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Obesity has emerged as a prominent global public health concern, leading to the

development of numerous metabolic disorders such as cardiovascular diseases,

type−2 diabetes mellitus (T2DM), sleep apnea and several system diseases. It is

widely recognized that obesity is characterized by a state of inflammation, with

immune cells-particularly macrophages-playing a significant role in its

pathogenesis through the production of inflammatory cytokines and activation

of corresponding pathways. In addition to their immune functions, macrophages

have also been implicated in lipogenesis. Additionally, the mitochondrial

disorders existed in macrophages commonly, leading to decreased heat

production. Meantime, adipocytes have mitochondrial dysfunction and

damage which affect thermogenesis and insulin resistance. Therefore,

enhancing our comprehension of the role of macrophages and mitochondrial

dysfunction in both macrophages and adipose tissue will facilitate the

identification of potential therapeutic targets for addressing this condition.
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1 Introduction

Obesity is a chronic metabolic disease whose main characteristic is harmful overweight

and the accumulation of adipose tissue (AT). The WHO definition of obesity is a BMI≥30

kg/m2 (1). For several decades, the prevalence of obesity has increased significantly.

According to a recent study published in Lancet, there were 159 million obese children

and adolescents, and 879 million obese adults globally in 2022. The global obesity rate for

children and adolescents in 2022 was approximately four times greater than that in 1990.

Among adults, obesity rates have nearly tripled in males and more than doubled in women

(2). Frequently, obesity is related to a variety of metabolic diseases, such as insulin
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resistance-induced type 2 diabetes and cardiovascular disease

(CVD) (3, 4). Compared with healthy individuals, obese

individuals have a greater hazard ratio for cancers of the breast,

kidney, pancreas, and esophagus (5, 6). Moreover, childhood

obesity is closely correlated with metabolic diseases in adulthood,

so prevention of childhood obesity is essential (7).

The basic cause of obesity is an imbalance between caloric

intake and consumption; this situation is usually caused by an

excess high-fat diet and a lack of physical activity (8). Therefore,

common individual management strategies for the prevention of

obesity include reducing the consumption of high-carbohydrate or

high-fat diets and increasing the frequency of workouts. By doing

so, a weight loss of 5% to 7% can be produced on average, which is

not desirable or sufficient (9). Under conditions of obesity, several

alterations occur, including metabolic pathways activation related

with energy metabolism, proinflammatory cytokine upregulation,

immune cell population changes, and mitochondrial dysfunction

(10–13). Currently, various anti-obesity medications target these

alterations to control energy balance and inhibit inflammation, thus

achieving the goal of weight loss and reducing the corresponding

disease risks (14).

As the most abundant immune cell type in adipose tissue,

macrophages play crucial roles in maintaining adipose homeostasis

and regulating the immune system (15). Not only the number but

also the tissue localization and phenotype of macrophages are

largely altered during the process of obesity (12). Macrophages in

adipose tissue are the principal source of inflammatory mediators

which contribute largely to the production of chronic low-grade

inflammation in obese individuals (16, 17). In addition to their

immune functions, macrophages have also been implicated in

lipogenesis. Additionally, mitochondrial disorders commonly exist

in macrophages, leading to decreased heat production in adipose

tissue. Moreover, adipocytes exhibit mitochondrial dysfunction and

damage, which affect thermogenesis and insulin resistance.

Mitochondrial disorders can act as a bridge that connects

macrophages and adipocytes, together contributing to the

development of obesity. In this review, we summarize both

macrophages and adipose tissue mitochondrial disorders in

adipose tissue.
2 Overview of obesity-
associated factors

Obesity is the result of energy input being greater than energy

output, and then excess energy is converted into fat under the

subcutaneous or internal organs. The factors that induce obesity can

be divided into congenital factors, postnatal factors, and

environmental factors. Congenital factors mainly refer to related

gene expression. During the process of evolution, those who could

store and utilize energy more effectively and tolerate hunger for

longer may have a comparative reproduction advantage over those

who do not have these properties according to survival and selection

stress, thus resulting in overrepresentation of genetic variants that

are beneficial for faster eating, excess energy absorption and storage

in adipose tissue (18).
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Many studies have investigated genes associated with obesity.

For example, fat mass and obesity-associated genes (FTOs) were

identified as obesity markers by genome-wide association studies,

and FTO knockout mice exhibited weight loss (19). Additionally,

with the help of whole-exome sequencing, a series of genes were

identified as BMI-related genes. For example, G-protein coupled

receptor (GPR75) was associated with a lower BMI, whereas

calcitonin receptor (CALCR) was correlated with a higher BMI

(20). Other sequencing analyses focusing on sex and age differences

also revealed that several genes function in men and women or

adults and children separately (21). Moreover, mutations in genes

encoding adipose tissue hormones and hormone receptors play a

significant role in the development of obesity (22–25). Findings

related to these genes not only help explain the probable mechanism

of obesity occurrence but also offer potential therapeutic targets

for obesity.

Excessive food intake, unhealthy eating habits, insufficient

physical activity, a lack of sleep, psychological and emotional

changes, region and socioeconomic status are all influencing

factors of overweight (8, 26–28). In addition to these factors,

immune and metabolic status are critical propellants in

promoting obesity because adipose tissue is not only an energy

bank but also an endocrine organ (29). Innate immune cells,

including macrophages, lymphocytes, dendritic cells, neutrophils,

eosinophils and natural killer cells, which reside in adipose tissue

can secrete numerous cytokines that affect metabolic pathways and

facilitate inflammation (16, 30–33).
3 Adipose tissue macrophages

Obesity is actually a state of chronic inflammation, and the

infiltration and recruitment of adipose tissue macrophages (ATMs)

greatly contribute to the process of obesity. Macrophages are a

group of cells that are differentiated from monocytes and have the

ability to phagocytose cell debris and pathogens. Generally, there

are two principal macrophage populations. The classically activated

status is type 1 macrophages (M1 macrophages), which usually

express CD11c, TNF, IL-6, IL-1b, and Nos2. They are commonly

activated by IFN-g, LPS and GM-CSF, and secrete proinflammatory

cytokines (34–36). The alternatively activated type is type 2

macrophages (M2 macrophages), which express arginase 1(Arg1),

CD206, and CD301 (37). M2 macrophages are usually stimulated

by M-CSF, IL-13 and TGF-b, and they secrete anti-inflammatory

cytokines, including IL-1RA and IL-10 (38). M2 macrophages can

be divided into four subtypes according to different stimuli and cell

markers. M2a cells, also called alternative activated cells, can be

activated by IL-4 and IL-13 and they highly express CD206, CD209

and FIZZ1. Type II alternatively activated cells, commonly called

M2b cells, are usually activated by IL-1b or LPS and they highly

express CD80 and CD14. M2c macrophages are also referring to

acquired deactivated cells; they can be stimulated by TGF-b and IL-

10 and highly express CD163 and CD206. M2d macrophages, also

called tumor-associated macrophages (TAMs), are induced by TLR

agonists, and they may participate in the proliferation and invasion

of tumor cells (38–40). In fact, the number, phenotype, and tissue
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localization of macrophages can be significantly altered as

BMI increases.

In addition to the two classic cell subtypes, other macrophage

subtypes are also associated with adipose tissue. In a previous study,

CD11c-CD206- ATMs were recognized as type 3 macrophages,

which localize to crown-like structures (CLSs) and express pro-

inflammatory cytokines (41, 42). CD11c+CD206+ ATMs are in the

middle state of M1/M2 ATMs, which have relatively high levels of

lipid-rich vacuolar and mitochondrial RNAs, as well as transcripts

encoding APOE, FABP4, and fatty acid metabolism enzymes (43).

11b-hydroxysteroid dehydrogenase type 1(11b-HSD1) is a

reductase which catalyzes inactive glucocorticoids into active

form (44). One study revealed that the 11b-hydroxysteroid
dehydrogenase type 1–glucocorticoid receptor (11b-HSD1-GR)

regulatory axis plays an important role in the process of

switching to the M1/M2 phenotype and prevention of this

process may be a potential therapeutic target for obesity (45).

Lipid-associated macrophages (LAMs) are a subtype of

CD11c+CD206+ ATMs. LAMs express a series of transcriptional

genes associated with lipid embolism and phagocytosis, including

Trem2, Lipa, and Ctsb. In particular, Trem2, which is highly

expressed in LAM, plays a crucial role in ATM remodeling,

prevention of adipocyte hypertrophy and maintenance of

metabolic homeostasis (46). Another subtype of lipid-laden

macrophages named CD9+ macrophages, which localize to CLSs,

express several genes related to lysosomal pathways and

proinflammatory mediators (47).

Additionally, a metabolically activated macrophage (MMe)

phenotype, which overexpresses ABCA1, CD36 and PLIN2 but

does not express M1 cell surface markers including CD38, CD319

and CD274, and M2 cell surface markers including CD163 and

CD206, is produced under stimulation with saturated free fatty

acids (FFAs) (48). (Table 1) Excessive lipids can polarize

macrophages toward an inflammatory state and induce lysosome

biogenesis in macrophages, which helps lipid clearance. The

inhibition of ATM lysosomal activity inhibits lipid metabolism,

increases lipid accumulation in ATMs, and decreases overall AT

lipolysis (49). Dead adipocytes are a plentiful source of FFAs, which

are essential for metabolic activation, and MMe can clear these dead
Frontiers in Immunology 03
cells through lysosomal exocytosis with the help of TLR2, NOX2,

and MYD88 (50) (Figure 1).
4 Regulatory factors governing
macrophage polarization

Macrophage polarization is crucial for inflammation and

obesity. There are various regulatory factors governing

macrophage polarization.

As one of the most important inducers of M1 polarization, LPS

stimulation increases the expression of M1 macrophage markers,

such as toll-like receptor 4 (TLR4), CD36, and CD68 (51). It can

interact with TLR4, together inducing production of TRIF, TRAM

and Myd88, and the former two can recruit TANK through tumor

necrosis factor receptor-associated factor 3 (TRAF3), then activate

and combine with TANK-binding kinase 1 (TBK1), thus activating

interferon-regulatory factor 3(IRF3), while Myd88 activates NF-kB
pathway (52). Additionally, IFN-g secreted from Th1 cells, NK cells

and CD8+ T cells can activate Janus kinase 1(JAK1) and Janus

kinase 2 (JAK2), consequently leading to the activation of signal

transducer and activator of transcription 1(STAT1), which together

promote M1 polarization (53). Similarly, GM-CSF contributes to

M1 polarization through JAK2-STAT5 signaling pathway (54).

Except these molecules, hormones also participate in the process.

For example, Leptin is a protein encoded by ob genes which is

generally thought to be a proinflammatory cytokine (55). Leptin/

obR significantly activated M1 macrophages via JNK/STAT3/AKT

signaling and CXCL2 production (56). Usually, obesity leads to an

increase in proinflammatory T cells, including CD4+ Th1 and CD8+

effector T cells, whereas anti-inflammatory Th2 cells decrease in

adipose tissue, which induces macrophage polarization toward the

M1 phenotype (57). And leptin can influence the polarization of

CD4+ T cells toward the Th1 phenotype by enhancing Th1

responses and suppressing Th2 immunological responses (58).

Importantly, diet-induced obesity increases the number of NK

cells and causes them to release IFN-g and TNF-a in visceral

adipose tissue, amplifying polarization and infiltration of M1

macrophage (59).

Correspondingly, there are a series of factors involved in M2

polarization. IL-10 promotes gene expression associated with an

M2-like phenotype, and this process was determined to be STAT3

dependent through JAK1 activation (60, 61). IL-3 can activate JAK2

followed by STAT5 recruitment, leading to M2 polarization (62,

63). The binding of IL-4 and IL-13 to the corresponding receptor

activates STAT6 through JAK1 and JAK3, finally activates IRF4

causing macrophages to undergo M2 polarization (64). Besides,

adiponectin, a 247 amino acid protein, mainly plays a role in

metabolism control by promoting glycolysis and fatty acid

oxidation while inhibiting gluconeogenesis (65). It can regulate

M2 macrophage polarization through activating the jumonji

domain-containing - 3 (JMJD3)-IRF4 axis (66). Furthermore,

adiponectin can affect the secretory function of macrophages,

which is demonstrated by reduced secretion of proinflammatory

cytokines such as IL-6 and TNF from macrophages and increased
TABLE 1 Macrophages subtypes related with obesity.

Type
of
macrophages

Cell
marker

Function Reference

Lipid-associated
macrophages

(LAM)

Trem2,
Lipa, Ctsb

ATM remodeling (46)

CD9+ CD9

Related with lysosomal
pathways and

proinflammatory
mediators

(47)

metabolically
activated

macrophage
(MMe)

ABCA1,
CD36,
PLIN2

clear dead cells through
lysosomal exocytosis

(48)
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production of anti-inflammatory cytokines, including IL-10 and IL-

1RA (67).

Besides, IRF6 reduces M2 polarization by binding to the

peroxisome proliferator-activated receptor g (PPARg) promoter

and limiting its expression, while the JAK1/3-STAT6 pathway can

inhibit IRF6 expression (68). Signal regulatory protein a (SIRPa)
has been demonstrated to promote M2 polarization, whereas the

Notch pathway can activate M1 polarization through the

suppression of SIRPa expression (69). There also exists a

phosphoenolpyruvate carboxykinase 2(PCK2)- AMP-activated

protein kinase (AMPK)- mammalian target of rapamycin(mTOR)

pathway regulating M2 polarization (70). AMPKa1 and AMPKb1
are both important for M2 polarization, and AMPKb1 deletion in

macrophages decreases the mitochondrial content and rate of FAO

(71, 72). (Figure 2)

Overall, inhibiting factors polarizing macrophages toward M1

and facilitating factors polarizing macrophages toward M2 can be

therapy targets for obesity.
5 Regulatory factors governing
macrophage recruitment

Macrophage recruitment plays a crucial role in promoting

obesity and related inflammation. Compared with lean mice,

obese mice exhibit increased infiltration of macrophages,

accounting for 40% of all AT cells in obese mice (73). 90% of the

macrophages that infiltrate the adipose tissue of obese humans and

animals create characteristic CLSs surrounding dead adipocytes

(74). Saturated fatty acids released by adipocytes and
Frontiers in Immunology 04
proinflammatory cytokines such as MCP-1 and TNF-a secreted

from macrophages can lead to macrophage recruitment (75).

Together, these factors augment inflammation in obesity and

increase insulin resistance.

Monocyte chemoattractant protein-1 (MCP-1) is a proinflammatory

chemokine that is produced largely bymacrophages and endothelial cells

(76). C-C motif chemokine receptor-2 (CCR2) is the receptor of MCP-1

(also called CCL2). The main function of MCP-1/CCR2 is regulating

monocyte and macrophage recruitment. MCP-1 levels in plasma

increased in both genetically obese diabetic (db/db) and WT mice with

obesity caused by a high-fat diet, leading to macrophage infiltration.

Conversely,MCP-1 gene knockout reducesmacrophage accumulation in

adipose tissue (77). Therefore, inhibiting the expression of MCP-1,

CCR2, or other factors that can regulate the levels of MCP-1 may

provide potential therapeutic methods for obesity.

Other chemokines, such as C-X-C motif receptor 3 (CXCR3)

and C-X-C motif chemokine receptor 7 (CXCR7), are involved in

the recruitment of macrophages to adipose tissue. In Th1 cells,

CXCR3 combines with its ligands CXCL9 and CXCL10 to produce

memory and effector T cells (78). Mice fed a high-fat diet presented

increased numbers of CXCR3-expressing CD8+ T cells and IFN-g-
expressing CD4+ T cells. These cells attract and polarize

macrophages toward an M1 response, leading to chronic low-

grade inflammation during obesity (79). CXCR3-/- mice presented

a decreased VAT macrophage response, and CXCR3-/-

macrophages presented a defective response to LPS, resulting in a

reduction in IL-12 and TNF-a synthesis in vitro (80). Therefore,

targeting the CXCR3 receptor may be a potential treatment for

obesity. Additionally, CXCR7 is expressed in adipose tissue, and its

ligands CXCL11 and CXCL12 mediate macrophage chemotaxis and
FIGURE 1

The subtype classification of macrophages.
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phagocytosis and contribute to inflammation during obesity (81,

82). In obesity, the expression of CXCR7, CXCL11 and CXCL12 is

increased, and CXCR7 neutralizing therapy with an anti-CXCR7

antibody can not only reduce macrophage infiltration and

inflammation in obesity but also improve insulin resistance (83).
6 ATMs influence lipid metabolism
and the energy state

The main function of adipose tissue is energy storage, and adipose

tissue is divided into white adipose tissue (WAT) and brown adipose

tissue (BAT). WAT, including subcutaneous adipose tissue (SAT) and

visceral adipose tissue (VAT), plays an important role in storing excessive

lipids as triglycerides and releasing free fatty acids (FFAs) in the state of

hunger. In contrast, BAT is rich in mitochondria, which can divert ATP

into heat through uncoupling protein 1 (UCP1) and uncoupling electron

transport to maintain temperature balance and fight against obesity (84).

In fact, beige adipose tissue, similar to BAT, has heat production ability

(85). Since the energy consumption of BAT and beige adipose tissue is

greater than that of WAT, increasing the percentage or promoting the

browning process of BAT and beige adipose tissue may be a potential

therapy to combat obesity. For example, succinate is an intermediate

metabolite of the tricarboxylic acid cycle that plays an indispensable role

in energy production via the mitochondrial pathway. The increasing
Frontiers in Immunology 05
circulating level of succinate in BAT and beige fat increases whole-body

energy expenditure, exacerbates obesity and inhibits systemic tissue

inflammation. Mechanistically, succinate affects BAT mitochondrial or

mitochondria-related proteins, which can help promote body weight loss

(86). However, adipocyte disorders occur in obesity, and adipocytes lose

their heat production ability, resulting in the accumulation of dead

adipocytes. The clearance of these dead cells requires macrophages.

In fact, macrophages function as important members of intrinsic

immunity and can influence metabolic pathways and metabolites in

adipose tissue. One of the most significant features of macrophages in

obesity is the upregulation of lysosome-related pathways. A previous

study revealed that the surface marker LAMP-1, which indicates

lysosome exocytosis, is increased in CLS macrophages (50). In

addition, macrophages can absorb fat from dead adipocytes

through an acidified interface between adipocytes and

macrophages. If lysosomal function in ATMs is hindered, lipid

metabolism is affected, and lipid accumulation increases (49).

Legumain (Lgmn), a typical lysosomal cysteine protease, is highly

expressed in macrophages in response to overfeeding. Lgmn

generated from macrophages can inhibit PKA activation and

reduce the expression of lipolysis-related proteins through

combination with integrin a5b1 in adipocytes, whereas Lgmn-

knockout macrophages can regulate lipid metabolism and alleviate

insulin resistance (87). However, as evidenced by a previous study,

when injected with exogenous recombinant Lgmn, the body weight
FIGURE 2

Factors influencing process of macrophage polarization, cytokines, hormones, and related signaling pathways are included.
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and food intake of the mice were significantly reduced (88). Overall, if

macrophage function is impaired, dead fat cells cannot be recycled,

and lipolysis decreases.
7 Alterations in mitochondrial
biogenesis in ATMs

To achieve lipolysis, macrophages require significant energy

expenditure to complete the process. However, in obesity,

alterations in mitochondrial biogenesis occurring in ATMs lead to

macrophage dysfunction. Inflammatory macrophages exhibit

increased glycolytic metabolism and decreased mitochondrial

oxidative phosphorylation (89). Many factors and mechanisms

are involved in the acquisition of mitochondrial metabolic

adaptations by macrophages. Fatty acid oxidation (FAO) mainly

occurs in the mitochondrial matrix, thus producing ATP. FAO is

closely related to M2 polarization. Macrophage programs for

mitochondrial biogenesis and fatty acid oxidation are induced in

response to IL-4, PPARg-coactivator-1b (PGC-1b), and signal

transducer and activator of transcription 6 (STAT6) (90). During

inflammasome-mediated inflammation, histone deacetylase 3

(HDAC3) translocates to mitochondria, leading to deacetylation

and a decrease in the activity of HADHA (mitochondrial

trifunctional enzyme subunit a) - a key enzyme in mitochondrial

fatty acid oxidation, which helps macrophages acquire FAO and

mitochondrial morphology adaptations and ultimately promotes

IL-1b production (91). In addition, as a member of the PGC-1

family, PGC-1b plays crucial roles in adaptive thermogenesis and

mitochondrial fatty acid oxidation (92). As evidenced by a previous

study, palmitic acid-induced TNF-a, MCP-1, and IL-1b mRNA and

protein expression are reduced by PGC-1b, which can inhibit

TAB1/TAK1 complex formation and TAK1 activation, thus

decreasing macrophage-induced inflammation (93). Synoviolin

(Syvn1), an E3 ubiquitin ligase, is an important target of

inflammatory cytokines such as TNF-a, IL-1 and IL-17 (94).

Syvn1 can interact with and ubiquitinate PGC-1b, and Syvn1

deficiency results in decreased weight and lipid accumulation.

Mechanistically, the expression of PGC-1b target genes is

upregulated along with increasement in respiration, basal energy

expenditure and the quantity of mitochondria when syvn1 knocked

out (95). Additionally, when macrophages are stimulated innately,

mitochondrial ROS are produced. These ROS trigger the activation

of Fgr kinase, which controls complex II activity and leads to

macrophage polarization. The absence of Fgr leads to increased

FAO and decreased lipid droplet accumulation after exposure to

pathogen-associated molecular patterns (96).

In addition to immune functions such as phagocytosis and

cytokine secretion, macrophages are also involved in fat storage and

utilization. Many studies have demonstrated that macrophage-

deficient mice exhibit weight loss and lean conditions. For example,

colony stimulating factor 1 receptor (CSF1R) deletion can eliminate
Frontiers in Immunology 06
macrophages, resulting in the loss of visceral adipose tissue in rats (97).

Additionally, macrophages can regulate energy storage and usage by

molecules. Adipose-tissue resident macrophages can secrete PDGF

family growth factors to mediate lipid storage. In the absence of

PDGFcc, mice exhibit lean conditions through the conversion of extra

lipids to thermogenesis or ectopic accumulation (98). Slc6a2 is a

norepinephrine (NE) transporter expressing on sympathetic neuron-

associated macrophages (SAMs). When Slc6a2 knocked out in SAMs,

weight loss in obese mice is significant and consistent, and the

proportion of brown adipose tissue is increased due to the

decreased clearance of NE, which promotes adaptive thermogenesis

and lipid mobilization (99). These results suggest that macrophages

play a role in energy storage.
8 Alterations in mitochondrial
biogenesis in adipocytes

In addition to changes in mitochondrial biogenesis in

macrophages, mitochondrial changes also occur in adipocytes. As

the center of metabolism, the mitochondrion is indispensable for

survival because it is the main location for aerobic respiration and

ATP production. The development and maturation of adipocytes

are influenced by mitochondrial function. Early mitochondrial

metabolism, biogenesis and ROS production are essential for

promoting adipocyte differentiation in an mTORC1-dependent

manner (100). Excessive nutrient consumption has been linked to

mitochondrial dysfunction (101). Compared with lean people,

obese people have mitochondria with reduced oxidation of fatty

acids, less defined internal membranes and lower energy generating

capacity (102, 103). In addition, adipocytes from high-fat diet-fed

mice undergo mitochondrial fragmentation, which reduces their

oxidative capacity through a mechanism mediated by the small

GTPase RalA, whereas when RalA is deleted, decreased energy

expenditure and mitochondrial oxidative phosphorylation are

rescued (104). In addition, a study revealed that the interaction

substrate of the transcription factor Parkin was accumulating in

adipose progenitor cells from obese mice, which suppressed the

expression of peroxisome proliferator-activated receptor g
coactivator-1a (PGC-1a) - a crucial regulator of mitochondrial

biogenesis (105).
9 Mitochondria as a bridge
connecting ATMs and adipocytes

Previous studies have demonstrated that mitochondria can be

transferred between cells to help metabolically challenged cells

survive and intercellular mitochondrial transfer is related to

several diseases, such as ischemic stroke, allograft rejection and

the development of some cancer cells (106–109). Recently, a study
frontiersin.org
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revealed that intercellular mitochondrial transfer also occurs in

WAT. Macrophages in WAT can acquire mitochondria from

adipocytes in vivo, and when Ext1, a gene required for

mitochondrial transfer, is genetically deleted, the fat storage

increases, whereas energy expenditure decreases (110). A lard-

based high-fat diet can inhibit the absorption of mitochondria by

macrophages in white adipose tissue while diverting mitochondria

released from adipocytes to other organs via the blood (111). In

addition, brown adipocytes under thermogenic stress release

extracellular vesicles (EVs) containing mitochondrial fragments

that have been oxidatively damaged. When reabsorbed by

parental brown adipocytes, mitochondria-derived EVs decreased

the levels of UCP1 and PPARg signaling. BAT-resident

macrophages eliminate them, which is essential for maintaining

BAT function. The aberrant buildup of extracellular mitochondrial

vesicles in BAT results from the depletion of macrophages in vivo,

which inhibits the body’s natural thermogenic response to cold

exposure (112) (Figure 3).

The secretion of the macrophage cytokine Slit3 from ATMs

increased the mRNA levels of UCP1, PGC1a, PRDM16, PPARg,
and Cycs, all of which are associated with thermogenesis. Slit3-

overexpressing M2 macrophages can be transferred to WAT, which

promotes beiging and thermogenesis (113). Additionally,

proinflammatory cytokines secreted from macrophages can affect

adipocyte thermogenesis. When cocultured with conditioned media

generated from RAW macrophages, the UCP1 mRNA expression

level was inhibited in C3H10T1/2 adipocytes. One study

demonstrated that TNF-a inhibited transcription factors that bind

to the cAMP response element and the UCP1 promoter, thus leading

to UCP1 downregulation (114). Additionally, as the master

proinflammatory cytokine, the expression of IL-1b is increased in

inflammation and obesity. In adipocytes, isoproterenol-induced

upregulation of UCP1 can be hindered by IL-1b, which is increased

in obese WAT through the activation of extracellular signal-related

kinase (ERK). Furthermore, the adipose tissues of mice treated with

IL-1b substantially impaired the activation of UCP1 in response to

cold (115). In addition to proinflammatory cytokines, anti-

inflammatory cytokines are involved in the process of adipocyte

thermogenesis. IL-10 usually has an anti-inflammatory effect;
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however, when IL-10 is ablated, mice exhibit anti-obesity traits,

including increased energy expenditure and adipose thermogenesis.

Mechanically, IL-10 changes the chromatin architecture and

associated transcription factors of thermogenic genes (116). Another

cytokine, IL-27 targets adipocytes directly through activating p38

MAPK-PGC-1a signaling and inducing UCP1 synthesis, which

makes it a potential therapeutic target for obesity (117).

Furthermore, as an anti-inflammatory cytokine, IL-4 can inhibit

lipid accumulation and increase the expression of UCP1 in white

adipose tissue (118). Altogether, mitochondria can be transferred

between macrophages and adipocytes, and cytokines secreted from

macrophages can also influence energy consumption in adipocytes.
10 Therapy targets

obesity is an imbalance of energy intake and consumption,

actually there is mitochondrial dysfunction in adipocytes, so

alleviating mitochondrial damage and increasing thermogenesis

are also energy expenditure methods. In addition, obesity is a

state of inflammation, and macrophages participate largely in the

inflammatory process; thus, decreasing infiltration and hindering

the polarization of macrophages is also a major direction of therapy.
10.1 Targeting macrophage recruitment
and polarization

Macrophage polarization contributes significantly to the

development of obesity. Ubiquitin-specific proteinase 14 (USP14) is

highly expressed in ATMs of obese human patients and diet-induced

fat mice and can aggravate macrophage recruitment and polarization.

However, pharmacological inhibition of USP14 effectively reduces

diet-induced hyperlipidemia and insulin resistance in mice, making it

an important restraint on the proinflammatory M1 phenotype and

therefore limiting obesity-related metabolic disorders (119).

Additionally, neuregulin 4 belonging to the epidermal growth

factor family is abundant in brown adipose tissue. It reduces

inflammation by increasing M1 macrophage death and decreasing
FIGURE 3

The disorder of mitochondrial transfer between adipocytes and macrophages in obesity comparing with the heath.
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inflammatory factor release (120). Sirtuin 3 is a mitochondrial

deacetylase that comprehensively participates in the regulation of

mitochondrial biology. In ATMs from mice feeding a high-fat diet,

sirtuin 3 levels were notably decreased. The proinflammatory

macrophage polarization caused by palmitic acid was worsened by

SIRT3 inhibition or knockdown. Mechanistically, the absence of

SIRT3 caused hyperacetylation of succinate dehydrogenase, which

in turn caused succinate accumulation. This buildup suppressed the

transcription of kruppel-like factor 4 by increasing the level of histone

methylation on its promoter, thereby inducing proinflammatory

macrophages (121). These findings suggest the protective role of

SIRT3. As a member of the adiponectin paralog family, C1q/tumor

necrosis factor-related protein 6 (CTRP6) may influence macrophage

glycolysis and promote M1 macrophage activation via the PPAR-g/
NF-kB pathway. Both silencing CTRP6 expression and treatment

with the PPAR-g agonist GW1929 can reverse the M1 phenotype

effects in vitro and in vivo through decreasing glycolysis and blocking

M1 macrophage polarization (122).

In addition to associated molecules, some drugs also help improve

obesity and obesity-relatedmetabolic disorders. Sulforaphane is present

in a variety of cruciferous vegetables and has numerous functions.

Sulforaphane exhibits a distinct transcriptional pathway that protects

against obesity by lowering fatty acid synthesis, promoting ribosome

biogenesis and reducing ROS accumulation (123). A recent study

demonstrated that sulforaphane plays a role in activating M2

macrophage polarization while inhibiting M1 macrophage

polarization, which protects against abnormal extracellular matrix

deposition (124). The popular thiazolidinedione pioglitazone has

been demonstrated to be effective in preventing cardiovascular

problems associated with type 2 diabetes. A study revealed that

pioglitazone does not affect cell viability or macrophage

differentiation but instead suppress CXCR7 expression, blocking

chemotaxis in differentiated macrophages. Furthermore, pioglitazone-

induced CXCR7 suppression and chemotaxis inhibition occur through

the activation of peroxisome PPARg in differentiated

macrophages (125).

There are also many anti-inflammatory medicines that can

reduce cytokine secretion. The primary signaling mechanisms for

TNF-a-mediated inflammation involve the NF-kB and MAPK

pathways. Cimifugin is a common component of traditional

Chinese herbs that can combat inflammatory diseases. It protects

against oxidative stress and inflammation by inhibiting the NF-kB/
MAPK signaling pathway (126). In 3T3-L1 adipocytes, cimifugin

decreases the synthesis of proinflammatory factors and phospho-

P65 expression, as well as the activation of the MAPK pathway and

accumulation of intracellular lipids (127). In addition, TNF-a-
blocking peptides can play a similar role. SN1-13 inhibits TNF-a-
mediated signaling by preventing TNF-a and its receptors, and it

can regulate the production of inflammatory mediators, including

TNF-a, IL-1b, IL-6, and IFN-g (128). In addition, atorvastatin can

reduce CXCR7 mRNA and protein expression and prevent CXCR7

activation to inhibit macrophage migration (129). Although these

medicines are not reported for use in the treatment of obesity,

inhibiting the expression of proinflammatory cytokines seems to be

beneficial for the treatment of obese patients.
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Importantly, mitochondria play a role in thermogenesis, and their

structure promotes or inhibits heat production. The mitochondrial

calcium uniporter (Mcu) is a multimeric channel in the inner

membrane that transports Ca2+ to the mitochondrial matrix.

Inhibiting Mcu decreases adipocyte differentiation and lipid

accumulation, alleviates high-fat diet induced metabolic abnormalities,

and increases energy expenditure and thermogenesis (130). Similarly,

overexpression of solute carrier family 25 member 28 (SLC25A28), an

iron transporter located in the inner mitochondrial membrane, can

reduce the development of BAT by downregulating PGC-1a and UCP1,

leading to lipolysis inhibition and lipid accumulation (131).

Phosphoglycerate mutase member 5 (PGAM5) locating at the

mitochondrial outer membrane can be a potential therapeutic target

because it can modulate the activation of downstream signaling

pathways, such as the NF-kB and MAPK pathways, which in turn

controls the expression and synthesis of inflammatory cytokines in

macrophages (132).

Activation of PPAR-a and dual PPARa/g led to the recruitment

of UCP1+ beige adipocytes and promoted UCP1-independent

thermogenesis, resulting in normalized body mass and insulin

sensitivity levels (133). A study revealed that miR-155 produced

by obese ATMs influences the insulin signaling pathway by

targeting PPAR-g (134). In addition, a recent study revealed that

ATM-derived miR-210-3p-enriched EVs increase glucose

intolerance, intensify systemic IR, and decrease glucose uptake in

adipocytes by directly suppressing GLUT4 expression. However,

targeted suppression of miR-210-3p prevents glucose intolerance

and insulin resistance in HFD-fed mice (135).
11 Conclusions and perspective

Obesity is a global disease that causes many metabolic diseases.

The state of inflammation and decreased energy expenditure are the

two most significant features of obesity. Increasing evidence has

demonstrated that macrophages participate largely in the

development of obesity and inflammation. In obese mice, M2

macrophages are diverted into the M1 macrophage state, which

secretes many inflammatory cytokines, causing a systemic and

chronic inflammatory state. However, in addition to their

inflammatory role, macrophages also perform a phagocytosis

function and regulate lipogenesis. Fat accumulation and

macrophage changes mutually influence each other. Moreover,

mitochondrial dysfunction occurs in both macrophages and

adipocytes. Overall, not only macrophage polarization or

recruitment but also mitochondria can be potential therapeutic

targets for obesity, but further research is needed.
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