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Neutrophil extracellular traps as
immunofibrotic mediators in RA-
ILD; pilot evaluation of the
nintedanib therapy
Aliki I. Venetsanopoulou1†, Maria Ntinopoulou2†,
Eleni Papagianni2, Nikolaos Koletsos1, Paraskevi V. Voulgari 1

and Akrivi Chrysanthopoulou2*

1Department of Rheumatology, School of Health Sciences, Faculty of Medicine, University of
Ioannina, Ioannina, Greece, 2Laboratory of Molecular Immunology, Department of Biological
Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
Objective: Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a

significant pulmonary complication of RA. This study tried to elucidate the

mechanisms enhancing inflammation and causing lung injury in RA-ILD,

focusing on the role of neutrophil extracellular traps (NETs). The study also

investigated the potential benefits of nintedanib in advanced disease.

Methods: Nine RA-ILD patients and nine healthy controls were included in the

study. Inflammatory markers in patients’ circulation were evaluated with

immunoassays. The formation of NETs was examined using a citrullinated

histone H3 (CitH3) ELISA and cell immunofluorescence. Inflammatory proteins

expressed in neutrophils/NETs were studied with real-time qPCR and NET ELISA.

To assess the effect of nintedanib, an intracellular tyrosine kinase inhibitor with

antifibrotic properties, in RA-ILD a paired study was conducted in five patients

before treatment administration and 16 weeks later.

Results: The soluble terminal complement complex sC5b-9 and the levels of

CitH3 were significantly elevated in patients with RA-ILD, compared to healthy

controls. In addition, neutrophils isolated from RA-ILD patients released NETs

enriched with tissue factor and interleukin-17A. Inflammatory NETs had a

dynamic role, increasing the fibrotic potential of human pulmonary fibroblasts

(HPFs). On the other hand, nintedanib treatment decreased NETs and sC5b-9

levels in RA-ILD patients.

Conclusion: The findings propose an interplay between circulating NETs and

HPFs, establishing the immunofibrotic aspects of RA-ILD. They also support the

effectiveness of nintedanib in reducing key pathological processes of the disease.

Further research is needed to fully understand these mechanisms and optimize

treatment strategies for RA-ILD.
KEYWORDS

rheumatoid arthritis-interstitial lung disease, neutrophil extracellular traps, interleukin-
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1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease

that affects the synovium of the joints, leading to joint destruction

and bone damage (1). It is more common in women, with an

estimated prevalence of 0.5-1% of adults globally (1–3). Besides

synovial joints, RA can affect extra-articular sites such as the skin

and the lungs, representing a systemic disorder (1, 2, 4, 5).

One of themost prevalent and severe extra-articularmanifestations

of RA is rheumatoid arthritis-associated interstitial lung disease (RA-

ILD) (5). ILD is detected in up to 60% of RA patients via high-

resolution computed tomography (HRCT), yet clinically significant in

only about 10% of cases (6). The development of RA-ILD is shaped by

inflammatory events, induced by autoantibodies and pro-

inflammatory cytokines (7, 8). The perpetuation of inflammation can

affect the alveolar and interstitial compartments of the lung, resulting in

tissue remodeling (9). Fibrosis can cause varying patterns of lung

involvement, with usual interstitial pneumonia (UIP) and nonspecific

interstitial pneumonia (NSIP) being the most common

histopathological features (8). Recently, specific antifibrotic therapies,

such as nintedanib and pirfenidone, have been introduced into clinical

practice (10–13) and their efficacy is under investigation.

The immune system plays a significant role in RA-ILD progress.

Particularly, neutrophils are highly active immune cells that can

recruited to tissues in the presence of inflammatory signals, such as

immune complexes and complement components, and secrete pro-

inflammatory proteins (14–16). Besides inflammation, they can

enhance extracellular matrix (ECM) remodeling and lung tissue

damaging, through reactive oxygen species (ROS) and proteolytic

enzyme production (17–19). In fibrotic lung, a mechanism that can

potently perpetuate interstitial inflammation and fibrosis is the

release of inflammatory neutrophil extracellular traps (NETs) (20,

21). NETs can closely interact with fibroblasts, reshaping their

biology and giving them antigen-presenting cell capabilities and

immunofibrotic aspects (21–23).

Moreover, interleukin-17A (IL-17A) is considered a crucial

cytokine in the development of RA-ILD by promoting lung tissue

remodeling and fibrosis. It stimulates lung fibroblasts, leading to the

production of ECM proteins and the differentiation of fibroblasts into

myofibroblasts (24). Studies have also shown that IL-17A expression

on NETs promotes mesenchymal stem cell differentiation in other

autoimmune diseases (19, 25).

In view of the above evidence, considerable uncertainty persists

in the precise role of neutrophils in RA-ILD pathogenesis.

Therefore, this study aimed to investigate the protein profile of

NETs in RA-ILD and their contribution in the immunofibrotic

manifestations of the disease. Additionally, the therapeutic impact

of nintedanib, a medication approved for fibrotic lung diseases, was

also evaluated in patients with RA-ILD.

2 Patients and methods

2.1 Patients

Patients, included in the study (n=9, Table 1), were diagnosed with

RA based on the 2010 ACR/EULAR criteria and were over 18 years old.
Frontiers in Immunology 02
All patients were diagnosed with RA-ILD, as confirmed by clinical

examination, CT scans, and pulmonary function tests. UIP was the

predominant ILD pattern observed. Despite their lung conditions,

none of the patients exhibited active arthritis or other extra-articular

manifestations. Moreover, five of the nine patients received the

antifibrotic agent nintedanib and were assessed before and after 16

weeks of treatment. Additionally, 9 age- and sex-matched healthy

individuals served as controls. Neutrophils, sera, and plasma were

isolated from patients with RA-ILD and healthy individuals for

analysis. In vitro stimulation experiments were conducted on human

pulmonary fibroblasts (HPFs). The study protocol was approved by the

Ethics Review Board of the University Hospital of Ioannina (Ethics

Review Board protocol number:12916,31/5/22), and all subjects

provided written informed consent before participating in the study.
2.2 Serum and plasma collection

To isolate serum, venous blood was collected in appropriate

blood collection tubes (BD Vacutainer® SST II Advance Tubes,

Becton, Dickinson and Company, Franklin Lakes, NJ, USA). To

isolate plasma EDTA (PE), venous blood was collected in blood

collection tubes with K3EDTA (BD Vacutainer® EDTA tubes,

Becton, Dickinson and Company, Franklin Lakes, NJ, USA).

Serum was collected after a 10 min centrifugation at 2000x g,

according to manufacturer’s instructions, whereas for PE collection

a centrifugation at 500x g for 15 min was performed. All samples

were stored at -80°C until further analysis (20, 26).
2.3 Neutrophil isolation

Peripheral blood neutrophils were isolated from heparinized

blood by Histopaque double-gradient density centrifugation (11191

and 10771, Sigma-Aldrich, St Louis, MO, USA). Following the

manufacturer’s instructions, whole blood was centrifuged at 700x g

at 20-25°C for 30min. Isolated neutrophils were then washed once

with 1x Dulbecco’s phosphate-buffered saline solution (1x PBS)

(200x g, 10 min, at 20-25oC). Isolated neutrophil population purity

exceeded ≥98%, as assessed by flow cytometry.
2.4 Human pulmonary fibroblast
cell culture

Primary HPFs (Cat#: C-12360, PromoCell, Heidelberg,

Germany) were cultured at 37oC with 5% CO2 in low glucose

Dulbecco’s Modified Eagle Medium (DMEM, PAN Biotech,

Aidenbach, Germany), supplemented with 10% v/v Fetal Bovine

Serum (FBS, Capricorn Scientific, Ebsdorfergrund, Germany), 100

U/mL Antibiotics-Antimycotic solution (Biosera, Cholet, France)

and 5% v/v MEM Non-Essential Amino Acids Solution (Thermo

Fisher Scientific, Waltham, MA, USA). Once HPFs reached 80-85%

confluency, they were sub-cultivated by using Trypsin/EDTA

solution (Capricorn Scientific, Ebsdorfergrund, Germany) for cell

detachment. Cells from passages 4-8 were used for this study (23).
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TABLE 1 Demographical data and treatment of the nine patients with RA-ILD.

FVC,
%

redicted)

DLCO,%
(predicted)

ILD
Pattern

ESR CRP Steroids/
dosage (mg)

Treatment Other
extra-articular

Active
arthritis

108 96 UIP 23 10 5 nintedanib no no

93 40 UIP-
nodules

88 12 7,5 RTX,
nintedanib,

HCQ

no no

58 41 NSIP 17 5 5 RTX,
HCQ,

nintedanib

no no

60 33 UIP 39 6 5 RTX,
HCQ,

nintedanib

no no

98 48 UIP 20 2 5 HCQ,
nintedanib

no no

90 64 UIP 5 4 0 RTX no no

98 62 UIP 12 6 5 RTX, MTX no no

79 53 UIP 6 2 5 HCQ, MMF no no

94 58 UIP 20 2 0 RTX no no

heumatoid arthritis; RF, Rheumatoid factor; RTX, rituximab;UIP, usual interstitial pneumonia.
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Patient
ID

Age/
Sex

RA
duration

(y)

ILD
duration

(y)

RF/
ACPA

Dyspnea

(p

1. 86/F 2 2 +/+ yes

2. 63/M 5 2 +/+ yes

3. 69/F 6 3 +/+ yes

4. 61/F 12 9 +/+ yes

5. 72/M 2 2 +/+ yes

6. 60/M 8 2 +/+ no

7. 48/M 14 4 +/+ no

8. 72/F 2 2 -/+ yes

9. 67/F 4 4 +/- yes

ACPA, Anti-citrullinated protein antibodies; HCQ, Hydroxychloroquine; MTX, Methotrexate; RA,
 R
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2.5 Stimulation and inhibition studies

2.5.1 Neutrophils
Neutrophils isolated from either patients (RA-ILD neutrophils)

or healthy individuals (control neutrophils) were cultured for 3h at

37oC with 5% CO2 in Roswell Park Memorial Institute (RPMI)

medium (Capricorn Scientific, Ebsdorfergrund, Germany)

supplemented with 2% v/v heterologous healthy donor serum. To

reproduce ex vivo observations, control neutrophils were cultured

in RPMI and stimulated in vitro with 5% serum from patients with

RA-ILD (RA-ILD serum). For all in vitro stimulation studies,

control neutrophils were cultured for 60 min or 3h (37oC, 5%

CO2), to study gene expression and NET formation, respectively.

Control neutrophils that were not stimulated with RA-ILD serum

served as control group in all in vitro experiments (20).

2.5.2 HPFs
To investigate the crosstalk between neutrophils and fibroblasts,

HPFs were stimulated with ex vivo-isolated NET structures (DNA

concentration: 0.5 µg/ml), in DMEM at 37oC with 5% CO2. To

assess the effect of NET scaffold and NET-derived interleukin (IL)-

17A and tissue factor (TF) on HPFs, inhibitions were performed

prior to cell stimulation. Pre-incubation of ex vivo-isolated NET

structures with 1 U/mL recombinant DNase I (Takara Bio, Shiga,

Japan) or 10mg/mL anti-human IL-17A antibody (R&D Systems,

Minneapolis, MN, USA) was performed, to dismantle the NET

scaffold and neutralize IL-17A on NETs respectively (19, 25). The

effect of TF-bearing NETs was examined by protease-activated

receptor-1 (PAR-1) blockade on HPFs with the FLLRN peptide

(500mM, Anaspec, Fremont, CA, USA). To evaluate the

simultaneous effect of both the NET scaffold and the NET-

derived IL-17A and TF on HPFs, incubation with all the above

inhibitors was performed at the same time. All inhibitions were

performed for 30min at 37oC with 5% CO2. HPFs were cultured for

3h to study gene expression and 20h to investigate their migratory/

wound healing capacity. Unstimulated HPFs were used as negative

control in all in vitro studies (20, 21).

The concentrations and time points used to examine

neutrophils and HPFs were optimized before the stimulation and

inhibition studies. All substances used in these experiments were

endotoxin-free, as determined by a Limulus amebocyte lysate assay

(Thermo Fisher Scientific, Waltham, MA, USA).
2.6 NET structures generation
and collection

For ex vivo NET structures generation, a total of 2 × 106

neutrophils (RA-ILD or control) were cultured in a 6-well cell

culture plate (SPL Life Sciences, Kyonggi-do, Republic of Korea) in

RPMI, supplemented with 2% v/v heterologous healthy donor

serum, for 3h at 37oC with 5% CO2. Following, the cell culture

medium was removed, and neutrophils were washed once with pre-

warmed RPMI. After vigorous agitation of the culture plate and

centrifugation at 20× g for 5 min, NETs were collected in the
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supernatant phase. Control neutrophils were used as negative

control (control NETs) (20).
2.7 Immunofluorescence

Peripheral blood neutrophils were cultured in a 24-well cell culture

plate (SPL Life Sciences, Kyonggi-do, Republic of Korea) on Poly-L-

Lysine coverslips (Biocoat, NY, USA), to evaluate their capacity to

release NETs and examine the protein profile of NETs. Following a 3-

hour incubation (37oC, 5% CO2), neutrophils were fixed with 10%

formaldehyde solution (Biognost, Zagreb, Croatia) for 30 min at 4oC.

Nonspecific binding sites were blocked with 6% normal goat serum

(Thermo Fisher Scientific, Waltham, MA, USA) in 1x PBS (blocking

solution). The samples were stained with a primary antibody solution,

consisting of an anti-human tissue factor (TF) monoclonal antibody

(mAb) (1:200 dilution, BioMedica Diagnostics, Windsor, Canada), an

anti-human IL-17A mAb (1:50 dilution,R&D System, Minneapolis,

MN, USA) or an anti-human neutrophil elastase (NE) mAb (1:100

dilution, Abcam, Cambridge, UK) in blocking solution, for 1h at room

temperature (RT). Following, incubation with a polyclonal anti-rabbit

IgG AlexaFluor647 antibody (Invitrogen, Waltham, MA, USA) or a

polyclonal anti-mouse IgG AlexaFluor488 antibody (Invitrogen,

Walthan, MA, USA), diluted in blocking solution according to

manufacturer’s instructions, was performed. Finally, cells were

stained with DAPI solution (Sigma-Aldrich, St Louis, Missouri,

USA) and mounted on microscope slides (Knittel Glass,

Braunschweig, Germany) using a hardening mounting medium

(Thermo Fisher Scientific, Waltham, MA, USA) (20, 21).

Sample visualization was performed on a Nikon ECLIPSE Ti2

Inverted Microscope (Nikon, Melville, NY, USA) with a 40× oil lens

(1.30NA) and image acquisition was achieved, using NIS-Elements

software (Nikon, Melville, NY, USA). Images were analyzed in Fiji

software version 2.9.0 (27).
2.8 Citrullinated histone 3 ELISA

Concentration of CitH3 was measured in serum samples, in

accordance with manufacturer’s instructions (Cayman Chemical,

Ann Arbor, MI, USA).
2.9 Thrombin-antithrombin complex ELISA

To assess the levels of thrombin, the concentration of TAT was

measured in: (a) PE from RA-ILD patients and healthy individuals

and (b) ex vivo-isolated NET structures. The assay was performed

based on the manufacturer’s instructions (Abcam, Cambridge, UK).
2.10 Interleukin-17A ELISA

IL-17A ELISA was applied to measure IL-17A concentration in:

(a) serum samples and (b) ex vivo-isolated NET structures.
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The ELISA kit was utilized in accordance with manufacturer’s

protocol (R&D Systems, Minneapolis, MN, USA).
2.11 Human terminal complement
complex ELISA

Human soluble terminal complement complexes (i.e., sTCC or

sC5b-9) were quantified in PE from RA-ILD patients and healthy

individuals, by applying a commercially available ELISA kit in line with

manufacturer’s guidelines (Hycult Biotech, Uden, The Netherlands).
2.12 RNA isolation, cDNA synthesis and
quantitative real-time polymerase
chain reaction

As formerly described, RNA isolation was performed using

TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA)

according to manufacturer’s instructions. cDNA was synthesized

with an appropriate kit (Takara Bio, Shiga, Japan) and RT-qPCR

was conducted using a commercially available SYBR green RT-

qPCR master mix (Kapa Biosystems, Wilmington, MA, USA). The

expression of TF, IL-17A and RAR-related orphan receptor C

(RORc) was examined in neutrophils. To evaluate the activation

of HPFs, the expression of smooth muscle actin alpha 2 (ACTA2)

was studied. To normalize the expression of the abovementioned

genes, glyceraldehydes-3-phosphate dehydrogenase (GAPDH) was

utilized, following the housekeeping gene normalization method.

RT-qPCR primers were designed using Beacon Designer version

4.0. Further details regarding the primers and the RT-qPCR

conditions are shown in Supplementary Table S1. Data analysis

was performed by applying the 2-DDCt method (19, 21, 28).
2.13 Migration/wound healing assay

To evaluate the migratory/wound healing capacity of HPFs,

cells were seeded in a 24-well cell culture plate (SPL Life Sciences,

Kyonggi-do, Republic of Korea). When cells reached 90%

confluency, stimulation/inhibition studies were performed.

Wound healing was evaluated after 20hr incubation and assessed

by May-Grünwald Giemsa stain. Assay was performed following

manufacturer’s instructions and recommendations (21).
2.14 MGG stain

MGG stain was performed to visualize the migrating/wound

healing capacity of HPFs. Firstly, cells were incubated with May-

Grünwald stain for 5min at RT. After washing away, the excess of

May-Grünwald stain with water, a 20-minute incubation (RT) with

Giemsa stain (1:10 dilution) followed. Finally, Giemsa stain was

removed and HPFs were washed with water (18). Stained cells were

observed under an OLYMPUS IX73 Inverted Microscope

(OLYMPUS Corporation, Tokyo, Japan) with a 4x air lens
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(0.10NA). Images were acquired using OLYMPUS cellSens Entry

software version 1.14 (OLYMPUS Corporation, Tokyo, Japan) and

final images were produced with Fiji software version 2.9.0 (22).
2.15 Statistical analysis

Comparisons between two independent groups were performed

by using the non-parametric Mann-Whitney U test (two-tailed),

whereas the statistical analysis between two paired groups was

achieved by applying the non-parametric Wilcoxon matched-pairs

signed rank test (two-tailed). Statistical comparisons between three

paired groups were performed via the Friedman test. Spearman’s

rank correlation coefficients test at 95% confidence intervals (CI) was

utilized for bivariate correlation analysis. Data in all graphs are

presented as Mean ± standard deviation (SD) and the cut-off value

for statistical significance was set to P < 0.05. Statistical analysis of the

experimental data was conducted with the use of GraphPad Prism

version 8 (GraphPad Software, Inc., San Diego, CA, USA).
3 Results

3.1 Inflammatory mediators are found in
the circulation of patients with RA-ILD

Inflammatory mediators were assessed in serum samples

collected from patients diagnosed with RA-ILD and healthy

controls (Table 1). Using protein immunoassays, we observed

elevated levels of circulating NETs, measured by CitH3 ELISA, in

active RA-ILD patients compared to controls (Figure 1A).

Additionally, RA-ILD sera exhibited increased TAT activity

(Figure 1B) and IL-17A expression (Figure 1C). Importantly,

these inflammatory proteins correlated positively with NET levels

(Figures 1D, E). Moreover, RA-ILD patients showed significantly

elevated plasma levels of sC5b-9, detected by TCC ELISA

(Figure 1F), underscoring a pro-inflammatory microenvironment

conducive to disease progression.
3.2 RA-ILD patients release neutrophil
extracellular traps enriched with tissue
factor and interleukin-17A

Further characterization of neutrophils from active RA-ILD

patients revealed spontaneous release of NETs enriched with

functional TF, as assessed by confocal microscopy (Figure 2A)

and TAT assay in ex vivo-isolated NET structures (Figure 2B).

Similarly, in vitro experiments demonstrated that RA-ILD serum

induced TF mRNA expression in control neutrophils (Figure 2C).

Additionally, NETs from RA-ILD patients were found to be

coated with IL-17A, confirmed by immunofluorescence (Figure 3A)

and IL-17A NET ELISA (Figure 3B). Control neutrophils

s t imulated with RA-ILD serum showed intrace l lu lar

overexpression of IL-17A and RORc, a transcription factor

associated with IL-17 regulation (Figures 3C, D). These findings
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collectively highlight the increased formation of TF- and IL-17A-

bearing NETs in active RA-ILD, implicating neutrophils in the

induction of disease-associated inflammation.
3.3 TF and IL-17A-bearing neutrophil
extracellular traps enhance the fibrotic
potential of pulmonary fibroblasts in vitro

To understand the impact of inflammatory NETs on tissue-

resident cells, HPFs were incubated with NET structures released by

active RA-ILD patients (RA-ILD NETs). RA-ILD NETs triggered

the activation of HPFs, as evidenced by the up-regulation of ACTA2

(Figure 4A). In addition, after this stimulation, HPFs showed

increased proliferation/migration rates (Figure 4B).

On the other hand, disassembly of RA-ILD NETs with DNase I

abolished the fibrotic potential of HPFs (Figures 4A, B), suggesting

a specific effect of NETs on the fibrotic process. In addition, protein

components of RA-ILD NETs, namely TF and IL-17A, also exert a

direct effect on the fibrotic activity of HPFs. Particularly, the

pretreatment of cells with the FLLRN peptide, which blocks

thrombin signaling, resulted in a significant reduction of HPFs

fibrotic potential (Figures 4A, B). The neutralization of IL-17A on

RA-ILD NETs with a monoclonal antibody also led to a similar
Frontiers in Immunology 06
result (Figures 4A, B). Consequently, these observations indicate

RA-ILD NETs as potent mediators of tissue damage and suggest

multiple targets for therapeutic interventions in RA-ILD.
3.4 Administration of nintedanib in RA-ILD
patients moderates the release of
neutrophil extracellular traps and sC5b-9;
a small-scale preliminary study

Prompted by recent studies discussing the effects of novel

antifibrotic agents on the progression of RA-ILD (10), we next

performed a paired analysis in samples derived from five RA-ILD

patients, with samples taken before and 16 weeks after starting

treatment with nintedanib (Table 1). Blood serum obtained from

patients with RA-ILD under treatment with nintedanib (treated

patients) showed a decrease in circulating CitH3 compared to the

same patients before the initiation of the antifibrotic therapy, as

verified by ELISA immunoassay (Figure 5A). In addition, treated

RA-ILD patients were characterized by reduced levels of sC5b-9 in

plasma, as evidenced by TCC ELISA assay (Figure 5B).

The effect of nintedanib was also assessed on ex vivo-isolated

NET structures. RA-ILD-treated patients showed lowered NET

formation compared to the same patients before the initiation of
FIGURE 1

Inflammatory markers are detected in the circulation of patients with rheumatoid arthritis-interstitial lung disease (RA-ILD). Levels of (A) CitH3
representing NET release, (B) thrombin anti-thrombin (TAT) complex and (C) interleukin (IL)-17A in the serum or plasma of patients with RA-ILD,
compared to healthy individuals (HI) (n = 9 subjects per group). Correlation between (D) TAT and CitH3 levels or (E) IL-17A and CitH3 levels.
Spearman’s r and P values are shown. Levels of (F) soluble terminal complement complex sC5b-9 in the plasma of patients with RA-ILD, compared
to healthy individuals (HI) (n = 9 subjects per group). For (A, B, C, F), data are shown as mean ± SD, Mann-Whitney U test (two-tailed). All conditions
were compared to HI. Statistically significant: P < 0.05.
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therapy, as evidenced by CitH3 ELISA (Figure 5C). In contrast, the

presence of TF (Figure 5D) and IL-17A (Figure 5E) in ex vivo-

isolated NETs was not found to be reduced, as indicated by ELISA

assays. This observation was further verified by mRNA studies

(Supplementary Figure S1). Together, these observations support

that nintedanib could have a regulatory effect on NET formation

and sC5b-9 release in patients with RA-ILD.
4 Discussion

Though recent data have identified RA-ILD as the second

leading cause of death in RA patients (29, 30), the molecular

mechanisms underlying the development and progression of the

disease remain poorly understood. Our study offers new evidence

supporting the involvement of neutrophils in the progression of

RA-ILD, through disease-specific inflammatory NETs.

It is well-documented that the role of neutrophils in RA

pathophysiology is multifactorial (31). Neutrophils can form
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NETs, which are induced by the autoantibody complexes and

coated with citrullinated autoantigens (32). The formation of

NETs is a citrullination-dependent process and, as previous

evidence suggests, the citrullination pathway is upregulated in

bronchoalveolar lavage (BAL) cells of RA-ILD patients (33).

Additionally, other NET-associated mechanisms, such as

autophagy and oxidative stress, are also elevated in RA-ILD

conditions, contributing significantly to the course of the disease

(8). In accordance with the above data, our results indicate NETs as

important contributors in the RA-ILD pathophysiology.

More specifically, neutrophils can play a prominent role in the

vicious cycles of interstitial lung inflammation and fibrosis. They

can influence the progression of ILD via promoting ECM

accumulation and fibroblast activation (34). In parallel, the

neutrophil-to-lymphocyte ratio (NLR) in the blood is correlated

with the possibility of ILD occurrence and the outcome of the

disease (35). Our data suggest that inflammatory NETs can interact

with HPFs, which subsequently escape the quiescent state and

become significantly activated. On the contrary, upon disruption
FIGURE 2

Neutrophils isolated from rheumatoid arthritis-interstitial lung disease (RA-ILD) patients release neutrophil extracellular traps (NETs) expressing tissue
factor (TF). (A) Fluorescence microscopy images showing TF staining (blue, DAPI; green, TF; original magnification, 400×; optical zoom, 3x) in
neutrophils collected from RA-ILD patients. A representative example of 9 independent experiments is shown. (B) Thrombin anti-thrombin (TAT)
levels in ex vivo-isolated NET structures from RA-ILD patients, compared to healthy individuals (HI) (n = 9 subjects per group). (C) TF mRNA
expression in control neutrophils treated with RA-ILD serum (RA-ILD S), as assessed by real-time qPCR (n = 9 subjects per group). For (B) data are
shown as mean ± SD, Mann-Whitney U test (two-tailed). For (C) data are shown as mean ± SD, Wilcoxon matched-pairs signed rank test (two-
tailed). All conditions were compared to HI/Untreated. Statistically significant: P < 0.05.
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of NETs integrity with DNase I, the activation level of HPFs is

reduced. Consequently, our study proposes that neutrophils/NETs

could be involved in RA-ILD exacerbations and pulmonary

fibrosis progression.

Several cytokines are implicated in RA-ILD pathogenesis,

promoting inflammatory responses and fibrogenesis (7, 36, 37).

Notably, a proteomic analysis – conducted in serum samples from

RA-ILD patients – shows a marked increase in IL-17A, compared to

RA-noILD group of patients (38). Although IL-17A is considered as

the signature cytokine of a subset of CD4+ helper T cells (Th17), it

can also be expressed by activated neutrophils/NETs (19, 21, 25,

39). Indeed, our data suggest that neutrophils/NETs express IL-17A

and, hence, they can act as an alternative source of IL-17A in

RA-ILD.

Additionally, previous studies have linked IL-17A to fibrotic

responses in RA-ILD. Particularly, a research - examined lung

biopsies from RA-ILD patients, supported that pathogenic fibroblasts

overexpress IL-17A receptor (IL-17RA), in contrast to cells from either

normal or idiopathic pulmonary fibrosis lung tissue (24).
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Our approaches indicate that IL-17A-bearing NETs can interact with

HPFs, enhancing their activation and migration capacity.

Moreover, it has been cited that plasma and synovial fluid of

patients with RA can be characterized by high TF activity and

elevated levels of coagulation factor VIII (40). Beyond its role in

thrombosis, TF/thrombin axis can also contribute to fibroblast

proliferation (41), wound healing (42), and inflammation (20).

Markedly, thrombin can drive inflammatory responses acting

through PAR-1 receptor (43). Indeed, this receptor is up-

regulated in systemic sclerosis-associated ILD patients (44). In

line with current knowledge, our evidence demonstrates that RA-

ILD NETs are coated with bioactive TF and increase the fibrotic

dynamic of HPFs.

The involvement of complement system in RA has been

extensively studied. Research has shown that there are decreased

levels of C3 and C4 proteins and higher levels of complement

activation products such as C3a, C5a, and soluble C5b-9 (sC5b-9) in

the synovial fluid of RA patients (45, 46). In addition, elevated

sC5b-9 levels in RA plasma suggest that complement activation
FIGURE 3

Neutrophils collected from rheumatoid arthritis-interstitial lung disease (RA-ILD) patients release neutrophil extracellular traps (NETs) expressing
interleukin (IL)-17A. (A) Fluorescence microscopy images showing IL-17A staining (blue, DAPI; green, IL-17A; original magnification, 400×; optical
zoom, 4x) in neutrophils isolated from RA-ILD patients. A representative example of 9 independent experiments is shown. (B) IL-17A levels in ex
vivo-isolated NET structures from RA-ILD patients, compared to healthy individuals (HI) (n = 9 subjects per group). (C) IL-17A and (D) RAR-related
orphan receptor C (RORc) mRNA expression in control neutrophils treated with RA-ILD serum (RA-ILD S), as assessed by real-time qPCR (n = 9
subjects per group). For (B) data are shown as mean ± SD, Mann-Whitney U test (two-tailed). For (C, D) data are shown as mean ± SD, Wilcoxon
matched-pairs signed rank test (two-tailed). All conditions were compared to HI/Untreated. Statistically significant: P < 0.05.
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extends beyond joint inflammation, impacting other organs and

tissues (9). Moreover, complement factors, along with their

receptors, have been described in both acute and chronic lung

pathologies due to their involvement in thrombo-inflammatory

events or/and tissue injury (20, 47, 48). Here, we observe a

significant elevation of sC5b-9 in plasma samples from patients

with active RA-ILD compared to healthy individuals, indicating a

potential association with disease activity. A correlation between

CitH3 and sC5b-9 in RA-ILD patients was also detected,

underscoring the evident interplay between the complement

cascade activation and NETs.

To date, managing the complexities of RA-ILD remains a

challenge and, even though various therapeutic strategies are
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proposed, comprehensive randomized controlled trials specific to

RA-ILD are lacking (7, 8, 49). Clinical trials investigating the

blockade of IL-17A have been conducted in RA patients,

demonstrating modest efficacy compared to its effects in psoriasis,

psoriatic arthritis, and spondylarthritis (50). Notably, the limited

success of IL-17A blockade in RA may be attributed to several

plausible reasons. Experimental arthritis models suggest that IL-

17A-producing cells may play a more critical role in the erosive

stages of RA rather than early disease onset (51, 52), indicating

potential benefits of IL-17A blockade in specific subsets of

RA patients.

Nintedanib, an antifibrotic agent, has been shown to prevent the

progression of RA-ILD by targeting a range of kinases, including
FIGURE 4

Human pulmonary fibroblasts (HPFs) acquire a dynamic phenotype upon co-culture with NETs from rheumatoid arthritis-interstitial lung disease
(RA-ILD) patients. (A) Smooth muscle actin alpha 2 (ACTA2) mRNA expression in HPFs treated with inflammatory NETs released from RA-ILD patients
(RA-ILD NETs), as assessed by real-time qPCR (n = 6 independent experiments). Data are shown as mean ± SD, Friedman test. All conditions were
compared to Untreated. Simultaneous inhibition with anti-IL-17A, DNase I and FLLRN is mentioned as combination. Statistically significant: P < 0.05;
NS: not significant. (B) Migration/wound healing potential of HPFs stimulated with RA-ILD NETs, as assessed by light microscopy (May-Grünwald
Giemsa staining, original magnification, 40×). A representative example of 6 independent experiments is shown. RA-ILD NETs were pre-incubated
with DNase I or a neutralizing antibody against human IL-17A, to dismantle NETs or hinder IL-17A signaling, respectively. To block thrombin
signaling, HPFs were pre-incubated with the FLLRN peptide.
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platelet-derived growth factor (PDGF) receptors a and b, various
vascular endothelial growth factor (VEGF) receptor subtypes, and

fibroblast growth factor (FGF) receptor types 1, 2, and 3 (13, 53).

PDGFs play a crucial role in promoting inflammation; they enhance

neutrophil migration to the sites of platelet (PLT) release,

potentially facilitating interaction between PLTs and neutrophils,

leading to NETosis (54, 55). PDGFs can also activate the

complement system, through the classical and alternative pathway

(56). Studies using bleomycin-induced pulmonary fibrosis models

have demonstrated nintedanib’s ability to mitigate neutrophil

chemotaxis (57) as well as reduce neutrophils and lymphocytes in

BAL fluid (58). Our findings support the notion that nintedanib

administration may effectively regulate complement activation and

NET formation in patients with RA-ILD.

Our study has provided valuable insights, but some limitations

need to be acknowledged. Firstly, the small sample size, with only

nine patients and nine healthy individuals, suggests that our findings

may not be broadly applicable and may not fully represent the wider

RA-ILD population. Secondly, because the study is cross-sectional,

we cannot establish a cause-and-effect relationship between NET

formation and disease progression. Additionally, relying on specific
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biomarkers, such as CitH3 and IL-17A, may not capture the full

range of inflammatory and fibrotic processes involved in RA-ILD.

Finally, the short duration of the nintedanib treatment assessment (16

weeks) restricts our understanding of the long-term therapeutic

benefits and potential side effects. This necessitates further

longitudinal studies to confirm our initial observations.
5 Conclusions

Collectively, our study supports that peripheral blood

neutrophils can play a key role in the immunofibrotic aspects of

RA-ILD. The disease microenvironment enhances the release of

inflammatory NETs, which can subsequently increase the fibrotic

dynamic of human pulmonary fibroblasts. The formation of NETs

is positively correlated with complement activation, whereas the

administration of nintedanib reduces both complement activation

and NETs, offering a promising avenue for disease management.

Further studies will provide a better understanding of the complex

molecular mechanisms involved in RA-ILD and tailor therapeutic

approaches according to the individual patient profile.
FIGURE 5

Nintedanib reduces NET formation and complement activation in rheumatoid arthritis-interstitial lung disease (RA-ILD) patients. Levels of (A) CitH3
indicating NET release and (B) soluble terminal complement complex sC5b-9 in the serum or plasma of patients with RA-ILD, before and 16 weeks
after the initiation of the antifibrotic therapy (n = 5 subjects per group). Levels of (C) CitH3, (D) thrombin anti-thrombin (TAT) complex and (E)
interleukin (IL)-17A in ex-vivo isolated NET structures from patients with RA-ILD, before and 16 weeks after the initiation of the antifibrotic therapy (n
= 5 subjects per group). Data are shown as mean ± SD, Wilcoxon matched-pairs signed rank test (two-tailed). Statistically significant: P < 0.05; NS,
not significant.
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SUPPLEMENTARY FIGURE 1

TF, IL-17A and RORc levels are not reduced in rheumatoid arthritis-interstitial
lung disease (RA-ILD) patients before and after nintedanib. mRNA levels of (A)
TF, (B) IL-17A and (C) RORc in healthy individual neutrophils after in vitro

stimulations with serum from patients with RA-ILD, before and 16 weeks after
the initiation of the antifibrotic therapy (n = 5 subjects per group). For (A–C),
data are shown asmean ± SD, Wilcoxonmatched-pairs signed rank test (two-
tailed). Statistically significant: P < 0.05; NS: not significant.
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