations within this domain

could significantly alter the phosphorylation and dimerization of

STAT4, which in turn affects its transcriptional activity and

potentially contributes to the occurrence of disease.
4 Genetic variation and
disease susceptibility

STAT4 can be activated by distinct types of cytokines in

multiple cells via the JAK-STAT pathway or p38/MKK6 pathway.

Subsequently, it acts as a transcription factor to regulate the

expression of various genes. This pivotal function makes STAT4 a
Frontiers in Immunology 05
central mediator in the induction of inflammation during protective

immune responses and immune-mediated diseases. Importantly,

numerous studies have identified the association between STAT4

polymorphisms and disease susceptibility.
4.1 Polymorphisms and cancer

Associations between STAT4 SNPs and cancer susceptibility

have been reported in different cancer types, but the results have

been inconsistent. The STAT4 polymorphism rs7574865 has been

extensively studied in the context of hepatocellular carcinoma

(HCC) and chronic hepatitis B virus (HBV) infection. Although it

is widely accepted that the C allele of rs7574865 increases the risk of

HCC and is strongly associated with HBV-related HCC, especially

in Asian populations (60–62). However, several studies, such as that

of Chen and colleagues, have failed to replicate these findings (63).

Additionally, a recent report indicated that this SNP (rs7574865)

does not influence the risk of developing HCC in Latin American or

European populations (64), suggesting that the association between

rs7574865 and HCC risk may be specific to certain populations, and

more studies are needed. In addition, a recent study suggested a

potential association between STAT4 rs11889341 or rs10174238

and HCC risk among the Chinese Han population (65).

Additionally, the variants of STAT4 rs7574865T and

rs1400656G serve as protective alleles against the risk of lung

cancer (66). STAT4 rs6738544A was significantly associated with

pancreatic cancer risk (67). Furthermore, logistic regression analysis

revealed that rs4274624 (STAT4) is linked to an elevated risk of

breast cancer, whereas STAT4 rs925847 is associated with a reduced

risk of breast cancer (68).
4.2 Polymorphisms and
autoimmune diseases

SNPs in STAT4 have been reported as risk factors for the

development of autoimmune diseases, including RA, SLE, lupus

nephritis (LN), type 1 diabetes (T1D), psoriasis, inflammatory

bowel disease (IBD), Behçet’s disease (BD), Sjögren’s syndrome

(SS), systemic sclerosis (SSc), primary biliary cirrhosis (PBC), and

other diseases (Table 1).

4.2.1 RA
Over the past two decades, the potential effects of STAT4 SNPs

on susceptibility to RA have been evaluated. Among these, STAT4

rs7574865 is the most well studied and has been identified as an

important risk factor for RA across multiple ethnic group (69–77).

Specifically, the T allele of rs7574865 is associated with an increased

risk of RA, with the TT genotype predominantly found in RA

patient. Besides, studies have also revealed significant associations

among the SNPs rs10181656(G), rs11889341(T), rs7574865(T), and

rs8179673(C) in the STAT4 gene and RA (78, 79).

Furthermore, some research findings indicate that STAT4 gene

polymorphisms may be involved in regulating the seropositive
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status of RA patients. Specifically, researchers have reported that the

frequency of the T allele and TT genotype of rs11889341 is

significantly lower in the rheumatoid factor (RF)-positive

subgroup of RA patients than in the RF-negative subgroup, but

there is a lack of direct evidence linking rs11889341 with RA risk

(80). Additionally, the frequency of RF positivity was significantly

greater among RA patients with the rs7574865 T allele (81).

Furthermore, the rs7574865 and rs10181656 loci in the STAT4

gene were associated with anti-cyclic citrullinated peptide (ACPA)-

positive RA (81–84), and a rare missense variant in the exon of
Frontiers in Immunology 06
STAT4, rs140675301A, has also been shown to increase the risk of

seropositive RA (59).

4.2.2 SLE and LN
The association between STAT4 gene polymorphisms and

SLE/LN remains controversial according to published studies.

However, several meta-analyses have consistently indicated that

the T allele or TT genotype of the STAT4 rs7574865

polymorphism serves as a risk factor for SLE across different

ethnic populations, despite variations in prevalence rates among

different ethnicities (85–87). Moreover, higher levels of IFN-g
(interferon-g) have been reported in TT allele carriers (88).

Interestingly, there are significant differences in the functional

manifestations of the STAT4 rs7574865 variant between healthy

individuals and patients with SLE, and its function may also be

influenced by other mutation sites. Specifically, the STAT4 risk

allele rs7574865 T has contrasting effects on cells from healthy

individuals compared with those from patients with SLE. In

SLE patients carrying the STAT4 risk allele rs7574865[T],

T cells exhibit increased STAT4 protein and pSTAT4 lever,

and elevated IFN-g production after PHA/interleukin (IL)-2

activation, whereas in healthy individuals, STAT4 risk allele

carriers have reduced pSTAT4 levels in CD8+ and CD4+ T cells

(89). However, CD4+ naive T cells from both healthy individuals

and SLE patients carrying the non-risk homozygous (NR/NR)

genotype (rs7582694G and rs7574865G) exhibit significantly

lower levels of STAT4 compared to cells carrying the high-risk

homozygous (R/R) genotype (rs7582694C and rs7574865T)

during T-cell differentiation, and activation of cells from

healthy individuals and SLE patients with the R/R genotype

shows increased levels of transcriptionally active STAT4 and

production of interferon-g (50).
In addition, several studies have suggested that the minor allele

polymorphisms rs10168266T, rs7601754T, rs7582694C and

rs3821236A are also associated with SLE (48, 84, 87, 90–97), and

that the TTT haplotype (rs10168266/rs11889341/rs7574865) is also

linked to SLE (98). Moreover, SLE-smoking patients with the

STAT4 SNP rs11889341T allele have a significantly increased risk

of LN (99), and also SLE patients with the rs7582694C and

rs7574865T allele exhibit a significantly increased incidence of

severe renal insufficiency (100, 101).
4.2.3 IBDs
To date, the associations between STAT4 variants and IBD,

specifically ulcerative colitis (UC) and Crohn’s disease (CD), remain

uncertain. Previous meta-analyses have suggested that the STAT4

rs7574865 T allele may confer increased susceptibility to UC (102,

103). Subsequently, another study analysis has further clarified that

this genetic polymorphism is most strongly associated with UC

susceptibility among Caucasians (104). However, a case-control

association study conducted in a Korean population revealed that,

while the SNP rs925847 polymorphism provides a protective effect

against UC, none of the other tested STAT4 SNPs (including

rs11889341, rs8179673, rs6752770, rs10168266, rs10181656, and

rs11685878) were linked to UC susceptibility (105).
TABLE 1 Association between STAT4 SNPs and autoimmune disease.

Disease Identifier or
genotype of
SNPs(risk)

Sample
population

Reference

RA rs7574865(T) Patients vs Control, In
North America/Africa//

Asian/Polish
Population/South

America/
European populations

(69–77,
81, 83)

rs10181656(G)
rs11889341(T)
rs7574865(T),
rs8179673(C),

In Asia (78, 79)

rs11889341(C)/
rs7574865(T)

Patients with RF-
positive RA vs patients
with RF-negative RA

(80, 81)

rs140675301(A) Seropositive RA vs
Seronegative RA

(59)

rs1018165(G)/
rs7574865(T)

ACPA-positive RA vs
ACPA-negative RA

(81, 84)

SLE/LN rs7574865(T) In Asian/European
populations/North
America/South
East Asian

(85–87)

rs10181656(G) multiple racial groups (92, 96)

rs7582694(C) Asian/
European population

(92, 94–96)

rs11889341 (T) Asian (98, 100)

rs7601754 (T) Asian/
European ancestry

(91, 97)

rs10168266 (T) South East Asian/
multiple racial groups

(90, 92,
93, 98)

TTT haplotype
(rs10168266/
rs11889341/
rs7574865)

In Asian (98)

IBDs rs7574865 (T) In all population (104)

Type
1 diabetes

rs7574865 (T) European/Africa (107–110)

rs11889341 (T),
rs7574865 (T),
rs8179673 (C),
rs10181656 (G)

In Asian; the early-
onset subgroup (less
than 7.6 years old)

(111)

rs11889341 (T) In Asian
(weak association)

(111)
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In addition, a protective role for rs7568275T and rs10174238

against the risk of Crohn’s disease (CD) was suggested (106).

However, a final meta-analysis found no significant association

between STAT4 polymorphisms and CD susceptibility (104).

4.2.4 T1D
Although it has been proven previously that several SNPs in the

STAT4 gene contribute to the genetic predisposition to T1D, the

role of STAT4 polymorphisms in T1D is poorly understood. This

association was first observed in a genetically homogeneous

population, where susceptibility to type 1 diabetes was associated

with a significant increase in the frequency of the STAT4 rs7574865

T allele (107). Subsequently, several studies on Asian, African and

European populations confirmed that rs7574865 plays a role in the

incidence of T1D (102, 108, 109), and that carriers of the rs7574865

minor T allele presented earlier T1D onset (110). In addition,

analysis of the early-onset subgroup revealed that rs11889341,

rs7574865, rs8179673, and rs10181656 were significantly

associated with susceptibility to T1D, whereas only a weak

association was observed between rs11889341 and T1D in general

(111). Over all, these findings suggest that certain STAT4 SNPs may

be particularly relevant in the context of early-onset T1D.

4.2.5 SSc
The results of studies on the role of STAT4 SNPs in SSc are

somewhat conflicting. Similar to other autoimmune diseases, the T

allele of rs7574865 has been identified as a susceptibility factor for

SSc (112), and a meta-analysis conducted by Xu et al. encompassing

six studies revealed that, depending on the extent of skin

involvement, the frequency of the STAT4 (rs7574865) risk T

allele was increased in both limited cutaneous (lcSSc) and diffuse

cutaneous (dcSSc) SSc patients compared with healthy individuals

(113). This finding indicates a potential subtype-specific

association, but more experiments are needed to verify this

observation. Other variants of STAT4, such as rs11889341A and

rs10168266T, have been implicated in systemic sclerosis (SSc) in

various studies (114, 115). Moreover, carriers of the rs3821236 A-

allele and rs7574865 T-allele, along with rs10168266 T-allele

carriers, exhibited an increased prevalence of pulmonary fibrosis

in SSc patients, and carriers of rs7574865 and rs10168266 T-alleles

were also strongly associated with the presence of anti-

topoisomerase I (ATA) (115).

4.2.6 Behçet’s disease/periodic fever, aphthous
stomatitis, pharyngitis, and cervical adenitis

GWASs in patients with BD have been performed in Turkish,

Japanese, Chinese, and Iranian populations, and STAT4

polymorphisms is considered a common risk factor for BD (58,

116–118). Specifically, the rs7572482 risk allele T, rs7574070 risk

allele A, and rs897200 risk allele A have been found to be associated

with BD. In addition, studies have explored the relationship

between gene polymorphisms at other loci of STAT4 and BD,

and revealed that the GG genotype of rs7574865 may be a risk factor

for BD patients (119, 120). However, a study conducted in the

Korean population revealed no association between SNPs of STAT4
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(including rs7574070, rs1031508, rs897200, and rs7572482) and the

risk of BD in an analysis of individual polymorphisms (121).

In addition, studies have revealed that PFAPA syndrome shares

genetic similarities with BD, and that the rs7574070 risk allele A is

also an important susceptibility locus for PFAPA (122).

4.2.7 SS
Several studies have been conducted to determine the

associations between STAT4 polymorphisms and susceptibility to

SS. Among Europeans, a statistically significant association between

SS and STAT4 variants was observed, especially the insertion

−deletion polymorphism rs10553577 located in the third intron,

which exhibited a particularly strong association (123).

Additionally, the T allele of rs7574865 at the genetic locus is

significantly more common in SS patients, and carriers of this

allele exhibit a higher risk of monoclonal component and

leukopenia (124). Consistent with these findings, other GWAS

analyses also established associations between SS and the gene

regions of STAT4, including rs11889341, rs8179673 (125).

Moreover, research indicates that rs7574865, rs7582694, and

rs10168266 are significantly associated with primary Sjögren’s

syndrome (126–130).

4.2.8 Juvenile idiopathic arthritis
Studies have suggested that the rs7574865 risk allele T plays a

role in the development of JIA and is associated with this condition

in Han Chinese and American populations (131, 132), but not in

Iranian or Greek populations (133, 134). Additionally, in Han

Chinese populations, the G allele of rs11893432 was notably

associated with an increased risk of oligoarticular JIA, whereas

the A allele of rs10931481 and the C allele of rs1018981 were

suggested to be associated with higher risk of polyarticular

JIA (135).

4.2.9 Optic neuritis/neuromyelitis optica
spectrum disorder/idiopathic
inflammatory myopathy

Additionally, STAT4 polymorphisms have been reported to be

associated with other diseases. For example, a recent study revealed

that both the G-G-A-C and C-T-A-T haplotypes of STAT4

(rs10181656, rs7574865, rs7601754, and rs10168266) are

associated with the occurrence of optic neuritis (136). Besides,

four STAT4 variants, including rs7574865 T, rs10181656 G,

rs13426947 A, and rs10168266 T, have been reported to be

associated with an increased risk of NMOSD, and similar to SLE,

the G allele of rs7601754 also displays a protective effect against

NMOSD (137). In addition, studies have revealed an association

between STAT4 variants and IIM. Through candidate gene studies,

it was discovered that both polymyositis and dermatomyositis are

strongly associated with the rs7574865T allele (138). Additionally,

by constructing a regional association plot of the STAT4 locus, two

other SNPs, rs4853540 and rs6752770, were identified as having a

significant association with IIM (53). Although these loci do not

overlap, these studies collectively reinforce the association between

STAT4 and IIM.
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4.3 Infections disease

Several studies have indicated an association between STAT4

polymorphisms and infectious diseases. It was well known the C

allele of rs7574865 may enhance susceptibility to hepatitis B virus

(HBV) infection (61, 139). In addition, the impact of STAT4

polymorphisms appears to be more pronounced in young patients

with pulmonary tuberculosis (PTB). A study revealed an association

between STAT4 SNPs (rs6752770, rs3024861, rs7572482, rs1031509,

rs1400654 and rs897200) and PTB, particularly highlighting a strong

correlation between rs897200 and younger PTB patients (pulmonary

tuberculosis onset <25 years) (56). While another study revealed that

the rs4853542A allele reduces the risk of tuberculosis in younger adults

after applying Bonferroni correction (140). Moreover, the rs7574865

TT genotype was identified as a risk factor for cytomegalovirus (CMV)

infection (141).
4.4 Other diseases

In addition, the G allele of rs1031509 is significantly associated

with an increased risk of developing doctor-diagnosed asthma when

induced by exposure to benzo[a]pyrene in the environment (142),

and SLE patients carrying the rs11889341 T risk allele appear to

have an increased risk of myocardial infarction (MI) and nephritis

(99). Moreover, an association between the rs7574865T allele and

type-1 autoimmune hepatitis was observed (143), and an analysis of

drug-induced liver injury patients revealed a trend toward an

association between a STAT4 variant allele (rs7574865T) and

hepatocellular injury, although this association was not

significant (144).

Overall, these findings suggest that STAT4 polymorphisms have

clinical significance. However, more studies with larger samples are

needed to verify the roles of STAT4 polymorphisms in

these diseases.
5 Polymorphisms and
therapeutic efficacy

Clinical evidence suggests that genetic variations may interfere

with the mechanism of drug action. Several studies have reported

that SNPs of STAT4 are associated with the clinical efficacy of

tumor necrosis factor (TNF) inhibitors in the treatment of RA

patients (145), and the STAT4 rs7574865 T allele is associated with

the absence of a good/moderate EULAR response at 2 years of

treatment in RA patients and ETN-treated patients (146). In

addition, carriers of the risk allele exhibit exaggerated CD4+ T-

cell activation that, in the context of SLE, contribute to more severe

disease, and R/R patients may benefit from blockade of the IL-12/

STAT4 pathway (50). Additionally, a prospective cohort study

suggested that the effectiveness of peginterferon-a (PEG-IFN)

therapy can be altered by STAT4 polymorphisms. Specifically,

patients in the GT/TT group presented a notably higher HBeAg

seroconversion rate and hepatitis B surface antigen loss rate than

those in the GG group (147). Similarly, another study revealed that
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the SNP rs757486 TT genotype was associated with a greater

virological response to PEG-IFN therapy, regardless of baseline

HBeAg status (148). However, importantly, this correlation was not

observed in nucleoside (acid) analog treatments (149).

In addition, a recent study implicated STAT4 gene

polymorphisms as the primary genetic factors that play a role in

DPM disease, and the JAK inhibitor ruxolitinib has shown

promising results in reducing inflammation in patients with DPM

caused by gain-of-function variants in STAT4 by precisely targeting

the STAT4 signaling pathway (13). Therefore, STAT4 genetic

variation can significantly impact drug treatment effectiveness,

emphasizing the importance of understanding these variations for

the advancement of personalized medicine and improved

patient outcomes.
6 Conclusion

Although STAT4 functions as an immunoregulator contributing

to diverse human diseases, it is merely one element within a complex

network of both proinflammatory and anti-inflammatory molecules.

Its activation is tightly regulated by various cytokines, such as

interleukin-12, interferon-gamma, and interleukin-1. Interestingly,

the effects of STAT4 depend not only on its absolute expression but

also in its functional state. The activity of STAT4 can be modulated

by regulatory factors such as suppressor of cytokine signaling protein

(SOCS) (150, 151), which inhibits its activity by blocking its receptor

binding (152).

The majority of STAT4 gene polymorphisms described here

occur within introns, and genetic editing has confirmed that the

most significantly associated SNPs linked to autoimmune disease

are located in the third intron of the gene (192, 153, 154). Among

them, three single nucleotide variations, rs7574865 G/T,

rs7582694G/C, and rs10181656C/G, are particularly associated

with autoimmune disease, and these three loci are in a state of

strong linkage disequilibrium. Specifically, the rs7574865 G > T

mutation has been extensively studied, with numerous reports

indicating that patients who possess a T allele have an increased

risk of autoimmune diseases such as RA, multiple sclerosis, SLE,

and primary SS (49, 102, 155). However, this situation is reversed in

the context of cancer. Specifically, the G allele of rs7574865 has

emerged as a risk factor for cancer development and progression,

and STAT4 levels in serum and peritumoral tissue of HCC patients

with the GG genotype are significantly higher than those found in

TT or TG carriers (52, 139). This highlights the complexity of

STAT4 gene variations and their context-dependent effects on

different diseases.

Further evidence has indicated associations with autoimmune

diseases beyond the SNP variants in intron 3. Specifically, the intronic

region spanning from intron 14 to exon 17 (encompassing

rs3821236G/A, rs3024886C/T, and rs3024877G/A), as well as the

region extending from exon 4 to intron 14 (including rs10168266C/T,

rs1517352C/A, rs13017460G/A, and rs16833249T/C), has also

demonstrated a significant correlation with autoimmune diseases,

especially SLE (48). Specifically, rs3821236A and rs10168266T were

significantly more common in patients with SLE than in healthy
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controls (98), and rs7574865 did not exhibit strong linkage

disequilibrium with rs3024866 (R2 = 0.29) or rs3821236 (R2 = 0.42)

(48). Furthermore, data from the HapMap project revealed significant

differences in the frequency distribution and linkage relationships

among STAT4 SNPs between Eastern and Western populations. This

finding suggests that different variations may serve as independent risk

factors for disease susceptibility, with some having stronger effects in

specific populations.

Furthermore, given the intimate connection between STAT4

activity and its protein structure, genetic polymorphisms situated

within exon region are likely to exert a more crucial influence on the

progression of diseases. However, despite the intricate genetic

regulation of STAT4 and its pivotal role in immune responses,

the impact of genetic variations on disease susceptibility and

outcomes is not absolute, as could be expected. Nonetheless,

genetic variations influencing STAT4 activity clearly hold

significance. Individuals endowed with a genetically predisposed

capacity for heightened STAT4 activation may experience more

pronounced inflammatory reactions under certain circumstances.

Therefore, more research is needed to elucidate the associations

between STAT4 polymorphisms and diseases to further clarify how

different polymorphisms affect the function of STAT4 and how

these effects are related to the pathogenesis and progression of

various diseases.
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