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Lactate significantly impacts immune cell function in sepsis and septic shock,

transcending its traditional view as just a metabolic byproduct. This review

summarizes the role of lactate as a biomarker and its influence on immune cell

dynamics, emphasizing its critical role in modulating immune responses during

sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the

receptor GPR81 are crucial in mediating these effects. HIF-1a also plays a

significant role in lactate-driven immune modulation. Additionally, lactate

affects immune cell function through post-translational modifications such as

lactylation, acetylation, and phosphorylation, which alter enzyme activities and

protein functions. These interactions between lactate and immune cells are

central to understanding sepsis-associated immune dysregulation, offering

insights that can guide future research and improve therapeutic strategies to

enhance patient outcomes.
KEYWORDS
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1 Introduction

Elevation in lactate levels is observed in a variety of critical illnesses, making lactate a

useful biomarker for illness severity and prognosis (1, 2). In 1964, the use of lactate as a

prognostic tool was first proposed by Weil et al. based on their pioneering observation that

high lactate levels (> 4 mmol/L) correlated significantly with adverse outcomes in patients

with shock (3). Since then, substantial clinical studies have been performed to establish the

association between lactate levels and severity of sepsis (4, 5). Notably, the Third

International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) has defined
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serum lactate level exceeding 2 mmol/L is as a clinical criterion in

identifying patients with sepsis and septic shock (6). This consensus

document has been considered as a milestone for inclusion of

lactate in clinical guidelines and highlights lactate’s role in the

pathogenesis of sepsis/septic shock.

Lactate has historically been known as a byproduct of glucose

metabolism (7). Recent evidence has shown that lactate is an essential

signaling molecule and epigenetic modulator, which plays a crucial

role in the biological and pathological functions of different cells (8).

The glycolytic pathway is central to this process, converting glucose

to pyruvate within the cytosol of cells. Depending on the conditions,

pyruvate either fuels the tricarboxylic acid (TCA) cycle for energy via

oxidative phosphorylation (OXPHOS) or is converted to lactate by

the enzyme lactate dehydrogenase A (LDHA) in the cytosol (9–11).

With enough oxygen, pyruvate enters the TCA cycle, leading to the

production of carbon dioxide and high-energy carriers for adenosine

triphosphate (ATP) synthesis (12). In anaerobic conditions, cells

convert pyruvate into lactate using LDHA to maintain ATP

production albeit less efficiently (11, 13). Traditionally, we attribute

the increased lactate levels to tissue hypoperfusion in patients with

sepsis/septic shock (14). However, as our knowledge of pathogenesis

of sepsis advances, it has become clear that other processes, not

directly related to tissue oxygenation, may increase lactate production

in sepsis/septic shock, such as activation of immune cells, impaired

lactate clearance due to multiple organ injuries, and mitochondrial

defects (15–18).

It is now recognized that sepsis is associated with a profound

immunosuppression, which is a predisposing risk factor of

nosocomial infection and mortality (19). Previous studies have

demonstrated that lactate is a potent immunosuppressant in

tumor microenvironments, thereby favoring tumor cell growth

(20). Similarly, emerging evidence shows that lactate directly

modulates the functions of a variety of immune cell, which

contributes to immune paralysis in sepsis (21, 22). Despite the

difficulty in targeting lactate production due to its complexity,

targeting lactate receptor G protein-couple receptor 81 (GPR81)

and the lactate transporter (MCT1) is suggested to restore immune

responses in in vitro studies (21, 23).

In this present review, we focus on the molecular mechanisms

by which lactate regulates immune responses during sepsis. First,

we summarize the clinical recognition of lactate’s role in sepsis/

septic shock patients. We then discuss the molecular and cellular

mechanisms by which lactate determines the fate and behavior of

immune cells in sepsis/septic shock. Last, we highlight the

therapeutic potential of targeting lactate metabolism and lactate-

associated signaling in treating sepsis/septic shock.
2 Recognition of lactate in sepsis/
septic shock

2.1 Early observations

As early as 1843, Johann Joseph Scherer, a German physician-

chemist, observed the presence of lactic acid in seven case reports of

young women who died peripartum (24). These patients were
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diagnosed with perimetritis and with secondary peritonitis,

hemorrhagic shock, or cerebral hemorrhage (24). Scherer

hypothesized that the production of lactic acid was enhanced in

such severe diseases. Scherer’s pioneering case reports are

considered to be the foundational documentation of lactic acid as

an indicator of septic and hemorrhagic shock, thereby paving the

way for future exploration of lactic acid’s diagnostic and prognostic

potential in various conditions.

During the 1960s -1980s, high lactate levels in patients with

circulatory failure and shock were routinely observed in clinical

practice (3, 4, 25–27). It was found that blood lactate levels indicate

the severity of shock and offer a crucial prognostic index, effectively

predicting outcomes even before the onset of severe hypotension

(25). Also, these studies suggested that lactic acid is a major

contributor to the metabolic acidosis observed in early shock.

Lactate from venous blood in the right atrium, superior vena

cava, or pulmonary artery are nearly identical to arterial levels, as

shown by high correlation in studies (28). Huckabee suggested that

a more precise evaluation of oxygen debt is achieved by measuring

“excess lactate,” which refers to an imbalanced rise in lactate levels

relative to pyruvate (29, 30). However, Weil et al. concluded that

lactate levels alone may be a simpler and more sensitive prognostic

indicator of the severity of shock (4). The study on 56 shock patients

revealed an 89% mortality rate with lactate levels of 4 mmol/L

or higher (3). Moreover, during fluid resuscitation of 17 patients

with noncardiogenic shock, it was observed that the lactate

concentration of 9 patients decreased by more than 5% within the

first 60 minutes (31), suggesting that serial lactate tests during shock

proved more reliable for prognosis. Although these early studies

were not precise in terms of severe sepsis/septic shock, they did hold

true for many of the subsequent studies (32, 33).
2.2 Recognition in sepsis

In the late 1980s, Cohen and Woods suggested that elevated

lactate levels could result from inadequate oxygen supply (type A

hyperlactatemia) or from factors unrelated to tissue hypoxia (type B

hyperlactatemia) (34). Although seemingly simple, this rigid

classification can be challenging to apply in complex clinical

scenarios, particularly in the hyperlactatemia associated with sepsis,

where it is categorized by some as type A and by others as type B (35).

Indeed, this classification belie the complexity and breadth of the

detailed kinetics involved in the production and utilization of lactate

by tissues (35). Peripheral shunting (36) and heightened adrenergic

stimulation (37) can also cause hyperlactatemia, but their prevalence

and clinical significance in sepsis patients remain unclear. Despite

this, lactate is a valuable marker for assessing tissue hypoxia and

disease severity, importantly, independent on blood pressure (38).

Research has found that blood lactate levels are more effective than

oxygen-related metrics in predicting septic shock outcomes (39), with

sequential blood lactate measurements being able to anticipate

subsequent multiple organ failure (17). At that time, the

significance of blood lactate concentrations equal to or exceeding 4

mmol/L in the context of early goal-directed therapy was

acknowledged by clinical researchers (40, 41).
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2.3 Inclusion in clinical guidelines

Lactate has appeared as a marker of hypoperfusion in the

definition of severe sepsis and septic shock proposed in 1992 (42).

In the first edition of the Surviving Sepsis Campaign (SSC)

guidelines, lactate emerged as a measure of severity and

symptomatic assessment of therapeutic endpoints (43). Guidelines

suggest measuring serum lactate within 6 hours for suspected severe

sepsis or septic shock patients. Lactate levels over 4 mmol/L indicate

the need for early resuscitation therapy. Moreover, improved

morbidity and mortality in severe sepsis and septic shock are

linked to lactate clearance, aligning with the focus of SSC on

treating tissue hypoperfusion early in resuscitation. Studies have

shown that lactate clearance <10% has good specificity and

sensitivity as an assessment to predict morbidity and mortality

during hospitalization (15). Additionally, an analysis of the relevant

database concluded that the guideline’s emphasis on measuring

lactate provides tangible clinical benefits to patients (44).

Subsequent studies have validated the idea that lactate can guide

sepsis treatment (5).
2.4 Risk stratification

Accumulating evidence suggests the feasibility of applying

lactate levels to sepsis risk stratification. For example, a

retrospective multi-center study suggested that clinicians can

utilize blood lactate concentrations greater than 0.75 mmol/L as

an indicator to identify patients at an elevated risk of mortality (45).

Patients in the emergency department with suspected infection and

moderate lactate levels face a moderate to high mortality risk, even

in the absence of hypotension (46). This suggests that lactate levels

have substantial prognostic value in critical illness, including sepsis.

Of note, it is reported that modifying treatments based on surrogate

physiological targets from invasive catheter measurements is not

essential for reducing mortality (47). This aligns with findings that

serial blood lactate monitoring is equally effective as catheter-based

measurements (5, 48). Moreover, research indicates that lactate

clearance is associated with reduced mortality in critically ill

patients, offering optimal prognostic utility for clinical

application (1).
2.5 Integration into diagnosis and
treatment algorithms

The pivotal role of lactate is reinforced in the Sepsis-3 definition

of septic shock, which is distinguished from sepsis by the need for

vasopressors to sustain a mean arterial pressure of 65 mm Hg or

higher and a serum lactate level exceeding 2 mmol/L without

hypovolemia (6). Lactate levels are also recommended for

screening undifferentiated adult patients suspected of having

sepsis, even when it’s not yet confirmed (49). Moreover,

Gattinoni et al. (50) noted that understanding why lactate levels

rise can lead to better treatment strategies, especially in deciding
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how aggressively to administer fluids to individuals. It was

suggested that even if lactate levels do not fully normalize, values

close to normal can signify effective resuscitation (51).
2.6 Ongoing research

In addition to being recognized as an important biomarker,

lactate is also involved in the host immune responses by serving as a

vital energy source for immune cells and other tissues in shock

(52, 53). Recently, we and others have reported that lactate is a

potent signaling molecule in mediating immune cell dysfunction

and cardiovascular injuries in sepsis (21, 23, 54, 55). In addition, it

has been reported that lactate regulates histone acetylation through

inhibiting histone deacetylases, leading to altered gene expression

(56). This observation highlights the role of lactate as an epigenetic

modulator. In agreement, a recent study by Zhang and colleagues

discovered that lactate induces a novel post-translational

modification, named lactylation in which a lactyl group is added

to lysine residues in histones (57). Lactate-induced histone

lactylation differs not only in mechanisms from lactate-induced

histone acetylation but also in the specific genes affected (57, 58). It

is noteworthy that we and others have reported that lactate can

promote the lactylation of non-histone proteins, such as high

mobility group box 1 (HMGB1) and Snail1, in sepsis and other

disease states (21, 55). This review examines the most recent

advances in the mechanisms by which lactate regulates immune

cell responses in sepsis/septic shock.
3 Sources of lactate in sepsis/
septic shock

In sepsis and septic shock, lactate levels increase due to multiple

factors (as shown in Figure 1). However, considering the potential

overlap among individual causes, we lean towards a simplified

classification based on the mechanism of lactate elevation:

increased lactate production and impaired catabolism.
3.1 Increased lactate production

The human body constantly produces lactic acid (59), with

levels spiking under increased cellular oxygen demand and/or

reduced oxygen supply. In contrast to increased oxygen demand,

hypoxia not only directly leads to lactate production, but also

inhibits the degradation of Hypoxia-inducible Factor 1-alpha

(HIF1a) and promotes its transcriptional activation (60). HIF-1a
plays a multifaced role in regulating glycolysis and lactate

production. It enhances glycolysis by inducing the transcription

of glycolytic enzymes and membrane transporters, thereby

increasing glucose flux (61, 62). Simultaneously, the expression of

LDHA, a critical enzyme for lactate production, is heightened upon

HIF-1a activation, leading to elevated lactate levels (63). During the

hyperinflammatory phase of sepsis, increased oxygen consumption
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by activated immune cells leads to tissue hypoxia, which, in turn,

stabilizes the transcription factor HIF-1a and consequently

increases lactate production (64–66). For example, changes in

glycolytic metabolism, induced by Toll-like receptors (TLRs), are

key to activating dendritic cells, with anaerobic ATP production

proving beneficial in low-oxygen conditions typical of infection/

inflammation (67). This is consistent with a previous report that

HIF-1a boosts lipopolysaccharide (LPS)-induced glycolysis in

dendritic cells (68). Therefore, increased oxygen demands during

inflammatory responses underscores a critical adaptation of

activated immune cells to HIF-1a-dependent elevation of

lactate production.

In the early phase, sepsis is characterized by a pronounced surge

of the pro-inflammatory cytokines (69). Numerous studies have

indicated that pro-inflammatory cytokines, especially interleukin

(IL)-1b, are critical mediators in aerobic glycolysis and lactate

production (70–73). Palsson-McDermott et al. demonstrated that

TLR4-mediated tetramerization of pyruvate Kinase M2 (PKM2)

promotes the transcription of IL-1b, leading to enhanced lactate

production in LPS-activated macrophages (74). In addition, other

pro-inflammatory cytokines, including IL-2, IL-3, IL-7, interferon-g
(IFN-g) and tumor necrosis factor-a (TNF-a), also enforce the

glucose metabolism and lactate production (71–73). These

observations are in line with a previous study showing that lactate

production in sepsis may be attributed more to inflammation rather

than serving solely as a marker of tissue hypoxia (75).

It is noteworthy that enhanced lactate production in response to

infection is a ubiquitous phenomenon and can occur in nearly all

cells during sepsis. Early T cell activation (minutes to hours)

increases aerobic glycolysis and diverts pyruvate to lactate

production in a T cell receptor (TCR)-dependent mechanism

(76). Neutrophils exhibit high glycolytic activity with limited

mitochondrial respiration (77, 78). It is reported that human
Frontiers in Immunology 04
neutrophils can secrete lactic acid via a monocarboxylate

transporter (79). In a murine model of acute inflammation, it is

further illustrated that nicotinamide adenine dinucleotide

phosphate (NADPH) oxidase (NOX)/reactive oxygen species

(ROS)-mediated HIF-1a activation is required for lactate

production in activated neutrophils (80). While activated immune

cells are recognized as a primary source of lactate production during

sepsis, the condition also induces upregulation of glycolysis and

lactate production in numerous other cells and tissues. Endothelial

cells (ECs) constitute the inner cellular lining of the blood vessels

(81). Emerging evidence indicates that activated ECs rely heavily on

glycolysis rather than on OXPHOS for ATP production during

immune responses due to the low mitochondrial content, which

consequently enhance lactate accumulation (82–85).
3.2 Impaired catabolism of lactate

If a large amount of lactic acid accumulates in the body, lactic

acidosis will ensue (86). In response, efficient mechanisms are

required for its clearance. The homeostasis of lactate is primarily

maintained through its catabolism, which involves the conversion of

lactate into pyruvate through the lactate dehydrogenase B (LDHB)

enzyme (87). Pyruvate then enters the TCA cycle in mitochondria

for further oxidation and energy production through pyruvate

dehydrogenase (PDH), contributing to irreversible lactate removal

(88). In severe sepsis, mitochondrial dysfunction (16, 89) and

pyruvate dehydrogenase dysregulation (90–93) decrease OXPHOS,

which interferes with the TCA cycle. This, in turn, accelerates lactate

accumulation in sepsis. Intriguingly, emerging evidence from both

clinical and pre-clinical studies indicates the activity of PDH is

decreased in sepsis (90, 94, 95). It is reported that PDH activity

and quantity are significantly lower in the peripheral blood
FIGURE 1

Major pathophysiological mechanisms of hyperlactatemia in sepsis/septic shock. The diagram illustrates the complex interplay between the immune
response, tissue hypoxia, and metabolic alterations during sepsis and septic shock. Activation of immune cells leads to increased cytokine
production, which along with epinephrine stimulation, enhances glycolysis and stabilizes hypoxia-inducible factor 1-alpha (HIF1a), resulting in
increased lactate production. Tissue hypoxia due to microvascular injury further exacerbates lactate production. Concurrently, the Cori cycle in the
liver and kidneys converts lactate back to glucose, but this process is often impaired in sepsis due to organ dysfunction, leading to decreased lactate
catabolism and contributing to hyperlactatemia. This condition is further complicated by mitochondrial dysfunction, which impairs the conversion of
pyruvate into the tricarboxylic acid (TCA) cycle intermediates, exacerbating lactate accumulation. Hyperlactatemia serves as both a marker of
metabolic distress and a target for therapeutic intervention in sepsis management. Red colored arrows indicate activated events, while blue colored
arrows indicate suppressed events, following sepsis/septic shock.
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mononuclear cells of patients with sepsis than the control group (90).

Further analysis showed that the level of PDH activity is lower in

sepsis non-survivors when compared to survivors (90). Importantly,

an inverse association between baseline lactate levels and PDH

activity in these patients, suggesting that PDH dysregulation

contributes to enhanced lactate levels in sepsis (90). In a rat model

of sepsis, induced by intraperitoneal inoculation of Escherichia coli

and Bacteroides fragilis, active form of PDH is decreased by 70% in

skeletal muscle (94). A recent study also reports that decreased

PDH activity in endothelial cells leads to lactate production and

endothelial injuries in LPS-induced sepsis (95). Mechanistically,

sepsis stimulates the activation of pyruvate dehydrogenase kinase

(PDHK), which negatively regulates PDH activation via inhibitory

phosphorylation (96).

In addition, excess lactate can be resolved via the Cori cycle or

lactic acid cycle (97). Circulating lactate shuttles to the liver, where

it is reutilized by hepatocytes through gluconeogenesis to form

glucose again (97). Also, it can be oxidized and removed by different

tissues or secreted into the urine via the kidneys. However, we must

acknowledge that the phenomenon of hepatic and renal dysfunction

is not uncommon in severe sepsis and septic shock, which could

potentially contribute to hyperlactatemia in sepsis. This notion is

supported by the observation that higher lactate levels correlate with

higher Sequential Organ Failure Assessment (SOFA) and quick

SOFA (qSOFA) scores (98, 99). Other conditions, such as

peripheral shunting (36) and heightened adrenergic stimulation

(37) can also cause hyperlactatemia, but their prevalence and

clinical significance in sepsis patients remain unclear.
4 Lactate regulates immune cell
function in sepsis

In sepsis, lactate plays a pivotal role in regulating immune cell

functions and metabolic processes (Figures 2–4). This regulation

occurs through multiple mechanisms. Lactate interacts with

immune cells via specific receptors and transport mechanisms.

Primarily, lactate transport across cell membranes depends on

monocarboxylate transporters (MCTs), particularly MCT1 and

MCT4 (21, 100). MCT belongs to the solute carrier 16 (SLC16)

family (101). MCT1, encoded by the SLC16A1 gene, primarily

facilitates the uptake of lactate into cells, including liver cells for

gluconeogenesis (102–104). MCT4, found in glycolytically active

cells, predominantly manages the export of lactate, crucial for

maintaining high rates of glycolysis, and its expression is

upregulated via the myeloid differentiation primary response 88

(MYD88)/nuclear factor kappa-light-chain-enhancer of activated B

cells (NF-kB) pathway (105, 106). Moreover, sodium-conjugated

lactate can be transported by SLC5A8 and SLC5A12 (107). Indeed,

the unique effects on CD8+ and CD4+ T cells are determined by the

distinct expression of MCT1 and SCL5A12, respectively (108).

The main receptor for lactate is the GPR81, also known as

hydroxycarboxylic acid receptor 1 (HCAR1), which plays a

significant role in mediating lactate’s effects on energy and lipid

metabolism, neuron protection, and inflammation (105, 109–118). In

critical illnesses, such as sepsis and cancer, where immune
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dysregulation is prevalent, understanding the lactate mediated

signaling is essential (20, 98, 119–121). Accumulating clinical and

pre-clinical evidence has suggested that lactate is a potent modulator

of immune responses by influencing both the activity and the

metabolic regulation of immune cells (122). A prospective cohort

study in septic shock patients found that changes in lymphocytic

mitochondrial metabolism correlate with post-resuscitation arterial

lactate levels but not with hypoperfusion status (123). Additionally,

lactate regulates immune cell function through post-translational

modifications such as lactylation, acetylation and phosphorylation,

alter the activities of enzymes and the functions of various proteins

(21, 23, 124). In sepsis-associated lung injury, histone lactylation-

regulated methyltransferase-like 3 (METTL3) promotes ferroptosis

(125). This complex interplay highlights the importance of lactate in

immune regulation during sepsis, underscoring its potential as a

target for therapeutic intervention.
4.1 Lymphocytes

The impact of sepsis and septic shock on T and B lymphocytes

has been reported previously (126–129). Davie et al. (126) found that

lower immunoglobulin G1 (IgG1), IgM, IgA in B cells and disrupted

T cell ratios at Intensive Care Unit (ICU) admission signaled poor

outcomes, while sepsis brings fluctuating immunoglobulin levels and

worsening B/T cell changes. In addition, septic shock further depletes

B cell IgM and alters T cell markers, with post-mortem findings of

reduced lymphoid structure and T cell function, revealing profound

immune suppression (126). However, understanding the origins and

progression of lymphopenia remains a significant knowledge gap in

the immunology of pre-sepsis and sepsis (130). It is intriguing that a

growing corpus of evidence underscores the significance of lactate in

this context.

T cells encompass various subsets, and distinct T cell subsets

have different metabolic characteristics. Our discussion focuses on

effector T cells, specifically CD4+ and CD8+ T cells, along with

regulatory T (Treg) cells. In sepsis, all effector T cells except Treg

cells decline (127), coupled with studies suggesting T lymphocyte

exhaustion as a central aspect of the septic immunosuppressive

effects (128, 129).

At the cellular level, lactate impacts the function and quantity of

effector T cells. It inhibits glycolysis and restricts effector T cell

proliferation through redox changes and reductive stress,

independent of acidity (131–133). Recent research has shown that

lactic acid undermines T cell function by weakening the T cell redox

system through a reduction in oxidant and antioxidant molecule

production (134). Additionally, lactic acid will accumulate and

inhibit the differentiation of T cells in vitro (132). However, this

effect appears to be pH-dependent, as normalizing the pH levels

restores T cell function (131).

In sepsis, elevated expression of programmed cell death protein-

1 (PD-1) or its ligand PD-L1 impairs T cell function, increasing

mortality (135, 136). Targeting these molecules has shown promise

in mitigating sepsis-induced immunosuppression by improving T

cell efficacy (137, 138). Cellular signaling pathway studies revealed

that lactate’s role extends to promoting PD-1 expression via nuclear
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factor of activated T cells1 (NFAT1) translocation by GPR81

signaling (139), then inducing effector T cell apoptosis and

impairing cytotoxicity (140, 141). Elevated PD-1 and higher PD-

L1 on antigen-presenting cells mark immune suppression beyond T

cells, making lactate/lactate-associated signaling a valuable target.

Recent research supports that lactate can induce a polarization of

the effector phenotype of CD4+ T cells, which can lead to more IL-

17 and IL-2 production (108, 142), and of CD8+ T cells, resulting in

increased IFN-g production (142). This increase is dependent on

the activation of CD3/T cell receptor (TCR) signaling.

At the metabolic level, lactate can serve as an alternative carbon

source for T cells, supporting its metabolism, and fostering

polarization and activation (143, 144). Interestingly, lactate

stimulates the mitochondrial electron transport chain without

being metabolized, which boosts naive T cell proliferation and then
Frontiers in Immunology 06
their effector capabilities (145). In addition, lactate can induce

metabolic reprogramming of T cells by enhancing fatty acid

synthesis. This is mediated by nuclear PKM2/signal transducer and

activator of transcription 3 (STAT3) signaling (146). High lactate can

also mediate pyruvate shunt by affecting pyruvate carboxylase activity

in CD8+ T cells, which in turn contributes to their decreased

cytotoxicity (147). Moreover, lactate is reported to promote

memory phenotype differentiation in CD8+ T cells by interfering

with mitochondrial pyruvate metabolism (148) and supports TCA

cycle anaplerosis in effector T cells (143). Interestingly, HIF-1a-
induced mitochondrial metabolic reprogramming may be

responsible for persistent infection-associated T cell exhaustion

(149). However, the significance of lactate in relation to this

mechanism requires thorough evaluation. Notably, immune cells

undergo metabolic changes during both the hyperinflammatory
FIGURE 2

Lactate regulates lymphocyte function. (A) Lactate regulates CD4+ T cell function by the following mechanisms: inhibiting glycolysis and thus
migration, disrupting the balance between NAD+ and NADH, mediating an increase in STAT3 phosphorylation by affecting PKM2 nuclear
translocation and facilitating fatty acid synthesis, thereby increasing IL-17 production, and regulating gene expression by lactylation of Ikzf1, which
facilitates differentiation to Th17 cells. (B) Lactate modulates CD8+ T cells by mechanisms such as, inhibiting glycolysis and thus migration, disrupting
the balance between NAD+ and NADH, affecting pyruvate metabolism and thus reducing cytotoxicity, inhibiting histone deacetylase (HDAC) and
thus promoting acetylation of histone H3K27 and thus increasing anti-tumor immunity, and its inhibition of the glycolytic enzyme GAPDH
contributes to the production of IFN-g, but appears to inhibit TCR-mediated IFN-g production. (C) For Treg cells, in addition to limiting glycolysis,
lactate binding to GPR81 enhances their infiltrative capacity, it improves PD1 expression by increasing the NAFT1 nuclear translocation mechanism,
and it mediates high CTLA4 expression by up-regulating Foxp3, and lactate also promotes the lactylation of MOESIN to improve Treg function.
(D) Lactate acts on B cells by the following mechanisms: promotion of germinal center function, inhibition of glycolysis, promotion of proliferation
through increased ANG expression or positive feedback through miR-223-mediated lactate production, and lactate mediates the acetylation of
histone H3K27 and thus promotes IgG class switching. Red colored arrows indicate activated events, while blue colored arrows indicate suppressed
events, by lactate during sepsis/septic shock.
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FIGURE 3

Lactate regulates macrophage function. In macrophages, lactate inhibits glycolysis, and its binding to GPR81 inhibits TLR-mediated pro-
inflammatory responses via NF-kB, and it promotes Arg-1 and Vegf-a gene expression via up-regulation of HIF-1a, and the elevation of Arg-1
promotes histone lactylation, and lactate maintains its anti-inflammatory function via inhibition of HDAC and promotion of histone acetylation via
TCA cycling. In addition, lactate can maintain anti-inflammatory function by inhibiting HDAC and promoting TCA cycle to promote histone
acetylation, whereas for non-histone proteins, such as HMGB1, lactate can mediate lactylation and acetylation through b-arrestin2 promotion of
p300/CBP and LATS/YAP-mediated inhibition of SIRT1.
FIGURE 4

Lactate regulates NK cell, dendritic cell and neutrophil function. In NK cells, lactate inhibits glycolysis, suppresses mitochondrial function, inhibits the
expression of NFAT and NKp46, promotes apoptosis and attenuates their ability to secrete inflammatory factors; whereas, for NK-T cells, the
increase in histone lactylation promotes the expression of Foxp3. In dendritic cells, lactate inhibited glycolysis, inhibited CCR-7 and thus migration,
lactate inhibited MHC II function through GPR81 signaling, and in addition GPR81-mediated Ca2+ mobilization inhibited IFN-a secretion. In
mesangial cells, lactate maintains their immune function and promotes their NET formation.
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and immunotolerant stages of sepsis, highlighting the significance of

lactate in these processes.

At the epigenetic level, lactate-induced lactylation plays a

crucial role in CD4+ T cell differentiation. Specifically, high

lactylation on the transcription factor Ikzf1 enhances T helper

type 17 (Th17) cell differentiation by directly influencing the

expression of Th17-related genes, such as Runx1, Tlr4, IL-2, and

IL-4 (150). Lactate can suppress histone deacetylase activity which

results in increased acetylation of Tcf7 (56) then can enhance the

function of anti-tumor immune (151) and stemness of CD8+ T cells

(152). Understanding these epigenetic mechanisms could provide

insights into new therapeutic strategies for modulating immune

responses in sepsis.

Regulatory T (Treg) cells play a vital role in the pathogenesis of

critical illness, including sepsis and cancer, through their

immunosuppressive functions (153, 154). Treg cells persistently

increase during the late phase of sepsis (155), which contributes to

the impaired immune responses in sepsis. A key aspect of their

immunosuppressive role is that Treg cells can thrive in high lactate

conditions without losing proliferative or functional capacity (156,

157). Mechanistic studies revealed that lactate mitigates the harmful

effects of high glucose on Treg cells (158). In addition, lactate is

reported to promote the transformation of naive T cells into Treg

cells by activating NF-kB signaling and upregulates Foxp3, which

supports the expansion of Treg cell populations and suppresses T

cell pathogenicity (159, 160). In tumor microenvironment, lactate

bolsters Treg cell stability and function by promoting MOESIN

lactylation (161). A recent study has shown that lactate treatment

enhances MOESIN lactylation, which boosts its interaction with TGF-

b receptor I, and lactate also activates downstream TGF-b signaling

through SMAD3 phosphorylation, leading to enhanced differentiation

of Treg cells (161). I believe that this partly explains the mechanisms of

combining anti-PD-1 with reduced lactate production by LDH

inhibitor is more effective than anti-PD-1 alone (161). Since cancers

and sepsis share similar immunosuppressive profiles, suppressed

lactate production, which reduces Treg cell induction, is noteworthy.

Cytotoxic T lymphocyte antigen 4 (CTLA-4) is a crucial immune

checkpoint receptor that inhibits the activation and proliferation of T

cell in sepsis (162, 163). Pre-clinical studies demonstrated that

treatment with anti-CTLA-4 antibody maintains effector T cell

function and improves sepsis survival outcomes (162, 164). Notably,

lactate enhances the expression of CTLA-4 in tumor-infiltrating Treg

cells via altering RNA splicing (165). It is intriguing to investigate

whether lactate modulates CTLA-4 expression in Treg cells, potentially

impairing immune responses in sepsis.

Sepsis is associated with significant B cells depletion due to

apoptosis (166). An observational study revealed that the depletion

of memory B cell populations played a role in sepsis-induced

immunosuppression (167). B cells not only contribute to antibody

production, but crucially enhance cytokine responses and bacterial

clearance via communications with other immune cells, such as

macrophages (168–171). Therefore, the decline in B cell numbers

and impaired B cell function are considered as a prognostic

biomarker for sepsis deterioration (171–174). Particularly, innate

response activator (IRA) B cells are key in regulating inflammatory

responses and managing sepsis outcomes, with their dysfunction
Frontiers in Immunology 08
linked to increased mortality, marking them and their produced

IL-23 as potential targets for therapy (175, 176). Also, in sepsis,

macrophage inflammation is intensified and lipolysis in adipose

tissue is hindered due to the age-associated accumulation of B cells

(170). However, compared to T cells, our understanding of the

regulatory effects of lactate on B cells is relatively limited. B cells

generate antibodies through germinal center (GC) and

extrafollicular reactions (177). A recent study indicates that

LDHA knockout in B cells hinders GC formation and antibody

responses (178). And high lactate ensuring pyruvate for H3K27

acetylation, crucial for IgG class-switching (179).

Beyond direct evidence, the sophisticated mechanisms of lactate

metabolism in lymphoma research may provide new insights for

sepsis research. Increased levels of LDH are correlated with a higher

mortality rate in B cell lymphoma patients (180, 181). Serum LDH is

a key marker for aggressive non-Hodgkin lymphoma and is one of

the factors listed in the International Prognostic index (182, 183).

Moreover, lactic acid promotes B cell proliferation (184, 185), either

by cleavage of mature tRNA at the anticodon loop via enhanced

angiogenin (ANG) expression (186), or by inducing miR-223

expression to target Fbw7 (187). Additionally, blocking MCT

exposes the therapeutic potential for virus-induced lymphomas (188).
4.2 Macrophages

Macrophages are widely distributed and present in almost all

tissues and organs performing various functions, primarily

maintaining internal environmental balance and resisting the

invasion of pathogens (189). The unique characteristic of

macrophages is their ability to polarize into different phenotypes,

such as the M1-like macrophages and M2-like macrophages, in

different microenvironments (190). M1 macrophages exhibit a pro-

inflammatory phenotype, which can release various inflammatory

cytokines and promote the inflammatory response. In contrast, M2

macrophages display an anti-inflammatory phenotype capable of

producing an anti-inflammatory response and repairing damaged

tissues (191). In sepsis-induced immunosuppression, macrophages

exhibit altered cytokine secretion with decreased levels of TNF-a,
IL-1b, and IL-12, and increased levels of TGF-b, IL-10, and
macrophage migration inhibitory factor (MIF) (192). In addition,

antigen presentation is reduced in the immunosuppressive stage of

sepsis, as evidenced by lower human leukocyte antigen-DR isotype

(HLA-DR) expression and decreased antigen uptake (192).

Substantial evidence has demonstrated that lactate exerts

several inhibitory effects on pro-inflammatory (M1) macrophages,

including hindering their migration, glycolysis, inflammasome

assembly, and chemokine and cytokine secretion (122).

Activation of TLRs stimulates the production of pro-

inflammation cytokines and induces the polarization of

macrophages towards M1 phenotype. Notably, we and others

have shown that lactic acid reduces LPS-induced production of

pro-inflammatory cytokines in macrophages (193) and promotes

macrophage polarization into M2 macrophages (194). Indeed, it is

found that lactic acid promotes the transcription of genes associated

with M2 macrophage polarization, a process reliant on MCT
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function, HIF-1a activation, and induction of inducible cyclic

adenosine monophosphate (cAMP) early repressor (ICER) (195–

198). Our recent study also revealed that lactic acid suppresses NF-

kB p65 nuclear translocation, a typical inflammatory signal (23,

194), via GPR81 signaling in macrophages (23, 80, 199).

Additionally, lactate disrupts the assembly of TLR-4-mediated

NLR family pyrin domain containing 3 (NLRP3) inflammasome

and IL-1b secretion in a GPR81-dependent mechanism in

macrophages (113). Given that lactate preferably promotes M2

macrophage polarization and inhibits M1 polarization, it is

hypothesized that in sepsis, elevated lactate levels could worsen

the immunosuppressive state by driving macrophages toward an

anti-inflammatory M2 phenotype. This shift may further impair

pathogen clearance and weaken pro-inflammatory responses,

exacerbating sepsis-induced immunosuppression. Further

investigation into targeting lactate metabolism in macrophages

could offer therapeutic potential in sepsis.

Lactate can also regulate the function of macrophages by

serving as a critical mediator in the metabolic-epigenetic link (57,

200, 201). Previous studies indicate that lactate is a primary carbon

source for histone acetylation, significantly influencing epigenetic

modifications (202–204). Shi and colleagues recently discovered

that lactate fuels histone H3K27 acetylation, enabling the expression

of immunosuppressive genes like Nr4a1, thus transcriptionally

repressing macrophage pro-inflammatory functions (204). This

histone acetylation leads to LPS tolerance and results in long-

term immunosuppression. In addition, lactate-induced lactylation

of histone H3 lysine 18 residue (H3K18la) is found to increase the

production of inflammatory cytokines such as IL-2, IL-5, IL-6, IL-8,

IL-10, IL-17, IFN-a, and arginine (Arg) in patients, thereby

accelerating the development of an anti-inflammatory response of

macrophages in sepsis (205). As lactyl and acetyl groups both stem

from glucose metabolism and share regulatory enzymes, there

might be a dynamic equilibrium between histone lactylation and

acetylation (206). However, the exact nature of this equilibrium is

not fully understood. Of note, H3K18la levels correlate with SOFA

scores, ICU stay time, and lactate levels, suggesting that H3K18la is

a potential biomarker for the diagnosis and prognosis of septic

shock (205). However, additional clinically relevant data are still

required to substantiate this. Histone lactylation also aligns with

inflammatory markers in sepsis, as confirmed by other studies

(205, 207).

Lactate-induced non-histone lactylation modifications also have

inevitable impacts on macrophage functions in sepsis. High mobility

group box 1 (HMGB1) is a non-histone DNA binding protein, which

can be released into extracellular environment and as a late mediator

of endotoxin lethality in sepsis (208–210). As a DAMP, extracellular

HMGB1 is tightly associated with several types of cell death in sepsis,

including apoptosis, autophagy, pyroptosis, and ferroptosis, which

can deeply influence macrophage function (209, 211–217). Our

recent study demonstrated a novel role of lactate in promoting

HMGB1 lactylation and acetylation within macrophages, leading to

consequent release of HMGB1 via exosome secretion in

polymicrobial sepsis (21). It is also reported that the lactylation of

PKM2 critically hampers glycolysis and shifts macrophages towards a

repair-oriented phenotype (218). This change is marked by an
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increased expression of Arg-1, which supports wound healing, thus

highlighting PKM2 as a pivotal regulator of macrophage metabolic

adaptations (218). The role of lactate in promoting phosphorylation

is also important. We have demonstrated that lactate reduces TNF-a
and IL-6 levels in LPS-stimulated macrophages by inhibiting NF-kB
and yes-associated protein (YAP) activation (23). Mechanistically,

lactate triggers the activation of AMPK and LATS1 in a GPR81-

dependent manner, leading to YAP phosphorylation and its

subsequent degradation (23).

While the previous discussion highlights lactate’s inhibitory

effects on macrophage activation, it is also important to recognize

that lactate paradoxically exerts pro-inflammatory effects. It is

reported that lactic acid triggers the production of IL-23 in

peripheral blood mononuclear cells (PMBCs) in the presence of

LPS stimulation, which may subsequently stimulate lymphocyte

activation (219). Similarly, Samuvel et al. found that lactate activates

myeloid differentiation factor 2 (MD2), a co-receptor for TLR4,

which intensifies the TLR4-mediated pro-inflammatory response

and increases NF-kB pathway-dependent gene transcription in

human macrophages (220). Mechanistic study further revealed

that the lactate-enhanced TLR4 signaling activation is mediated

by lactate transporter MCT (220). Furthermore, studies emphasize

that lactate can fuel a specialized glycolytic process in macrophages,

reliant on the enzyme PFKFB2, which, when activated by

efferocytosis, continuously supports further efferocytosis (221).

Therefore, further refined experiments are necessary to clarify

this discrepancy.
4.3 NK cells

Natural killer (NK) cells are effector lymphocytes of the innate

immune system. They are uniquely primed for rapid and non-

specific innate immune response against infections, without the

need of antigen-presenting cells or prior exposure to pathogens

(222, 223). As the primary innate lymphocyte population, NK cells

are pivotal in orchestrating early responses to bacterial infections.

Although they bolster the antimicrobial functions of myeloid cells,

especially macrophages, by producing interferon-g (IFN-g) (222), a
large number of animal experiments and human-related studies

have confirmed the deleterious effects of overwhelming activation of

NK cells in acute sepsis (224–227). It is noteworthy that sepsis

rapidly induces phenotypic alterations and extensive cellular

apoptosis in various types of immune cells, including NK cells,

leading to profound immune paralysis (228–232). Single-cell RNA

sequencing revealed downregulation of cytotoxic genes in NK cells

among late-stage sepsis patients, possibly tied to recurring severe

infections (233). Jensen et al. discovered that a reduction in NK cells

correlates with a worse sepsis prognosis (234), which is consistent

with a previous study by Giamarellos-Bourboulis et al. showing that

severe Gram-negative sepsis patients with increased NK cells

survived longer that those patients with relatively lower NK

cells (235).

Accumulating evidence indicates that high levels of lactate

contribute to impaired function and decreased numbers of NK

cells in both inflammatory diseases (236) and cancers (237–241).
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Using a murine cytomegalovirus (MCMV) model of infection,

Dodard et al. found that lactate, independent of acidification,

preferentially induces cellular apoptosis of tissue resident NK

(trNK) cells when compared with conventional NK (cNK) cells in

the liver (236). In addition, mechanistic studies revealed that

mitochondrial fitness is impaired in trNK cells in comparison to

cNK cells, which intensifies the cytotoxicity of lactate to trNK cells

(236). In agreement, lactate-induced apoptosis of NK cells via

enhancing mitochondrial stress is observed in colorectal liver

metastasis (CRLM) tumors (237). Moreover, lactate is reported to

decrease nuclear factor of activated T cells (NFAT), impairing

NFAT-dependent IL-2, which is necessary for NK cell function

(238, 242, 243). This deters NK cell activation and reduces IFN-g,
hindering immune surveillance in cancers (238). Downregulation of

MCT4, a lactate transporter, restore the function of NK cells and the

expression of cytokines (239). Lactate damages NK cell cytolytic

function (240) via the SIX1/LDHA axis (241). Notably, this study

found that in the lactate-rich malignant pleural fluid, forkhead box

P3 (Foxp3)+ NKT-like cells showed increased histone lactylation at

the Foxp3 promoter site, reduced by the lactate transporter

inhibitor 7ACC2 (244). The above studies of lactate-NK cell

associations have primarily concentrated on cancers, it may not

be directly applicable to sepsis. However, given the versatile nature

of protein and lactate localization within cells, these mechanisms

should not be disregarded.
4.4 Dendritic cells

As a pivotal antigen-presenting cell (245), dendritic cells (DC) rely

on elevated glycolysis for activation, leading to substantial lactic acid

production (246). They express high levels of GPR81, enabling lactate

to bind and subsequently suppress MHC-II expression (247) and

impacting their maturation and differentiation (248–250). Consistent

with this, dendritic cells increasingly show immunological tolerance

towards pathogens in sepsis with elevated levels of lactate (251). Lactate

downregulates C-C chemokine type 7 (CCR-7) (252), a migration

molecule, and CD11c, a DC marker (253). Furthermore, lactate can

hinder DC functionality by promoting Ca2+ mobilization to regulate

IFN-a expression and reducing the levels of cAMP, IL-6, IL-12, and

type I IFN in a GPR81-dependent mechanism (254). It is reported that

DCs are a major source of IL-10 in infectious disease (255). IL-10

expression defines an immunosuppressive DC population (256–259).

DCs exposed to high lactate environment express more IL-10 (260–

263), suggesting that lactate induces an immunosuppressive phenotype

of DCs. Interestingly, genetic depletion of lactate receptor GPR81 not

only suppresses IL-10 production in DCs but also boosts the

production of pro-inflammatory cytokines (IL-6, IL-1b and IL-12) in

DCs, which protects against experimental colitis (264).

Beyond GPR81-dependent mechanisms, lactate influences DC

function by altering antigen presentation and cross-priming of CD8

+ T cells (265). Consistent with this, dysfunctional dendritic cells

reduce T cell activation, emphasizing its role in sepsis-associated

immune paralysis (251). In addition, lactate inhibits the

polarization of monocytes into DCs (250, 266). Moreover, it has

been shown that lactate reprograms the metabolism of DCs,
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resulting in reduced glycolysis and increased fatty acid oxidation

(FAO) (193, 267). These may be important reasons for the decrease

in the number of DCs in sepsis with elevated lactate levels. DC

function in sepsis patients is closely linked to their specific

microenvironment (268). It has been shown that preventing

apoptosis in dendritic cells during sepsis have the potential to

improve survival (269). With the advancement of DC-related

sepsis clinical trials, exploring lactate could be worthwhile. These

multifaceted roles of lactate underscore its significant impact on

DCs in sepsis.
4.5 Neutrophils

Neutrophils are one of most important components of cellular

innate immunity (270) and they make up the majority of bone

marrow-derived white blood cells (271). They are the first cells to

reach sites of infection and provide initial support before adaptive

immune responses activate (272). Neutrophil dysregulation in sepsis

at the early stage involves not only an increase in immature/

nonfunctional neutrophils in the blood but also exacerbates sepsis

pathology through free radical oxygen production (273). These

functions are dependent on glycolysis (78, 274). The most notable

characteristic of neutrophils is their phagocytic function, for which

lactate can supply the required ATP. It is possible lactate may also

enhance this function via PI3K/Akt signaling (275). Also, treatment

with both endogenous and exogenous lactate enhances the ability of

neutrophils to form neutrophil extracellular traps (NETs) (276). Wen

et al. reviewed the possible mechanisms of NET contribution to sepsis

and noted that similar extracellular traps may exist for macrophages,

dendritic cells, mast cells, eosinophils, and basophils (277). Also,

lactate buildup in sepsis can reduce neutrophil apoptosis by

modulating the MCT1/PD-L1 pathway (278).

In terms of cell migration, lactate promotes expression of

CXCL1 and CXCL2, which are neutrophil mobilizers, and

increases bone marrow vascular permeability by GRP81 signaling

to help neutrophil migration (80). Chowdhury et al. revealed

different mechanisms of how lactate promotes neutrophil

migration and worsen vascular injury by AKT/HIF-1a/LDHA

signaling (270).

Some clinical research indicates that L-lactate level in sputumwas

positively correlated with neutrophil count (279–281), making lactate

a potential biomarker of lung inflammation. Furthermore, the

relationship between neutrophil count and concentration of plasma

lactate, neutrophil-to-lymphocyte ratio, and the concentration of

plasma lactate can predict the outcomes in patients with sepsis

(282–284).
5 The promise of targeting lactate
metabolism and lactate-
associated signaling

Currently, the lack of effective treatments leaves a critical gap in

the management of sepsis/septic shock. As discussed above, it has
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become clear that lactate is not merely a byproduct of anerobic

metabolism but is also extensively involved in modulating immune

responses in sepsis. This insight paves the way for new therapeutic

avenues by targeting lactate metabolism and lactate-associated

signaling pathway in sepsis.

Direct inhibition of lactate production has been evaluated in

clinical trials, especially in the field of cancer. This approach

specifically targets metabolic pathways involved in lactate

synthesis, with a primary focus on LDH, a key enzyme in this

process. Gossypol (AT-101), a potent LDHA inhibitor, has been

evaluated in treating various types of cancers in Phase I, Phase II

and single arm and randomized trials (285, 286). Within these trials,

a modest benefit was observed both in monotherapy and in

combination with chemoradiation therapies (285, 287–290). In

addition, CHK-336, a first-in-class orally active LDHA inhibitor,

has been assessed for its tolerability, safety, and pharmacokinetic

(PK) profile in healthy volunteers (Phase I, NCT05367661, Chinook

Therapeutics Inc.). However, no clinical trials have been conducted

to evaluate the safety, tolerance, and efficacy of LDHA inhibitors in

sepsis/septic shock. Given that lactate is ubiquitously produced by

nearly all cells, suppressing LDHA could lead to unpredictable and

potentially adverse effects in sepsis. In contrast to the direct

suppression of lactate production, enhancing lactate clearance, via

hemofiltration and renal replacement therapy, offers a more

balanced approach to manage elevated lactate levels, particularly

in conditions like sepsis where systemic metabolic demands are

heightened (291–294).

This review highlights several classic signaling pathways

targeted by lactate that have long been the focus of basic and

clinical research, leading to the development of potential therapies

such as HMGB1 inhibitors, MIF inhibitors, MAPK inhibitors, NF-

kB inhibitors, Sirtuin-1 activators, and antioxidants. Among these

targets are also membrane receptors, such as the TLR4 antagonist

TAK-242 (295), GPR81 agonist 3,5-DHBA and antagonist 3-OBA

(21, 23, 54), and MCT antagonist (100). And drugs targeting NETs

with therapeutic potential for sepsis, such as small polyanions, are

also being evaluated in sepsis-related clinical trials (Phase II,

NCT06548854, Grand Medical Pty Ltd). Additionally, the

observation that lactate elevates the expression of PD-1 and

CTLA-4 in Treg cells may provide insights into whether lactate

should be measured in clinical trials of immune checkpoint

inhibitors for sepsis. However, the potential benefits of targeting

these lactate-associated pathways could be compromised by the

systemic nature of sepsis/septic shock.

It is noteworthy that cellular therapies using mesenchymal stem

cells (MSCs) have been initiated in clinical trials for sepsis (296, 297).

It is worth considering whether cell transfer of genetic modified

immune cells (targeting MCTs, GPR81 or lactate-associated

signaling) could overcome lactate-induced immunosuppression

(298–300). We and others have reported that MCT-mediated

lactate uptake and lactate/GPR81-dependent signaling are

potentially involved in regulating immune cell responses in murine

polymicrobial sepsis (21, 23, 80). Additionally, preclinical studies

have demonstrated that the lactate/GPR81 axis plays a significant role
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in promoting cancer cachexia. This finding is further supported by

clinical observations in lung cancer patients, where elevated serum

lactate levels correlate with disease progression (301). Persistent

inflammation, immunosuppression, and catabolism syndrome

(PICS) can develop in patients who survive initial sepsis (302).

Further research is needed to determine if lactate drives PICS

similarly to cancer cachexia and if this can be confirmed in the

context of sepsis/septic shock.
6 Conclusion

Lactate, initially deemed a metabolic waste, has emerged as a key

player in regulating immune cells and inflammation. The role of

lactate has been particularly scrutinized in the context of sepsis, where

it serves as a crucial biomarker for monitoring patient status. Despite

extensive research, the specific effects of lactic acid on different

immune cells, such as B lymphocytes, remain unclear, highlighting

a gap in our understanding of its broader impacts on the immune

system. However, lactate-guided resuscitation leaves much to be

desired. Understanding lactate as part of a complex metabolic

network, closely linked to various immune cell responses in sepsis,

shifts the focus away from viewing it solely as a therapeutic target.

The mechanisms through which lactic acid influences receptors

like GPR81 and GPR132 are also not thoroughly understood,

highlighting a need for further investigation to pinpoint its precise

roles and regulatory mechanisms in immune function. In sepsis, the

relationship of lactate with immunosuppression is of significant

interest, with definitive mechanisms yet to be established. Better

understanding the influence of this molecule on immune cell

function in sepsis could greatly enhance the effectiveness of

immune-related clinical trials for this condition.
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152. Hermans D, Gautam S, Garcıá-Cañaveras JC, Gromer D, Mitra S, Spolski R,
et al. Lactate dehydrogenase inhibition synergizes with IL-21 to promote CD8(+) T cell
stemness and antitumor immunity. Proc Natl Acad Sci United States America. (2020)
117:6047–55. doi: 10.1073/pnas.1920413117

153. Gerriets VA, Kishton RJ, Johnson MO, Cohen S, Siska PJ, Nichols AG, et al.
Foxp3 and Toll-like receptor signaling balance T(reg) cell anabolic metabolism for
suppression. Nat Immunol. (2016) 17:1459–66. doi: 10.1038/ni.3577

154. Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martıńez-
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156. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3
reprograms T cell metabolism to function in low-glucose, high-lactate environments.
Cell Metab. (2017) 25:1282–93.e7. doi: 10.1016/j.cmet.2016.12.018

157. Lacroix R, Rozeman EA, Kreutz M, Renner K, Blank CU. Targeting tumor-
associated acidity in cancer immunotherapy. Cancer immunology immunotherapy: CII.
(2018) 67:1331–48. doi: 10.1007/s00262-018-2195-z

158. Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM,
Grebinoski S, et al. Metabolic support of tumour-infiltrating regulatory T cells by
lactic acid. Nature. (2021) 591:645–51. doi: 10.1038/s41586-020-03045-2

159. Comito G, Iscaro A, Bacci M, Morandi A, Ippolito L, Parri M, et al. Lactate
modulates CD4(+) T-cell polarization and induces an immunosuppressive
environment, which sustains prostate carcinoma progression via TLR8/miR21 axis.
Oncogene. (2019) 38:3681–95. doi: 10.1038/s41388-019-0688-7

160. Lopez Krol A, Nehring HP, Krause FF, Wempe A, Raifer H, Nist A, et al.
Lactate induces metabolic and epigenetic reprogramming of pro-inflammatory Th17
cells. EMBO Rep. (2022) 23:e54685. doi: 10.15252/embr.202254685

161. Gu J, Zhou J, Chen Q, Xu X, Gao J, Li X, et al. Tumor metabolite lactate promotes
tumorigenesis by modulating MOESIN lactylation and enhancing TGF-b signaling in
regulatory T cells. Cell Rep. (2022) 39:110986. doi: 10.1016/j.celrep.2022.110986

162. Inoue S, Bo L, Bian J, Unsinger J, Chang K, Hotchkiss RS. Dose-dependent
effect of anti-CTLA-4 on survival in sepsis. Shock (Augusta Ga). (2011) 36:38–44.
doi: 10.1097/SHK.0b013e3182168cce

163. Mewes C, Buttner B, Hinz J, Alpert A, Popov AF, Ghadimi M, et al. CTLA-4
genetic variants predict survival in patients with sepsis. J Clin Med. (2019) 8(1):70.
doi: 10.3390/jcm8010070

164. Paterson CW, Fay KT, Chen CW, Klingensmith NJ, Gutierrez MB, Liang Z,
et al. CTLA-4 checkpoint inhibition improves sepsis survival in alcohol-exposed mice.
Immunohorizons. (2024) 8:74–88. doi: 10.4049/immunohorizons.2300060

165. Ding R, Yu X, Hu Z, Dong Y, Huang H, Zhang Y, et al. Lactate modulates RNA
splicing to promote CTLA-4 expression in tumor-infiltrating regulatory T cells.
Immunity. (2024) 57:528–40.e6. doi: 10.1016/j.immuni.2024.01.019
Frontiers in Immunology 15
166. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The
immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol.
(2017) 17:407–20. doi: 10.1038/nri.2017.36

167. Shankar-Hari M, Fear D, Lavender P, Mare T, Beale R, Swanson C, et al.
Activation-associated accelerated apoptosis of memory B cells in critically ill patients
with sepsis. Crit Care Med. (2017) 45:875–82. doi: 10.1097/CCM.0000000000002380

168. Zhang B, Vogelzang A, Miyajima M, Sugiura Y, Wu Y, Chamoto K, et al. B cell-
derived GABA elicits IL-10(+) macrophages to limit anti-tumour immunity. Nature.
(2021) 599:471–6. doi: 10.1038/s41586-021-04082-1

169. Suchanek O, Ferdinand JR, Tuong ZK, Wijeyesinghe S, Chandra A, Clauder
AK, et al. Tissue-resident B cells orchestrate macrophage polarisation and function.Nat
Commun. (2023) 14:7081. doi: 10.1038/s41467-023-42625-4

170. Carey A, Nguyen K, Kandikonda P, Kruglov V, Bradley C, Dahlquist KJV, et al.
Age-associated accumulation of B cells promotes macrophage inflammation and
inhibits lipolysis in adipose tissue during sepsis. Cell Rep. (2024) 43:113967.
doi: 10.1016/j.celrep.2024.113967

171. Kelly-Scumpia KM, Scumpia PO, Weinstein JS, Delano MJ, Cuenca AG,
Nacionales DC, et al. B cells enhance early innate immune responses during
bacterial sepsis. J Exp Med. (2011) 208:1673–82. doi: 10.1084/jem.20101715
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