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Pancreatic cancer (PC) is a very aggressive digestive system tumor, known for its

high mortality rate, low cure rate, low survival rate and poor prognosis. In

particular, pancreatic ductal adenocarcinoma (PADC), which accounts for

more than 90% of PC cases, has an overall 5-year survival rate of only 5%,

which is an extremely critical situation. Early detection and effective treatment of

PC is extremely difficult, which leads many patients to despair. In the current

medical context, targeted therapy, as an important strategy for cancer treatment,

is expected. However, the problems of immune escape and drug resistance in PC

have become two major obstacles that are difficult to be overcome by targeted

therapy. How to break through these two difficulties has become a key issue to

be solved in the field of PC therapy. In recent years, non-coding RNAs (ncRNAs)

have continued to heat up in the field of cancer research. NcRNAs play a pivotal

role in gene regulation, cell differentiation, development, and disease processes,

and their important roles in the genesis, development, and therapeutic response

of PC have been gradually revealed. More importantly, ncRNAs have many

advantages as therapeutic targets, such as high specificity and low side effects,

making them a new favorite in the field of PC therapy. Therefore, the aim of this

paper is to provide new ideas and methods for the targeted therapy of PC by

reviewing the mechanism of action of four major ncRNAs (circRNAs, lncRNAs,

miRNAs, siRNAs) in both immune escape and drug resistance of PC. It is expected

that an effective way to overcome immune escape and drug resistance can be

found through in-depth study of ncRNA, bringing a ray of hope to PC patients.
KEYWORDS

tumor-immune interactions, ncRNA, tumor immune microenvironment, targeted
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1 Introduction

PC is a highly malignant tumor of the digestive system,

characterized by high mortality, low cure rates, poor prognosis,

and challenges in early detection and treatment (1, 2). Over 90% of

PC cases are PADCs, which have an extremely high mortality rate

and a 5-year overall survival rate of 5% (3, 4). Other PCs include

pancreatic acinar cell carcinoma, cystic tumors, and endocrine

pancreatic tumors, which have a lower incidence but may have a

relatively better prognosis (5, 6). Approximately 65% of PC tumors

are concentrated in the head of the pancreas., followed by those

located in the head and tail of the pancreas (7).

Current treatments for PC include surgery, radiotherapy,

chemotherapy, targeted therapy, and immunotherapy (8). Surgery

is the preferred treatment for PC, but due to late diagnosis, 80% of

patients lose the opportunity for treatment (9, 10). Radiation and

chemotherapy can alleviate symptoms and prolong the survival

cycle, but have significant side effects and are rarely able to cure

patients. Targeted therapy has been a major strategy in cancer

treatment research, which has the effect of enhancing therapeutic

efficacy and reducing side effects (11). Immunotherapy, like targeted

therapy, can specifically target tumor cells, thereby improving

therapeutic efficacy and reducing side effects (12). However, both

immunotherapy and targeted therapy encounter two significant

challenges: immune escape and drug resistance (13).

NcRNAs, i.e. non-coding RNAs, are a class of RNA molecules

with no protein-coding function (14). They play an important

regulatory role in cells, affecting a variety of life activities in

organisms by regulating gene expression, chromatin structure,

nuclear translocation, and protein function (15, 16). In recent

years, ncRNAs have attracted much attention in the field of

cancer research, and are believed to play an important role in the

occurrence, development, and therapeutic response of cancer (17).

Meanwhile, the targeted therapeutic roles of ncRNAs have also been

gradually revealed in PC.

More importantly, ncRNAs have significant advantageous

features in serving as therapeutic targets:
Fron
1. ncRNAs are highly specific in their expression in tumor

tissues, which means that they may become biomarkers for

cancer diagnosis and prognosis or novel targets for

therapy (18);

2. ncRNAs affect cancer cell proliferation, differentiation,

metastasis, and death through the modulation of gene

expression processes (19), so that therapies targeting

ncRNAs may directly intervene in cancer progression;

3. the regulatory network of ncRNAs is complex and diverse,

which provides a wealth of candidate targets for cancer-

targeted therapies.
In conclusion, ncRNAs have great potential and prospects in

serving as PC therapeutic targets. So in summary, in this paper, we

will review the functions and regulatory mechanisms of four major

ncRNAs (circRNAs, lncRNAs, miRNAs, siRNAs) in both immune

escape and drug resistance to help us better understand the
tiers in Immunology 02
pathogenesis of PC, and at the same time provide new ideas and

approaches for PC targeted therapy and immunotherapy.
2 Classification, function of ncRNAs,
and their biological mechanisms
in diseases

NcRNAs play important roles in gene regulation, cell

differentiation, development, and disease processes (20). NcRNAs

can be categorized into a number of different types, including

miRNAs, circRNAs, lncRNAs, and siRNAs, depending on their

length, mode of formation, and function (21).

CircRNAs are abundant, stable RNA molecules with a closed-

loop structure that is conserved (22), and usually consist of

hundreds of nucleotides (23). They control gene transcription

through interactions with RNA-binding proteins, and also

regulate signaling pathways through miRNA segregation (24, 25).

They have a variety of regulatory roles in the cell, including

regulation of gene expression, participation in protein synthesis,

etc. (26). CircRNAs can also act as “molecular sponges” for

miRNAs, adsorbing and neutralizing miRNAs, thus regulating the

inhibitory effects of miRNAs on target genes (27). Through the

above mechanisms, CircRNAs continuously regulates the tumor

microenvironment (TME) of PC, thereby affecting the occurrence

and development of cancer cells.

MiRNAs are endogenous short non-coding RNAs of 19 to 25

nucleotides in size, which are part of the epigenome. MiRNAs

regulate gene expression by binding to the mRNA’s 3′-untranslated
region (3′-UTR) to either inhibit translation or promote

degradation of target genes (28, 29). In the process of

immunization against PDAC tumors, miRNAs regulate the

recruitment and activation of immune cells to tumors (30, 31). At

the same time, miRNAs can also act as oncogenes or oncogenes to

participate in the genesis and development of PC (32).

LncRNAs are novel non-coding RNAs over 200 nucleotides in

length and are key players in tumorigenesis and immune response

(33, 34). They also have multiple regulatory roles in the cell,

including regulation of gene expression, participation in cell

differentiation, proliferation and apoptosis, etc. (35–37). LncRNAs

can bind to proteins to form ribonucleoprotein complexes, thereby

regulate the activity, localization and degradation of proteins, etc.

(38–40). LncRNAs can also act as oncogenes or oncogenes in PCs to

participate in the genesis and development of PCs (41). Like

circRNAs, lncRNAs also have the function of sponging miRNAs

to inhibit the abundance and activity of miRNAs (42).

SiRNAs are short interfering RNAs, usually consisting of 21-25

nucleotides (43). They are mainly used in cells to interfere with the

replication and expression of exogenous viruses or transposons, and

thus protect the cells from viral or transposon infection (44).

SiRNAs can bind to exogenous mRNAs, induce their degradation,

and thus inhibit their translation (45). Meanwhile, siRNAs can also

be used to treat PC. By binding siRNAs to liposomes, siRNAs can be

introduced into PC cells, which can inhibit the growth and

spreading of PC cells (46).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1480572
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gong et al. 10.3389/fimmu.2024.1480572
PiRNAs are a unique class of non-coding RNAs, usually 21-35

nucleotides in length, related to the Piwi subfamily of Argonaute

proteins in animals, especially in germline cells, used to suppress

transposons and maintain genome integrity. Sex (47) (48).

Compared to other ncRNAs such as miRNAs, lncRNAs, and

circRNAs, their functions in cancer, including pancreatic cancer,

are unclear. The main function of piRNA is to silence transposable

elements through multiple mechanisms (49), including

retrotransposons. By forming complexes with Piwi proteins,

piRNAs can target transposon transcripts for degradation or

translational repression, thereby limiting their proliferation and

preventing their deleterious effects on the genome (50). This

transposon silencing activity is critical for maintaining germline

integrity and preventing genetic instability. In addition to their role

in transposon silencing, piRNAs are also involved in other

biological processes such as genesis, epigenetic regulation (51).

Recent studies have also shown that piR-162725 may regulate the

proliferation, migration and invasion phenotype of PADC, and may

also regulate the EMT, cell differentiation and metabolism of PADC

(52). However, the exact mechanisms and contributions of piRNAs

to these processes remain largely unclear and are an active area

of research.

In conclusion, ncRNAs play important regulatory roles in

organisms; they can regulate gene expression levels, participate in

protein synthesis, and regulate cell differentiation, proliferation, and

apoptosis. An in-depth understanding of the classification and

biological mechanisms of ncRNAs can help to better understand

their regulatory mechanisms in PC TIME.
Frontiers in Immunology 03
3 NcRNAs are involved in the immune
response of tumor cells

In TIME, tumor cells often evade immune cells, thus affecting

the effect of immunotherapy. Understanding the mechanism of

ncRNA’s action on immune escape in PC will help us better

improve the effect of PC immunotherapy. Studies have shown

that ncRNAs can mediate immune response through the

following several mechanisms (Figure 1).

On the one hand, ncRNAs can affect the interaction between tumor

cells and immune cells by targeting or regulating the expression or

signaling of PD-L1, thereby suppressing immune response or inducing

immune tolerance. For example, miR-142-5p can regulate PD-L1

expression in PC cells by binding to the 3’UTR of PD-L1 to promote

tumor immune response (53). Similarly, circMYO1C can enhance the

stability of PD-L1 mRNA by targeting the N6-methyladenosine(M6A)

site ofPD-L1mRNAin conjunctionwith IGF2BP2, thereby accelerating

the immune escape of PDAC (54). On the contrary, miR-194-5p

enhances the toxic effect of CD8 T cells on PC cells by targeting PD-

L1, thereby inhibiting the proliferation, migration and invasion of PC

cells, but its specific mechanism of action remains to be investigated

(55).In addition, lncRNAs can act as miRNA “molecular sponge” to

target PD-L1 expression. For example, lncRNA PMSB8-AS1 acts as a

miRNA sponge, which activates PD-L1 expression by interacting with

andrepressingmiR-382-3p to regulate the transcription factorSTAT1to

mediate immuneescape (56). Similarly, as amiRNAsponge,LINC00473

silencing blocks PC progression by enhancing PD-L1 down-regulation

against miR-195-5p (57).
FIGURE 1

Role pathways of ncRNAs in the PC tumor immune response.
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Besides, some studies have shown that ncRNAs associate with

immune checkpoints and indirectly influence the expression of

other immune checkpoints (e.g., CTLA-4, PD-L2, HAVCR2, etc.),

and may in this way mediate immune escape. For example, miR-

363-3p can inhibit PANC-1 proliferation by regulating squalene

epoxidase (SQLE) expression in PAAD, where SQLE regulates

tumor immune cell infiltration, immune checkpoints, and the

TME, and high SQLE expression predicts depletion of cytotoxic

lymphocytes and loss of antitumor capacity (58). Therefore, miR-

363 -3p may regulate immune checkpoints through SQLE and thus

inhibit immune escape. A more definitive study has also shown that

circ-UBAP2 and has-miR-494 may regulate the expression of

CXCR4 and ZEB1, which are positively correlated with the

expression of CTLA-4 and PD-1, and thus affect the levels of M2

macrophages, depleted T cells, and T regulatory cells (Tregs) in

PAAD tissues (59), suggesting that circ-UBAP2 and has-miR-494

may regulate immune checkpoints through CXCR4 and ZEB1

factors, which in turn inhibit antigen presentation by PCs and

promote immune escape. Additionally, lncRNA HOXA11-AS/

lncRNA NR2F1-AS1 may regulate cyclin-dependent kinase 6

(CDK6) expression by targeting miR-454-3p, which may have

oncogenic roles in PC and is strongly associated with multiple

immune cells and cellular infiltration and three immune

checkpoints (PD-L1, PD-L2 and HAVCR2) (60), suggesting that

lncRNA HOXA11-AS/lncRNA NR2F1-AS1 may regulate immune

checkpoints through the miR-454-3p- CDK6 axis, thereby

mediating immune escape.

On the other hand, ncRNAs can affect the adaptation and immune

escape ability of tumor cells in hypoxic microenvironments by

targeting the expression or signaling of hypoxia-inducible factors

(e.g., HIF-1a) or tumor suppressors. For example, hypoxia can

inhibit immune escape by regulating miR-153 and its two targets,

HIF-1a and ADAM10, which in turn promote the expression of

CIRC-0000977, as well as by targeting PD-L1 via HIF-1a, which
promotes myeloid-derived suppressor cell (MDSC)-involved T cell

activation (61). CIRC_0000977 plays a role under hypoxia by

regulating related pathways through miR-153, which subsequently

affects the killing effect of NK cells on PC cells (61). In addition, PC-

derived extracellular vesicle (EV) miR-155-5p can promote tumor

immune escape by targeting the tumor suppressor EHF to

downregulate, and activate Akt/NF-kB signaling (62).

In addition, ncRNAs can influence interactions in the TME by

targeting components or structures of the extracellular matrix or by

directly targeting cells, thereby mediating immune infiltration and

immune escape. In PAAD, as a structural component of the

extracellular matrix, X-type alpha 1 (COL10A1) expression was

significantly up-regulated in PC tissues and significantly correlated

with immune infiltration, and with immune checkpoints (PD-L1

and CTLA-4), whereas the lncRNA TUG1/miR-144-3p/COL10A1

axis was identified as the most promising upstream ncRNA

regulatory pathway, suggesting that lncRNA TUG1/miR-144-3p

may influence immune escape by targeting structural components

of the extracellular matrix (63). In addition, cicr_0000977, a sponge

of miR-153, counteracted the inhibitory effect of miR-153 on HIF-

1a and ADAM10 by directly targeting 293T and Panc-1 cells,

whereas miR-153 inhibition on HIF1A or cicr_0000977 knockdown
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on HIF1A-mediated immune escape from PC cells had the opposite

effect, i.e. miR-153 inhibition partially attenuated the effect of

cicr_0000977 knockdown (61). Similarly, miR-340 and miR-128

can enhance anti-tumor immunity by targeting immune cells. MiR-

340 overexpression promotes macrophage(TAM) polarization to an

M1-like phenotype in the peripheral and tumor-immune

microenvironment, increases the number of T cells, especially

CD8 T cells, contributing to the anti-tumor effects of miR-340,

thereby counteract ing immune escape (64) . MiR-128

overexpression, in turn, modulates the percentages of dendritic

cells (DCs), CD8 T lymphocytes, and natural killer T cells (NKTs)

in tumors and spleens via PDAC zinc-finger E-box-binding

homology cassette 1 (ZEB1) thereby enhancing anti-tumor

immunity (65).

Moreover, bioflavonoids like apigenin (API) and sulforaphane

(SFN) also play a significant role in regulating the immune response

through their interaction with miRNAs. For example, API can

promote the expression of inositol 5’-phosphatase-1 (SHIP-1) by

inhibiting miRNA-155, which leads to the expansion of tumor-

killing TAMs and CD8 T cells and promotes the anti-tumor

immune response (66). On the other hand, SFN can enhance DC

phagocytosis, and can also promote the immune response by

decreasing the expression of B7-H1 and MDSC frequency in

monocytes exposed to glioma-conditioned medium to reduce

immunosuppression and promote T-cell proliferation (67).

Among them, the reduction of B7-H1 expression not only relies

on the down-regulation of STAT3 phosphorylation by SFN, but also

on the up-regulation of miR-194-5p by SFN, but the miR-194-5p

signaling pathway of miR-194-5p needs to be further

investigated (67).

All in all, NcRNAs play a crucial role in the immune response.

They can affect the immune response by influencing the activity,

function and proliferation of immune cells in a variety of ways. A

deeper understanding of ncRNAs will help us better understand the

working mechanism of the immune system and may provide new

targets for future immunotherapy and drug development. However,

we still have many unanswered questions about the role of ncRNAs

in immune cell regulation that require further research

and exploration.
4 NcRNA and drug resistance

In the last 3 years, a large number of ncRNAs have been found

to be involved in PC drug resistance, promoting or inhibiting the

resistance of tumor cells to chemotherapeutic drugs. These findings

suggest that ncRNAs may become novel targets for PC

immunotherapy (Table 1).

MiRNAs play an important regulatory role in PC drug

resistance. For instance, miR-3173-5p, which originates from

cancer-associated fibroblast (CAF) exosomes in PADC, mediates

gemcitabine (GEM) resistance in PC by targeting ACSL4 (68).

Interestingly, miR-3173-5p also can inhibit iron death, resulting

in the emergence of GEM resistance in PCs (68). Additionally, it is

found that targeting inhibition of miR-378 or glucocorticoid

receptor signaling can reduce PDAC glucocorticoid resistance (69).
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In addition, lncRNA-miRNA interactions influence PC resistance,

e.g., the lncRNA DSCR9, which is significantly down-regulated in

PAAD, targets BTG2 by binding to miR-21-5p, which in turn affects

PC proliferation, invasion, and GEM resistance (70). Similarly,

lncRNA GAS2, significantly down-regulated in GEM-resistant PAN-

5 and CaPa-1 cells, may regulate GEM resistance in PC through miR-

21; however, its specific mechanism of action remains unclear (71). In

addition, lncRNA SH3BP5-AS1, which is up-regulated in GEM-

resistant PC cells, activates the expression of CTBP1 in Wnt pathway

through competitive binding of ceRNA to miR-139-5p, which

promotes GEM-resistant PC cells and tumor invasiveness

(72).Moreover, Glycolysis-related LINC 02432 up-regulated in

PAAD predicts the activity of PAAD patients against EGFR、MEK

andERK inhibitors by regulating hsa-miR-98-5 p/hexokinase 2 (HK2)

axis (73). Besides, up-regulated lncRNAUPK1A-AS1 inPCpromotes

DNAdouble-strandbreak repair by regulating the interaction between

repair proteins Ku 70 andKu 80, thus conferring paril-IL 8-dependent

oxaliplatin resistance derived fromCAF (74). In addition to interacting

with miRNAs, LINC00460 also regulates CAF proliferation through

the PDAP1/PDGFA/PDGFR signaling pathway, thereby mediating

GEM resistance in PADC cells (75).

Ibid, circRNAs also play an important role in PC GEM

resistance. CircACTR2 expression is significantly down-regulated

in GEM-resistant PC cells, whereas its overexpression can target the

PTEN-mediated PI3K/AKT signaling pathway via sponge miR-3-

221p to reverse the chemoresistance of PC cells to GEM (76).

Similarly, Hsa_circ_0007401, which is down-regulated in PC-

resistant cells, acts as a “sponge” of has-miR-6509-3p and thus

regulates differential messenger RNA (DEmRNA) (FLI1) to mediate

PC GEM resistance (77).

In addition to this, siRNAs are also involved in the regulation of

PC drug resistance. SiRNA or lentiviral sh-mediated down-

regulation of collagen COL8A1 in PDAC cells inhibited tumor
Frontiers in Immunology 05
growth, migration, invasion, and GEM resistance (78). It is also

found that a ferrous organometallic framework based nanoparticles

(FMN) catalyzes the iron-dependent Fenton reaction and inhibits

siSLC7A11-mediated upstream glutathione synthesis to carry out

intracellular self-amplified iron death, which results in a reduction

of DOX-retained P-glycoprotein activity and modulation of Bcl-2/

Bax expression to reverse apoptosis-resistant state of tumor cells

and promote drug sensitivity (79).
5 Discussion

Above, we revealed the role of four major ncRNAs (circRNAs,

lncRNAs, miRNAs, and s iRNAs) in the PC immune

microenvironment in terms of both immune response and drug

resistance, indicating that ncRNAs are expected to be novel potential

targets for PC targeting and immunotherapy. And currently, the

function and application of ncRNAs are still advancing rapidly. A

recent studyalso synthesized aTMEstimulation-responsivepoly(beta-

amino ester)s (PBAE)-based polymer nano-prodrug (miR-21i@HA-

Gem-SS-P12), which can co-deliver miR-21 siRNA and GEM to

achieve the combination therapy of miR-21 siRNA and GEM, and

shows excellent tumor inhibitory effect in vitro and in vivo in PDAC

(80). Therefore, it is just around the corner for ncRNA to become the

target of PC immunotherapy.

Nevertheless, there are still many challenges and problems in the

practical research and application of ncRNAs. For instance, the

stability, selectivity, and specificity of ncRNAs in vivo require further

improvement. Additionally, the interactions between ncRNAs and

tumor-associated immune cells need to be more clearly understood—

such as howmiR-194-5p targets PD-L1 to regulate immune cells (55).

Further exploration is also needed on the synergistic or antagonistic

effects between ncRNAs and other signaling pathways.
TABLE 1 Mechanisms of ncRNAs in PC drug resistance.

ncRNA Expression Genes and pathways Role References

miR-3173-5p ⎯⎯ ACSL4 Promote GEM resistance and inhibit iron death (68)

miR-378 ⎯⎯ ⎯⎯ Reduce GC resistance (69)

lncRNA DSCR9 downregulated miR-21-5p/BTG2
Affect the proliferation, invasion and GEM resistance
of PC

(70)

lncRNA GAS2 downregulated miR-21 Regulate GEM resistance in PC (71)

lncRNA SH3BP5-AS1 upregulated miR-139-5p/Wnt/CTBP1
Promote GEM resistance and tumor invasiveness
in PC

(72)

LINC 02432 upregulated miR-98-5p/HK2 Predict the sex of EGFR、MEK and ERK inhibitors (73)

lncRNA UPK 1A-AS 1 upregulated IL8, Ku70, Ku80
Confer paril-IL 8-dependent oxaliplatin resistance
derived from CAF

(74)

LINC00460 ⎯⎯ PDAP1/PDGFA/PDGFR/CAF Affect GEM resistance of PADC (75)

circACTR2 downregulated miR-3-221p/PTEN/PI3K/AKT Reverse GEM chemoresistance in PC (76)

Hsa_circ_000740 downregulated has-miR-6509-3p/DEmRNA Mediate GEM resistance in PC (77)

siRNA ⎯⎯ COL8A1
Inhibit the growth, migration, invasion and GEM
resistance of tumor

(78)

siSLC7A11 ⎯⎯ Glutathione/DOX P-glycoprotein/Bcl-2/Bax Promote drug sensitization (79)
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Therefore, this paper suggests that future research should be

deepened and expanded in the following aspects:
Fron
1. Development of Advanced Detection and Analysis

Methods: Establish more precise and effective ncRNA

detection and analysis techniques to enhance their

diagnostic and prognostic value in PC;

2. Elucidation of ncRNA-Immune Cell Interactions: Delve

deeper into the mechanisms of ncRNA-tumor-associated

immune cell interactions to optimize their synergistic

effects in PC immunotherapy;

3. Exploration of ncRNA-Signaling Pathway Crosstalk:

Investigate the intricate interplay between ncRNAs and

other signaling pathways to refine strategies for

comprehensive PC therapy.
By focusing on these key aspects, we can harness the full

potential of ncRNAs in the fight against pancreatic cancer.
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