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The development of T follicular helper (Tfh) cells is an ongoing process resulting in

the formation of various Tfh subsets. Despite advancements, the precise impact of

T cell receptor (TCR) stimulation on this process remains incompletely understood.

This study explores how TCR-CD3 signaling strength influences naive CD4+ T cell

differentiation into Tfh-like cells and the concurrent expression of interleukin-21

(IL-21), interleukin-4 (IL-4), and interferon-gamma (IFN-g). Strong TCR-CD3

stimulation induces proliferation and increased IL-21 expression in Tfh-like cells,

which exhibit a characteristic phenotype expressing CXCR5 and PD1. The

coexpression of IL-4 and IFN-g in IL-21-producing Tfh-like cells is controlled by

the strength TCR-CD3 stimulation; low stimulation favors IL-4, while strong

stimulation enhances IFN-g secretion. Exogenous addition of the effector

cytokines IL-21 and IL-4 further modulate cytokine coexpression. These findings

highlight the intricate regulatory mechanisms governing cytokine production

and plasticity in Tfh-like cells, providing insights into B cell response modulation.

In vivo, antigen availability may regulate Tfh cell plasticity, impacting subsequent

B cell differentiation, emphasizing the need for further exploration through animal

models or antigen-specific Tfh cell analyses in human lymph node biopsies
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Introduction

CD4+T cells are vital in the adaptive immune response against pathogens and foreign

substances. Dendritic cells (DCs) capture antigens and present them as peptide-MHCII

complexes on their cell membrane. In secondary lymphoid organs like lymph nodes, naive

CD4+ T cells engage with these complexes through their T cell receptors (TCRs) (1). Upon

activation, naive CD4+T cells undergo division and differentiation into various T helper (Th)
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cell subsets, influenced by signals from DCs (2, 3). Th cell subsets are

acknowledged to possess plasticity, allowing them to adapt and

respond to diverse immune challenges (4–9).

DC activation can induce the differentiation of a subset of CD4+

T cells known as pre-T follicular helper (Tfh) cells (10). These

transient cells differentiate into Tfh cells, playing a pivotal role in

assisting B cells in the immune response (11). Following activation,

pre-Tfh cells engage with activated B cells in the T-B cell interface, a

crucial step for their differentiation into Tfh cells (12, 13). Tfh cells

express specific markers like CXCR5 and PD1, enabling them to

enter B cell follicles and engage in the germinal center (GC) reaction

(14). Within the GC, Tfh cells facilitate affinity-based selection,

resulting in the generation of memory B cells and antibody-

secreting cells. The regulatory mechanisms governing this process

include Tfh-derived cytokine plasticity (15). Interestingly,

deficiency in SNARE proteins that facilitate vescicle fusion (16)

and in metabolic regulations (17) that modulate T‐ and B‐cell

interaction leads to an impaired GC formation and T cell–

dependent B cell responses underlying hyperinflammatory

syndrome and pro‐inflammatory states occurring in autoimmune

disorders, respectively.

Despite extensive research on B cell selection in the GC, the

dynamics of Tfh cell behavior remain incompletely understood.

Antigen availability emerges as a potential regulator, given that

interactions with GC B cells increase intracellular calcium and

stimulate cytokine production in Tfh cells (18). Additionally,

increased antigen presentation by GC B cells leads to enhanced

TCR-CD3-related gene expression and proliferation in Tfh cells

(19). In the classical Th1/Th2 polarization, strong TCR-CD3

signaling favors Th1 (IFN-g) polarization, while weak signaling

promotes Th2 (IL-4) polarization (20–23). Tfh cells were initially

thought to require strong TCR-CD3 signaling, but recent research

suggests they can develop within a range of signaling strengths (24–

31). This manuscript explores the regulation of IL-4 and IFN-g
coexpression in IL-21-producing Tfh-like cells by TCR-CD3

signaling strength.
Materials and methods

Purification of CD4+ T cells

Human peripheral blood mononuclear cells (PBMC) were

isolated through standard gradient centrifugation using Ficoll-

lymphoprep (Axis-Shield) from buffy coats obtained from healthy

blood donors (Sanquin Blood Supply). Donors gave informed

consent approved by the local institutional review board and the

Medical Ethics Committee of Sanquin Blood Supply. CD4+ T cells

were purified from PBMCs using anti-CD4 Dynabeads and

DETACHaBEAD (Invitrogen). Untouched naive CD4+ T cells

(CD4+CD45RO-) were isolated with high purity (>98%) using

CD45RO-PE antibodies and anti-PE beads (MACS; Miltenyi

Biotec). Cells were cryopreserved in liquid nitrogen.
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Naive CD4+ T cell stimulation

Naive CD4+ T cells labeled with Cell Trace CFSE according to

manufacturer’s instructions (Invitrogen) were cultured in 96-round

bottom well plates at a density of 2.5 x 103/well in a total volume of

200 µl complete RPMI 1640 medium (Invitrogen), supplemented

with 5% FCS (Bodinco), 100 U/ml penicillin (Invitrogen), 100 µg/

ml streptomycin (Invitrogen), 2 mM L-glutamine (Invitrogen), 50

µM 2-ME (Sigma) and 20 µg/ml human apotransferrin (Sigma;

depleted for human IgG with protein G Sepharose (Amersham

Biosciences)). Cells were activated with varying doses of anti-CD3

(clone 1XE; Sanquin) and 1 mg/mL anti-CD28 (clone 15E8;

Sanquin) with or without 50 ng/mL IL-21 (Invitrogen), 50 ng/mL

IL-4 (Cellgro), and 50 ng/mL IFN-g (Peprotech).
Flow cytometry analysis

Surface markers and intracellular cytokines were detected by the

following FACS anti-human antibodies: CD4 (SK3; BD

Biosciences); IL-21 (3A3-N2; eBiosciences); IFN-g (B27; BD

Biosciences); and IL-4 (3010.211; BD Biosciences). Before

staining, cells were stimulated in a complete medium with 0.1 µg/

ml PMA (Sigma), 1 µg/ml ionomycin (Sigma), and 10 µg/ml

brefeldin A (Sigma) for 5 hours. Samples were washed twice with

PBS and stained with a Fixable Near-IR Dead Cell Stain Kit

(Invitrogen). Cells were fixed with 4% PFA for 15 minutes,

permeabilized with 0.5% saponin in PBS containing 1% BSA, and

incubated with fluorescent antibodies for 30 minutes at room

temperature. All cells from the samples were collected on an

LSRII flow cytometer (BD Bioscience) and analyzed with

FACSDiva software (BD) and FlowJo version 10 (Treestar).
RNA isolation and qRT-PCR

RT-PCR was performed as previously described (32). RNA was

reverse transcribed to cDNA using random hexamers, Superscript

II, and an RNase H-reverse transcriptase kit. Primers for 18S rRNA,

IL-21, CXCR5 and BCL6 were designed to prevent genomic DNA

amplification (Supplementary Table 1). Gene expression levels

were measured in triplicate using SYBR green method in

StepOnePlus (Applied Biosystems), normalized to 18S rRNA as

the internal control.
Statistical analysis

Statistical analyses were performed using Prism 9 (Graphpad).

The statistical tests used are indicated in the figure descriptions.

Data show the mean of multiple donors, and error bars represent

mean ± SEM.
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Results

High TCR-CD3 stimulation facilitates the
induction of IL-21-expressing Tfh-like cells

We examined the impact of T cell receptor (TCR) stimulation

strength on naive CD4+ T cell differentiation into IL-21-secreting Tfh-

like cells. It is noteworthy that under basal conditions, IL-21 expression

remains undetectable in human naïve CD4+ T cells (Figure 1A). These

cells, subjected to varying doses of CD3 and optimal CD28 stimulation

(1 mg/mL), exhibited increased proliferation and live cell numbers,

particularly evident at later time points (Figures 1B, C). Analysis of IL-

21 production at distinct time intervals revealed an anti-CD3 dose-

dependent induction of IL-21 expression, peaking shortly (3 days) after

TCR-CD3 stimulation (Figures 1D–F). Accordingly, IL-21 production

occurred early during cell division, indicating a prompt response to

TCR-CD3 stimulation (Figure 1G).

To ascertain whether IL-21-expressing cells exhibited a Tfh-like

phenotype, we evaluated CXCR5 and PD1 expression (Figure 1H).

Stimulation with PMA/Ionomycin, supplemented with Brefeldin A,

notably reduced CXCR5 expression, consistent with previous

findings (33) (data not shown). To evaluate IL-21 expression and

other Tfh characteristics, we isolated CXCR5-PD1-and

CXCR5+PD1+populations during the peak of IL-21 production (3

days) induced by robust TCR-CD3 stimulation. Subsequent analysis

of CXCR5 and IL-21 mRNA expression in both populations revealed

a higher expression in CXCR5+PD1+ compared to CXCR5-PD1-

CD4+ T cells, whereas the expression of BCL6was similar, confirming

the Tfh-like phenotype of IL-21-secreting cells (Figure 1H).

The formation of Tfh cells depends on a CD4+ T cell-intrinsic

requirement for IL-21 (34). To determine the autocrine or paracrine

effects of IL-21 during CD4+ T cell differentiation, exogenous IL-21

was introduced, leading to enhanced proliferation and division

rates, particularly under low TCR-CD3 stimulation (Figure 1I).

Moreover, the strength of TCR-CD3 signaling dictated the capacity

of exogenous IL-21 to augment the differentiation of IL-21-

producing CD4+ T cells. In fact, notably, the percentage of

induced IL-21-producing cells through TCR-CD3 stimulation

reached a plateau, beyond which supplementary IL-21 failed to

further enhance differentiation (Figure 1J). In summary, heightened

TCR-CD3 stimulation induces IL-21 in Tfh-like cells. Conversely,

lower stimulation yields reduced intracellular IL-21, but exogenous

IL-21 can enhance production, suggesting an intricate regulatory

mechanism involving autocrine or paracrine signals.
The plastic coexpression of IL-4 and IFN-g
by IL-21-producing Tfh cells requires a
delicate balance in TCR-CD3 stimulation

The plasticity of Tfh cells in expressing cytokines with diverse

effects on GC responses and memory B cell or antibody-secreting

cell formation remains unclear. We investigated the impact of TCR-

CD3 signal strength on IFN-g and IL-4 expression as these are

the main cytokines expressed by Tfh cells known to help B cell

differentiation. Consistent with the Th1 and Th2 dogma (20–23),
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low-intensity TCR-CD3 stimulation facilitated IL-4 production

at day 5, gradually decreasing thereafter (Supplementary

Figures 1A, B). Intermediate and high stimulations initially

induced fewer IL-4-producing cells, with proportions increasing

later (Supplementary Figure 1B). Strong TCR-CD3 stimulation

resulted in substantial IFN-g production (Supplementary

Figures 1C, D). Unlike IL-21, IL-4 and IFN-g secretion correlated

strongly with cell division, increasing progressively over divisions

(Supplementary Figures 2E, F). Exogenous IL-4 and IFN-g provided
positive feedback, particularly for IL-4 under low TCR-CD3

stimulation (Supplementary Figures 1E, F).

We investigated whether IL-21-producing Tfh-like cells could

coexpress IL-4 and IFN-g through varying TCR-CD3 signaling

strength (Figures 2A–D). Naive CD4+ T cell priming mainly

yielded cells expressing either IL-4 or IL-21, with only a small

fraction coexpressing both across TCR-CD3 stimulations

(Figure 2B). However, variation in TCR-CD3 signaling induced

more coexpression of IL-21 and IFN-g (Figures 2C, D), especially
under strong stimulation (Figures 2C, D).

To assess cytokine coexpression in more detail, IL-4 and IFN-g
production were analyzed after TCR-CD3 stimulation in IL-21-

producing Tfh-like cells (Figures 2E, F). On day 3, most Tfh-like cells

produced only IL-21, but coexpression of IFN-g increased, especially
withhigher stimulation(Figures2E,F).Fromday5on, thenumberof IL-

21-producing Tfh-like cells coexpressing IL-4 increased, particularly

with low TCR-CD3 stimulation (Figures 2E, F). In these conditions,

most cells coexpressing IL-4 also expressed IFN-g (Figures 2E, F).

Coexpression of IL-4 alone was mainly observed with low TCR-CD3

stimulation,potentiallydue topositive feedforward signalingby IL-4and

limited secretion of IFN-g and IL-21. These findings highlight the

complex interplay of cytokines within the CD4+ T cell network, with

possiblepositive andnegative feedback loops regulating their expression.

While single IL-21 expression is observed early after naive CD4+ T cell

priming, plastic coexpression of IL-4 and IFN-g occurs at later time

points, especially with restricted IL-21 and IL-4 coexpression under low

TCR-CD3 stimulation.
Exogenous cytokines IL-21 and IL-4
regulate plastic coexpression of IL-4 and
IFN-g in IL-21-producing Tfh-like cells

The impact of IL-21 and IL-4 on the plastic coexpression of IL-4

and IFN-g in IL-21-producing Tfh cells was explored, focusing on the
effective range of these exogenous cytokines: low TCR-CD3

stimulation for IL-4 and high for IL-21 (Figure 3, Supplementary

Figures 2, 3). Both IL-4 and IL-21 significantly influenced the

coexpression of IL-21 and IL-4, with exogenous IL-4 inducing IL-4

production (Figures 3A, B versus Figures 2A, B, top rows) and IL-21

inducing IL-21 without concurrent IL-4 expression (Figures 3A, B

versus Figures 2A, B, bottom rows). Interestingly, exogenous IL-21

induced moderate coexpression of IL-21 and IL-4 double-positive

cells (Figures 3A versus Figures 2A, B, bottom rows).

Effects on IL-21 and IFN-g coexpression were observed

(Figures 3C, D), with limited coexpression after TCR-CD3
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stimulation alone (Figures 2C, D), significantly enhanced with

exogenous IL-21 (Figures 3C, D and Supplementary Figures 2C,

D), and mainly repressed by exogenous IL-4 (Figures 3C, D and

Supplementary Figures 3C, D). Further analysis of IL-21-producing
Frontiers in Immunology 04
Tfh-like cells revealed that exogenous IL-4 markedly increased the

population coexpressing IL-4 alone or in combination with IFN-g,
particularly after low stimulation (Figures 3E, F and Supplementary

Figures 3E, F versus Figures 2E, F, top rows). In contrast, exogenous
FIGURE 1

CD4+ T cells produce IL-21 and acquire a Tfh-like phenotype upon increasing TCR-CD3 stimulations. (A) IL-21 expression in human naive CD4+ T cells
analyzed by flow cytometry. (B) CFSE-labeled CD4+ T cells stimulated with varying concentrations of anti-CD3 antibodies for 3 or 5 days (left), graph of the
cell division fraction (right). (C) Live CD4+ cell counts after TCR-CD3 stimulation. (D) IL-21 expression in CD4+ T cells after 5 days of TCR-CD3 stimulation.
Cell percentages are indicated in the gate. (E, F) Quantification of IL-21 production after TCR-CD3 stimulation for 3 (n=6), 5 (n=17), and 11 (n=6) days.
(G) CFSE-labeled CD4+ T cells stimulated with anti-CD3 for 3 days, with fraction of IL-21-positive cells at each division. (H) CD4+ T cells at day 3 after
stimulation with 1 mg/mL TCR-CD3, with sorted CXCR5-PD1- and CXCR5+PD1+ cells analyzed for CXCR5, IL-21 and BCL6 mRNA expression (n=2).
(I) Fraction of CD4+ T cells within each division after TCR-CD3 and rIL-21 stimulation for 3 days, and live CD4+ cell counts (n=3). (J) IL-21 expression after
5 days of TCR-CD3 and rIL-21 stimulation, with quantification for 3, 5, and 11 days. Data analyzed by repeated-measures one-way ANOVA with Sidak
post-test; *p < 0.05, **p < 0.01, ***p < 0.001, ****P < 0.0001, n.s., not significantly different. Stacked bars represent mean (n=3) of individual donors.
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FIGURE 2

Dynamic Cytokine Expression in CD4+ T Cells upon TCR-CD3 Stimulation. (A-D) IL-4 and IL-21 (A, B) or IFN-g and IL-21 (C, D) co-expression in
CD4+ T cells after variable TCR-CD3 stimulation. (E, F) IL-4 and IFN-g co-expression in IL-21-producing Tfh-like cells after different anti-CD3
concentrations. Stacked bars represent mean (n=3) individual donors.
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IL-21 had a minimal impact on IL-4 and IFN-g coexpression by IL-

21-producing cells (Figures 3E, F versus 2E,F, bottom rows).

Therefore, substantial coexpression of IL-4 by IL-21-producing Tfh

cells requires the presence of excess IL-4, potentially acting beyond

the immunological synapse, as it has been shown for IL-21 (35).
Discussion

Our study highlights the pivotal role of TCR-CD3 signaling

strength in shaping the differentiation and cytokine plasticity of
Frontiers in Immunology 06
naive CD4+ T cells into T follicular helper (Tfh)-like cells. We

observed that strong TCR-CD3 stimulation drives robust IL-21 and

IFN-g production, whereas lower signaling favors IL-4 expression.

This variation in cytokine output indicates that Tfh-like cells are not

restricted to a binary Th1/Th2 model but display a flexible, context-

dependent functional spectrum.

The induced Tfh-like cells exhibited high levels of CXCR5 and

IL-21 mRNA, whereas BCL6, the central transcription factor

regulating Tfh gene expression, showed a comparable expression

profile in CXCR5+PD1+ cells compared to CXCR5-PD1- CD4+ T

cells (36) The upregulation of BCL6 likely requires additional
FIGURE 3

Impact of Recombinant Cytokines on TCR-CD3-Induced Cytokine Expression. (A-D) IL-4 and IL-21 (A, B) or IFN-g and IL-21 (C, D) co-expression in
CD4+ T cells after TCR-CD3 stimulation with recombinant IL-4 (rIL-4; top) or rIL-21 (bottom). (E, F) IL-4 and IFN-g co-expression in IL-21-producing
Tfh-like cells after TCR-CD3 stimulation with rIL-4 (top) or rIL-21 (bottom). (F) Stacked bars represent mean (n=3) individual donors.
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signals beyond CD3 and CD28 stimulation, with interaction with B

cells being a key factor. Specifically, Tfh cell-B cell interactions,

including T cell receptor (TCR) engagement with antigen-

presenting B cells and co-stimulatory signals such as ICOS and

CD40L, are critical for the full differentiation of Tfh cells and BCL6

expression. These signals help sustain BCL6 expression, which is

essential for the complete differentiation of Tfh cells and the

maintenance of their identity and functions (13).

The strong correlation between signal strength and cytokine

expression, particularly the coexpression of IL-4 and IFN-g within
IL-21-producing Tfh-like cells, emphasizes the dynamic nature of

Tfh cell responses. These findings suggest that Tfh cells are not

rigidly polarized but can occupy intermediate states. Moreover, our

results show that exogenous cytokines, such as IL-21 and IL-4, can

further modulate Tfh cell function. While IL-21 promotes its own

expression and limits IL-4, exogenous IL-4 enhances IL-4

production and supports the coexpression of IL-4 and IFN-g,
particularly under low TCR-CD3 stimulation. This suggests that

external cytokine environments can fine-tune Tfh cell plasticity,

potentially impacting B cell responses and GC dynamics. For

example, the interplay of IL-4 and IFN-g within Tfh-like cells

may influence B cell fate, including memory B cell or plasma cell

differentiation, depending on the strength of TCR-CD3

signaling (37).

The implications of these findings extend beyond basic

immunology and could be leveraged for therapeutic interventions.

By manipulating Tfh plasticity through controlled antigen exposure

or cytokine supplementation , it may be possible to enhance vaccine

efficacy or manage autoimmune diseases by directing specific B

cell outcomes.

From a translational perspective, the in vivo relevance of these

findings is crucial. In physiological settings, the plasticity of Tfh-like

cells may allow the immune system to tailor responses to different

pathogens or antigenic environments, fine-tuning both the quality

and magnitude of B cell-mediated immunity. For instance, during

infections, the ability of Tfh cells to adopt intermediate cytokine

profiles could help balance the need for protective immunity with

the prevention of excessive immune activation. Conversely, in

autoimmune diseases, dysregulated TCR signaling and cytokine

environments might skew Tfh responses toward pathological

outcomes, such as promoting the production of autoantibodies.

Understanding these in vivo dynamics will be critical for developing

interventions aimed at correcting aberrant Tfh activity in

autoimmune contexts.

Future studiesusing invivomodels, suchas cytokine reportermice,

alongside detailed ex vivo analyses of antigen-specific Tfh cells, will be

essential to validate these mechanisms in physiological and disease

settings (38–40). This will not only deepen our understanding of Tfh

cell function in health and disease but could also inform strategies to

manipulate Tfh cells for therapeutic benefit.
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SUPPLEMENTARY FIGURE 1

Modulating Effects of Th1, Th2, and Tfh Cell Cytokines. (A, B) IL-4 expression
after TCR-CD3 stimulation for 5 days, with quantification for 3, 5, and 11 days. (C,
D) IFN-g expression after TCR-CD3 stimulation for 5 days, with quantification for

3, 5, and 11 days. (E, F) IL-4- and IFN-g-positive CD4+ T cells after TCR-CD3 for 3
days, with the fraction at each division. (G, H) Quantification of IL-4 production

after TCR-CD3 and rIL-4 stimulation for 3, 5, and 11 days, IFN-g production after
TCR-CD3 and rIFN-g stimulation for 5 days. Data analyzed by repeated-

measures one-way ANOVA with Sidak post-test; *p < 0.05, **p < 0.01, ***p <
0.001, ****P < 0.0001, n.s., not significantly different.

SUPPLEMENTARY FIGURE 2

Impact of Recombinant IL-21 (rIL-21) on Cytokine Expression. (A, B) IL-4 and

IL-21 co-expression in CD4+ T cells after TCR-CD3 stimulation with rIL-21
Frontiers in Immunology 08
for indicated days, with quantification. (C, D) IFN-g and IL-21 co-expression in
CD4+ T cells after TCR-CD3 stimulation with rIL-21 for indicated days, with

quantification. (E, F) IL-4 and IFN-g co-expression in IL-21-producing Tfh-like

cells after TCR-CD3 stimulation with rIL-21, with quantification. Stacked bars
represent mean (n=3) individual donors.

SUPPLEMENTARY FIGURE 3

Impact of Recombinant IL-4 (rIL-4) on Cytokine Expression. (A, B) IL-4 and IL-
21 co-expression in CD4+ T cells after TCR-CD3 stimulation with rIL-4 for

indicated days, with quantification. (C, D) IFN-g and IL-21 co-expression in

CD4+ T cells after TCR-CD3 stimulation with rIL-4 for indicated days, with
quantification. (E, F) IL-4 and IFN-g co-expression in IL-21-producing Tfh-like

cells after TCR-CD3 stimulation with rIL-4, with quantification. Stacked bars
represent mean (n=3) individual donors.
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