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Introduction: The influenza virus is recognized as the primary cause of human

respiratory diseases, with the current influenza vaccine primarily offering strain-

specific immunity and limited protection against drifting strains. Considering this,

the development of a broad-spectrum influenza vaccine capable of inducing

effective immunity is considered the future direction in combating influenza.

Methods: The present study proposes a novel mRNA-based multi-epitope

influenza vaccine, which combines three conserved antigens derived from the

influenza A virus. The antigens consist of M2 ion channel’s extracellular domain

(M2e), the conserved epitope of located in HA2 of hemagglutinin (H1, H3, B), and

HA1 of hemagglutinin. At the same time, trimeric sequences and ferritin were

conjugated separately to investigate the immune effects of antigen

multivalent presentation.

Results: Immunization studies conducted on C57BL/6 mice with these vaccines

revealed that they can elicit both humoral immunity and CD4+ and CD8+ T cell

responses, which collectively contribute to enhancing cross-protective effects.

The virus challenge results showed that vaccinated groups had significantly

reduced lung damage, lower viral loads in the lungs, nasal turbinates, and

trachea, as well as decreased levels of pro-inflammatory cytokines.

Conclusion: These findings clearly demonstrate the wide range of protective

effects provided by these vaccines against H1N1 and B influenza viruses.
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The present finding highlights the potential of mRNA-based influenza vaccines

encoding conserved proteins as a promising strategy for eliciting broad-

spectrum protective humoral and cellular immunity against H1N1 and B

influenza viruses.
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1 Introduction

Influenza is an infectious viral disease caused by the influenza

virus, which poses a significant global health threat due to its high

morbidity and mortality rates (1). The World Health Organization

(WHO) reports an annual incidence of 3 to 5 million cases for this

disease, resulting in an approximate mortality rate of 10% (2).

Vaccination as a key and proven method for preventing influenza

infections among the population (3). However, the continuous

antigenic evolution and transmission of influenza viruses often

lead to a discrepancy between the annual influenza vaccines

recommended by the WHO and the circulating viral strains,

thereby compromising the efficacy of these vaccines in combating

infection (4–6). Therefore, it is crucial to develop a universal

influenza vaccine that can provide cross-protection against

various strains of the virus.

The development of universal influenza vaccines is currently

being consideration, with various strategies being explored. One

promising approach involves using a novel epitope-based platform

for vaccination against influenza viruses (7). Utilizing a single short

epitope may lead to limited vaccine efficacy, whereas an alternative

approach entails the amalgamation of multiple conserved epitopes

within a singular vaccine (8). This approach aims to enhance

protective immunity and prevent viruses from evading vaccine-

induced immunity. A study by Sang-Moo Kang et al. demonstrated

that a vaccine incorporating the HA2 and M2e genes effectively

protected adult and aged mice against different subtypes of

heterologous and heterosubtypic cross-group viruses at similar

levels (9, 10).

Epitope-based vaccines have been reported to elicit a weaker

immune response compared to conventional vaccines (11).

Therefore, current research is focused on developing strategies to

enhance the immunogenicity of epitope vaccines. One approach

involves incorporating heterotrimeric motifs into HA’s structure to

mimic its natural conformation and improve stability (12). Another

promising method is using nanoplatforms for delivering relevant

antigens, which shows potential in the development of new

influenza vaccines (13). For example, Zykova AA et al. developed

a recombinant protein containing tandem copies of M2e and HA2

fused with artificial self-assembled peptides, demonstrating its

ability to induce strong humoral and cellular immunity in mice
02
(14). Similarly, Qiao et al. combined the A helix (Ah) and CD helix

(CDh) from the H3N2 virus HA stem with ferritin for

immunization studies on mice, finding that formulations of CDh-

f and (A+CD) hf induced robust humoral and cellular immune

responses, providing protection against lethal infections caused by

the H3N2 virus (15). Additionally, Pan et al. designed MHNF

nanoparticles comprising the A a-helix of hemagglutinin (H), the

ectodomain of matrix protein 2 (M), and the HCA-2 of

neuraminidase (N), which were conjugated with self-assembling

recombinant human heavy chain ferritin cages. This vaccine was

found to stimulate high levels of antigen-specific antibodies and

cellular immune responses, offering protection against various

influenza viruses (16).

Nucleoside modified mRNA-LNP vaccines have emerged as an

attractive platform for controlling infectious diseases, especially

during the COVID-19 pandemic. These vaccines introduce

messenger RNA (mRNA) encoding antigenic proteins into the

host organism, leading to the production of corresponding

antigens and triggering specific immune responses (17).

Significantly, mRNA vaccines have played a crucial role in

effectively addressing the COVID-19 crisis. The Pfizer-BioNTech

(BNT162b2), Moderna (mRNA-1273), and CureVac vaccines,

developed using mRNA technology, represent an unprecedented

milestone in medical vaccine development (18–20). The mRNA

vaccines have not only been effective against COVID-19 but also

gained attention for their potential in other viral research areas. For

example, Zhuang et al. successfully developed an mRNA vaccine

against the H1N1 virus and tested it on mice in vivo. The study

showed that the mRNA vaccine effectively protected the mice from

influenza virus infection by inducing strong immune responses

(21). Additionally, Freyn et al. engineered a modified mRNA-LNP

vaccine incorporating HA stem, NA, M2e, and NP antigen proteins.

Subcutaneous immunization of mice with this vaccine elicited a

robust and broad immune response. Post-immunization serum

antibodies demonstrated efficacy against diverse influenza virus

strains, highlighting the potential of this nucleoside-modified

mRNA-LNP vaccine expressing multiple conserved antigens as a

promising candidate for a universal influenza virus vaccine (22).

The mRNA platform presents an appealing approach for

vaccine development, offering distinct advantages over

conventional platforms in terms of safety, expedited development
frontiersin.org
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process, robust immunogenicity, streamlined vaccine design, and

simplified manufacturing. In this study, we present the efficacy and

immunogenicity evaluation of a universal influenza mRNA vaccine

targeting conserved epitopes. Our findings demonstrate a potent

antigen-specific humoral and cellular immune response induced by

the vaccine, conferring protection against both H1N1 and B

subtypes of influenza viruses in mice models.
2 Materials and methods

2.1 Mice, cells, and viruses

Female C57BL/6 mice, aged 6 weeks, were procured from

BEIJING HFK BIOSCIENCE Co., Ltd. The HEK-293T cells and

PGEM-3Zf-n3 vector were maintained in our laboratory. HEK-

293T cells were cultured in Dulbecco’s modified Eagle’s medium

(DMEM) supplemented with 10% fetal bovine serum (FBS, Gibco)

and 100 units/mL penicillin-streptomycin. Our laboratory

possessed the following virus strains: A/Puerto/R/8/34(H1N1), A/

Jilin/JYT-01/2018(H1N1), B/Massachusetts/2/2012(Yamagata),
Frontiers in Immunology 03
and B/Jilin/02/2022(Victoria). All experiments involving live

viruses were conducted in biosafety level 2 facilities.
2.2 mRNA preparation in vitro

The HA2 domain, which contains epitopes targeted by broadly

neutralizing antibodies, holds promise as a potential candidate for

the development of vaccines with broad protective efficacy. In this

study, we focused on screening HA2 epitopes that are validated and

relatively conserved B-cell dominant epitopes (23). Additionally,

M2e also is considered an important target for designing influenza

vaccines due to its highly conserved nature across multiple strains of

the virus. To obtain mRNA vaccine for subsequent in vivo

utilization, the peptide sequences of M2e, HA2, and other

relevant sequences were documented in Supplementary Table 1

and Figure 1A, along with their respective gene order. The

aforementioned genes were subsequently cloned into the pGEM-

3Zf-n3 vector utilizing Cla I and Pac I restriction enzymes (24). The

resulting plasmids were subsequently linearized by Xho I cleavage in

preparation for their use as DNA templates in an in vitro
FIGURE 1

Construction and expression of the candidate mRNA vaccines. (A) Structural diagram of mRNA candidate vaccines. (B) Verification of intracellular
protein expression in transfected cells which treated with reducing loading buffer. (C) Verification of the expression of protein by Indirect
immunofluorescence. (D) Verification of intracellular protein expression treated with SDS-PAGE loading buffer (non-reduced). (E) TEM images of
MH-TF protein, Scale: 200 nm/100 nm.
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transcription reaction. The T7-FlashScribe Transcription Kit

(CELLSCRIPT, USA) was used to generate mRNA from these

DNA templates. To enhance in vivo stability, resistance to

degradation, and translational efficiency, 1-Methylpseudouridine-

5′-triphosphate (TriLink, USA) was employed as a substitute for

uridine triphosphate (UTP). Subsequently, the mRNA molecules

were purified using the MEGAclear Transcription Clean-Up Kit

(Thermo Fisher Scientific, USA) and capped utilizing the ScriptCap

Cap 1 Capping System (CELLSCRIPT, USA).
2.3 mRNA expression

After seeding HEK293T cells in 12-well plates and allowing

them to grow overnight until they reached approximately 80-90%

confluence, the cells were transfected with mRNA using the Xfect

RNA Transfection Reagent protocol (TAKARA, Japan). Cell lysates

were collected at 24 hours post-transfection using RIPA lysis buffer

for protein expression confirmation through western blotting with

Influenza A Virus Hemagglutinin/HA Antibody, Rabbit Mab (Sino

Biological, China), while mock-transfected cells served as controls.

Indirect immunofluorescence technology was used to assess

corresponding protein expression levels. The structure of MH-TF

protein was observed by HT7800 transmission electron microscope.
2.4 Vaccination and virus challenge

A total of 36 female C57BL/6 mice, aged 6 weeks, were

randomly divided into three groups for vaccine immunization

and a negative control group, with each group consisting of 9

mice. Intramuscular injections were administered every two weeks

for a total of three doses. Serum samples were collected at 7, 14, 21,

28, 35 and 42 days after the primary immunization and stored at

−20°C for further analysis. On the 42nd day following the primary

immunization, mice were challenged with influenza virus

(10×LD50). Subsequently, body weight and survival of the mice

were monitored daily for two weeks post-virus challenge.
2.5 Enzyme-linked immunosorbent assay

The plates were coated with recombinant protein (5 mg/mL, 100

mL/well) at 4°C, followed by blocking with 3% bovine serum

albumin for 2 hours. Subsequently, sera samples (a dilution of

1:100) were added and incubated at 37°C for 1.5 hours. Afterwards,

the plates were washed and incubated with Goat Anti-Mouse IgG

Human ads-HRP (SouthernBiotech, USA). The signal was

developed using TMB as the substrate, and the reaction was

terminated by adding 2M H2SO4. Finally, the optical density at

450 nm (OD450) was measured using a microtiter plate reader.
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2.6 Hemagglutination inhibition assays

Hemagglutination inhibition (HI) assay was measured as

described earlier (25, 26). The immune serum samples were

pretreated with receptor destroying enzyme II and diluted twofold

before detecting HI in 96-well plates. Each well was incubated

with 4 HA units of virus at room temperature for 30 min, followed

by mixing with 1% chicken red blood cells and further incubation

for another 30 min. The HI titer is defined as the reciprocal

of the maximum serum dilution that inhibits erythrocyte

viral hemagglutination.
2.7 Flow cytometry

The spleens of mice were harvested on the 42nd day after the

first vaccination using aseptic techniques. Single-cell suspensions

were prepared by passing them through a 70 mm cell strainer and

treating them with Red Blood Cell Lysis Buffer (Beyotime, China).

The cells were then stimulated with the recombinant protein and

treated with Brefeldin A Solution (1X) for 5 h. After stimulation, the

cells were washed with PBS buffer and stained with FITC-

conjugated anti-mouse CD3, APC-conjugated anti-mouse CD4,

and PE-conjugated anti-mouse CD8a antibodies (BioLegend,

USA). Following staining, the cells were fixed using Cytofix/

Cytoperm™ Solution and labeled with PE-conjugated anti-mouse

IFN-g antibodies (BioLegend, USA). Finally, the stained cells were

washed twice and analyzed using a flow cytometer (Beckman

Coulter, USA) to detect immune responses mediated by antigen-

specific CD4+ and CD8+ T lymphocytes.
2.8 Viral load and cytokines

On the 5th day post-virus challenge, we collected nasal

turbinates, trachea, and right lung from each experimental group

to measure viral load. Total cellular RNA was extracted from

homogenized supernatants using the QlAamp Viral RNA Mini

Kit (Qiagen, Germany) according to the manufacturer’s

instructions. The viral load and expression of cytokines (IL-1b,
IL-6, TNF-a) were quantified using the HiScript//one-step qRT-

PCR SYBR Green kit (Vazyme, China). Primer sequences used in

this assay can be found in Supplementary Table 2.
2.9 Histopathology

On the 5th day post-virus challenge, the mice were euthanized

and their left lung lobes were fixed in 4% paraformaldehyde,

embedded in paraffin, and subjected to H&E staining for

histopathological examination to evaluate lung injury.
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2.10 Statistical analysis

The data were presented as mean ± standard error of the mean

(SEM). To determine statistically significant differences in group

means, a one-way analysis of variance (ANOVA) with Tukey’s

multiple comparison tests was performed using GraphPad Prism

software. In the figures, significance levels were denoted as **** p <

0.0001, *** p < 0.001, ** p < 0.01, * p < 0.05, ns p > 0.05.
3 Results

3.1 Construction and expression of
influenza mRNA vaccines

The immunogenicity of epitopes often results in comparatively

weaker immune responses when compared to conventional vaccines,

thereby limiting the efficacy of epitope-based vaccines. In this study,

we developed three mRNA vaccines targeting influenza viruses: a

monomeric structure (MH), a trimeric structure (MH-T), and an

architecture based on ferritin (MH-TF) (Figure 1A). The successful

expression of proteins encoded by the mRNA for MH, MH-T, and

MH-TF immunogens was confirmed through Western blot analysis

treated with reducing loading buffer (Figure 1B) and indirect

immunofluorescence (Figure 1C) performed on the transfected cell

lysates. Concurrently, non-reductive treatment was employed to

examine the expression patterns of MH-T and MH-TF proteins

(Figure 1D), TEM images analysis of MH-TF revealed nanoparticles

with a diameter of nearly 50 nm (Figure 1E).
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3.2 Humoral immune responses of
mRNA vaccines

The humoral immune response is crucial for preventing virus

entry and enhancing virus elimination. This study assessed the

antibody levels produced by influenza virus mRNA vaccines in

C57BL/6 mice. The humoral immune response of the mRNA

vaccine was evaluated by administering three doses, each at a

dose of 15 mg, to female C57BL/6 mice (n = 9), with a two-week

interval between each vaccination(Figure 2A). Enzyme-linked

immunosorbent assay (ELISA) was employed to assess specific

levels of immunoglobulin G (IgG) in serum samples collected

on days 7, 14, 21, 28, 35, and 42 after the initial vaccination.

All three vaccines induce specific antibodies within 14 days of

the initial vaccination, with antibody titers peaking on day

42 in particular(Figure 2B). The OD450 values of MH, MH-T

and MH-TF were significantly higher than those of the

PBS group (p=0.007, p=0.0005, and p<0.0001). The evaluation

of hemagglutination inhibition activity facilitates the identification

of antibodies that specifically bind to the receptor binding

domain of hemagglutinin. Generally, an HI titer equal to or

greater than 40 is considered indicative of a protective effect. 42

days after the first immunization, compared to the antibody sera

from the PBS group, significant HI activity was observed in the

antibody sera from MH, MH-T, and MH-TF groups, with the

highest HI titer detected in the MH-TF group (Figures 2C–F).

However, no significant difference in HI titers targeting influenza B

viruses was found between the MH group and PBS group

(Figures 2E–F).
FIGURE 2

Antibody level analysis of vaccinated mice. (A) Schematic diagram of immunization of C57BL/6 mice. The number of immunizations was 3 doses,
and the immunization interval was 14 days. (B) ELISA detection of IgG levels specific in the serum of C57BL/6 mice at various time points post-
immunization. (C) HI antibody titers (A/Puerto/R/8/34(H1N1)) in mice immunized with different vaccines on 42 days. (D) HI antibody titers (A/Jilin/
JYT-01/2018(H1N1)) in mice immunized with different vaccines on 42 days. (E) HI antibody titers (B/Jilin/02/2022(Victoria)) in mice immunized with
different vaccines on 42 days. (F) HI antibody titers (B/Massachusetts/2/2012(Yamagata)) in mice immunized with different vaccines on 42 days. The
red dotted line represents an antibody titer value of 40. Data are mean ± SEM, analyzed using one-way ANOVA (****p < 0.0001, ***p < 0.001, **p <
0.01, *p < 0.05, ns p > 0.05).
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3.3 Cellular immune responses of
mRNA vaccines

We further elucidated the cellular immune response elicited by

mRNA-based vaccines. T lymphocytes isolated from the spleen of

immunized and control mice (n=3) two weeks after the third

immunization were assayed using ICS assay. All the three vaccine

groups elicited antigen-specific CD4+ (Figure 3A, E) and CD8+

(Figure 3B, F) T cells. At the same time, the level of IFN-g produced
by CD3+ CD4+ T cells (Figure 3C, G) and CD3+ CD8+ T cells

(Figure 3D, H) in three vaccine groups were found to be

significantly higher compared to those in the control group.

Notably, The level of IFN-g produced by CD3+ CD8+ T cells in

MH-T and MH-TF groups was significantly increased compared

with that in MH group, and was 2.24 times and 2.06 times,

respectively. These findings suggest that vaccination elicits

augmented cellular immune response.
3.4 Protection of mRNA vaccines from
influenza virus challenge in mice

42 days after the first immunization, the mice were challenged

intranasally with 10× LD50 influenza virus. The weight and survival

rate of the mice were monitored daily for two weeks(Figure 4). The
Frontiers in Immunology 06
results showed that mRNA vaccine-immunized mice exhibited

protective effects against weight reduction and death, whereas

control mice succumbed to the virus attack, and the protective

efficiency of MH-T and MH-TF groups was 100%. On day 5 post-

infection, viral load of the turbinate, trachea, and lungs exhibited a

significantly diminished in the vaccinated group compared to the

control group (Figure 5).
3.5 Pathological section analysis

The histological examination of lung tissue revealed a significant

reduction in lung injury among vaccinated mice, accompanied by

decreased inflammatory cell infiltration, preserved alveolar structure

integrity, slightly thickened alveolar walls, and reduced epithelial cell

necrosis (Figure 6A). To visually compare the variations in

pathological damage across each group, we evaluated the outcomes

of the pathological sections. A higher score indicates a more

pronounced level of pathological damage (Figure 6B).
3.6 Cytokine gene expression

After influenza virus infection, the expression of inflammatory

cytokines can exacerbate the infection. To investigate whether
FIGURE 3

Cellular immune analysis of vaccinated mice. (A, B) The typical flow cytometry analysis of CD3+, CD4+ and CD3+, CD8+ T cells. (C, D) The typical flow
cytometry analysis of IFN-g+ in CD4+ and CD8+ T cells. (E, F) Percentage of CD3+, CD4+ and CD3+, CD8+ T cells within splenic lymphocyte population.
(G, H) Percentage of IFN-g+ in CD4+ and CD8+ T cell responses. Data are mean ± SEM, analyzed using one-way ANOVA (****p < 0.0001, ***p < 0.001,
**p < 0.01, *p < 0.05).
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vaccines can mitigate the inflammatory response, we evaluated

the expression of inflammation-associated cytokines, including

IL-1b, IL-6, and TNF-a (Figure 7). The relative real-time

qPCR results revealed comparable IL-1b levels among all vaccine

groups and the control group, without statistical significance.

Notably, the expression of IL-6 and TNF-a genes in the vaccine

group exhibited a significant reduction compared to the control

group, except for IL-6 following B/Jilin/02/2022(Victoria)

virus exposure.
Frontiers in Immunology 07
4 Discussion

The major antigens on the surface of influenza viruses undergo

persistent and dynamic changes, limiting the effectiveness of seasonal

influenza vaccines (24, 27). The influenza vaccines targeting highly

conserved HA2 and M2 epitopes have the potential to provide broad

protection against antigenically transformed and drifting influenza

viruses (28, 29). The epitope-based vaccine has multiple advantages,

including easy recognition by the immune system, elimination of
FIGURE 4

Body weight changes and survival curves of influenza virus-infected mice. Mice were challenged with 10 x LD50 of A/Jilin/JYT-01/2018(H1N1) (A, B)
and A/Puerto/R/8/34(H1N1) (C, D) and B/Jilin/02/2022(Victoria) (E, F) and B/Massachusetts/2/2012(Yamagata) (G, H). Body weight (left) and survival
rate (right) were monitored daily during 14 days.
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inhibitory epitopes, and stable chemical properties (30). However,

single epitopes usually induce weak immune responses, so it is crucial

to develop new delivery systems that can enhance the

immunogenicity of conserved components (8). An ideal antigen-

presenting platform is self-assembled ferritin, a common

nanoparticle composed of 24 subunits (31–33). Among them, three

subunits create a trimeric structure similar to the influenza virus,

enhancing immunological effects by improving antigen-immune cell

interaction during antigen presentation (34, 35). Ferritin is used in

various vaccine platforms, especially in influenza vaccines (36, 37).

Corbett et al. developed a vaccine that presents influenza HA2 trimers

on ferritin nanoparticles, inducing cross-reactive antibodies in mice

(25). The administration of nanoparticles containing recombinant
Frontiers in Immunology 08
human heavy chain ferritin and three tandem copies of M2e fusion

protein resulted in robust levels of M2e-specific IgG antibodies,

increased secretion of mucosal IgA antibodies, and enhanced T

lymphocyte response after fatal H1N1 and H5N1 infections in

nasal drop mice (38).

In this study, we developed three mRNA vaccines: MH, MH-T,

and MH-TF. Immunizing mice with these vaccines induced robust

humoral and cellular immunity. Cell-mediated immunity plays a

crucial role in preventing influenza and providing heterologous

immunity. For example, MLN-mRNA vaccines designed by Xiong

et al. can effectively induce a strong T-cell response, triggering the

secretion of type 1 cytokines such as IFN-g and activating CD8+ T

cell-mediated immune reactions (39). The protective capacity of T
FIGURE 5

Analysis of viral loads after influenza virus challenge. Quantification of viral loads for the HA gene in nasal turbinate, trachea and lung. Data are mean
± SEM, analyzed using one-way ANOVA (****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns p > 0.05).
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cells against influenza virus strains also was demonstrated in our

vaccination experiments. Our results demonstrated a significant

increase in spleen cells secreting the populations of CD4+ and CD8+

cells and IFN-g in vaccinated mice after protein stimulation,

indicating the vaccine’s ability to induce a robust T cell-mediated

immune response.

The efficacy of our vaccine was confirmed in mouse

experiments, demonstrating a significant reduction in viral load
Frontiers in Immunology 09
and lung tissue damage, as well as decreased levels of inflammatory

cytokines. Due to the addition of the HA1 skeleton fromH1 subtype

influenza virus to epitopes, MH vaccine immunization can induce a

relatively strong immune response and effectively protect against

H1 subtype influenza virus infection. In the challenge test with

influenza B virus, MH-T and MH-TF exhibited superior protective

effects compared to the MH group, possibly due to the small epitope

size of the influenza B vaccine which can be enhanced by
FIGURE 6

Lung physiology of influenza virus-infected mice. (A) Representative images of H&E-stained lung sections on the 5th day postinfection (dpi), n=3 for
each group. (B) Results of histology scores. Data are mean ± SEM, analyzed using one-way ANOVA (****p < 0.0001, ***p < 0.001, **p < 0.01,
*p < 0.05, ns p > 0.05).
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multivalent form. The research suggests that the host ’s

inflammatory response plays a pivotal role in the pathogenesis of

influenza virus infection, potentially leading to an excessive release

of pro-inflammatory cytokines known as a cytokine storm or

hyperacute dysregulation, ultimately resulting in fatal outcomes

(40). In our study, a significant reduction in cytokine expression

was observed in the MH, MH-T and MH-TF vaccine groups

compared to the control group, indicating the presence of an

immune protective response.

In this study, we developed a novel multi-epitope influenza

vaccine aimed at achieving broad immune protection by targeting

conserved viral antigens. To enhance antigen presentation efficiency
Frontiers in Immunology 10
and stimulate a stronger immune response, we engineered MH-T

constructs containing trimer sequences and coupled them with

ferritin nanoparticles to form MH-TF complexes. It is important to

note that even subtle differences in the production of CD4, CD8,

and IFN g can have significant implications for protective effects

against viral load and disease severity (41). In challenging

experiments involving influenza B virus infection, mice

vaccinated with MT-T or MH-TF vaccines exhibited more

pronounced protection compared to those treated with the MH

vaccine alone. Overall, optimizing antigen design and presentation

can greatly enhance the efficacy of vaccines and provide a valuable

strategy for developing broad-spectrum influenza vaccines.
FIGURE 7

Assessment of inflammatory responses post mRNA vaccination. Transcription levels of cytokines IL-1b, IL-6, TNF-a on day 5 post-infection in lung
measured using real-time qPCR. Data are mean ± SEM, analyzed using one-way ANOVA (***p < 0.001, **p < 0.01, *p < 0.05, ns p > 0.05).
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