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Hepatocellular carcinoma (HCC) is a high-incidence, poor-prognosis

malignancy worldwide, requiring new strategies for treatment. Ubiquitination,

especially ubiquitination through E3 ubiquitin ligases, plays an indispensable role

in the development and progression of HCC. E3 ubiquitin ligases are crucial

enzymes in ubiquitination, controlling the degradation of specific substrate

proteins and influencing various cellular functions, such as tumor cell

proliferation, apoptosis, migration, and immune evasion. In this review, we

systematically summarize the mechanisms of E3 ubiquitin ligases in HCC, with

a focus on the significance of RING, HECT, and RBR types in HCC progression.

The review also looks at the potential for targeting E3 ligases to modulate the

tumor microenvironment (TME) and increase immunotherapy efficacy. Future

studies will optimize HCC treatment by formulating specific inhibitors or

approaches that will be based on gene therapy targeting E3 ligases in order to

overcome resistance issues with present treatments and create optimism in the

journey of treatment for HCC patients.
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1 Introduction

Hepatocellular carcinoma (HCC) is the sixth most commonly diagnosed cancer

worldwide and the third leading cause of cancer-related death (1, 2). And since liver

cancer is difficult to diagnose early and has less therapeutic effectiveness, making its

prognosis dismal (3–5). Indeed, the application of targeted therapies and immunotherapies

strongly increases overall survival in some HCC patients, whereas many remain resistant to
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these therapies, partly due to TME complexity and heterogeneity

(6–11). Recent development in other therapies targeting the liver

tumor microenvironment likely means we will need to further

characterize the liver cancer microenvironment to design new

combination therapies that effectively suppress tumorigenesis or

restore the sensitivity of immunotherapy-resistant tumors (9,

12–15).

The ubiquitin-proteasome system (UPS) is the major pathway

for proteins to be ubiquitinated and degraded in the cell (16). In

fact, ubiquitination represents a dynamic and finely regulated class

of PTM; it is realized by a three-enzyme cascade reaction that

includes Ub-activating enzymes (E1s), Ub-conjugating enzymes

(E2s), and Ub-ligases (E3s) (17, 18). The reaction pathway

comprises ATP-dependent activation of Ub by E1, transfer to a

cysteine residue of E2, and covalent binding to the amino group of a

lysine residue of the substrate protein via E3 (19, 20). (Figure 1A1)

E3 ubiquitin ligases are particularly important in this process, as

they play a pivotal role in the specific recognition and labeling of

substrates. Abnormal expression or malfunction of these ligases

may cause signaling pathway disruptions, leading to the build-up of

misfolded or dysfunctional proteins and incorrect protein complex

assembly, ultimately driving the onset and development of HCC

(21, 22).

E3 ligase also takes a significant role in the TME of HCC (23).

TME comprises a diverse array of cellular components, including
Frontiers in Immunology 02
immune cells, stromal cells, and blood vessels, along with non-

cellular elements such as the extracellular matrix and secreted

factors (24, 25). E3 ligases have been shown to influence the

invasion and metastasis of tumor cells by regulating key proteins

in the TME, such as matrix metalloproteinases (MMPs). Thus,

targeting E3 ligases not only holds promise in reducing tumor

burden but may also open new avenues for enhancing the efficacy of

existing therapies and overcoming drug resistance.

This review aims to provide a comprehensive and updated

overview of the role of E3 ubiquitin ligases in HCC, with a particular

focus on their impact on the TME and immunotherapy. It offers

new insights by emphasizing recent findings on how E3 ligases

modulate immune cell activity and therapeutic responses within the

TME, distinguishing it from previous reviews in this field.
2 Expression and function of E3 ligase
in hepatocellular carcinoma

The four identified isoforms of E3 ligase (HECT-, RING-, U-

box-, and RBR-type) promotes ubiquitin transfer through different

mechanisms (Figure 1A2). The HECT structural domain of HECT

E3 ligase transfers ubiquitin to its C-terminal leaflet by binding to

the E2 enzyme, first by a process of trans-sulfurylation, followed by

further delivery of ubiquitin to the target substrate (26, 27). Upon
FIGURE 1

(A1): Ubiquitination process. (A2): Overview of the E3 ligase family. (B1): E3 ligase regulates the polarization of TAM in HCC. (B2): E3 ligase regulates
immune cells in HCC. (B3): E3 ligase regulates the EMT process in HCC. (C): Role of E3 ligase in the Wnt/b-catenin channel in HCC. LRP: Low-
Density Lipoprotein Receptor-Related; APC: Adenomatous Polyposis Coli; CK1: Casein Kinase 1; GSK3: Glycogen Synthase Kinase 3; TCF: T-cell
Factor. (D): Role of E3 ligase in Hippo channels in HCC. MAP4K: Mitogen-Activated Protein Kinase Kinase Kinase Kinase; MST1: Mammalian Sterile
20-like kinase 1; TEAD: TEA Domain Family Member; GPCR: G-Protein-Coupled Receptor; Protein.
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binding of the ubiquitin-loaded E2 to the RING1 domain of the

RBR E3 ligase, ubiquitin is transferred to the RING2 domain

through a trans-thioesterification reaction. The RING2 domain

then facilitates the transfer of this ubiquitin to the substrate (28).

In summary, HECT- and RBR-type E3 ligases transfer ubiquitin

(Ub) to substrate proteins after forming a thioester bond between

their active site cysteine and Ub. In contrast, RING- and U-box-

type E3 ligases directly facilitate the transfer of Ub from E2 enzymes

to substrate proteins (29–32).
2.1 RING E3 ligase

The RING-type subgroup represents the primary family of E3

ligases, characterized by two distinct types of RING structural

domains: the RING fold structure with a zinc-binding site and a

U-box domain. Structures in which both domains can function via

monomers, homodimers, heterodimers, or multiple subunits (33,

34). Cullin-RING ligases (CRLs) are a type of multisubunit RING

E3 ligases, with F-box proteins serving as an essential part of their

structure (35). F-box proteins are categorized into three types:

FBXW, FBXL, and FBXO. Studies have shown that the expression

of FBXO17 is significantly elevated in the tumor tissues of

hepatocellular carcinoma (HCC) patients compared to adjacent

normal tissues. FBXO17 may contribute to the malignant

progression of HCC by inhibiting the Wnt/b-catenin pathway (36).

Different structures of E3 ligases may be potential tumor

promoters in HCC. In vitro and in vivo experiments have

demonstrated that monomeric MARCH1 upregulates the PI3K-

AKT-b-catenin pathway, thereby promoting the growth and

progression of HCC (37). The HaKai heterodimer has been shown

to promote the degradation of E-calmodulin, resulting in the nuclear

translocation of b-catenin proteins and ultimately driving epithelial-

mesenchymal transition (EMT) in HCC (38).However, the

homologous structural domain type MDM2 may be a repressor of

HCC. MDM2 was shown to diminish YAP’s interaction with other

proteins and promote its cytoplasmic translocation and degradation,

thereby inhibiting tumorigenesis in HepG2 cells (39).
2.2 HECT E3 ligase

HECTs are second only to human RING E3 ligases in number,

and their HECT structural domains consist of an N-terminal lobe, a

C-terminal lobe, and a flexible chain (26).Knockdown of WWP2

(HECT-type) significantly elevated the expression levels of

apoptosis-related markers in HCC) cell lines, including caspase-7,

caspase-8, and Bax, suggesting that inhibition of WWP2 may be a

therapeutic tool to negatively regulate HCC overproliferation and

escape apoptosis (40). Mule, a member of the HECT E3 ligase

family, functions as a tumor suppressor in HCC by inhibiting the

Wnt/b-catenin signaling pathway. Specifically, Mule directly targets

b-catenin for degradation in HCC, thereby suppressing b-catenin-
mediated cancer stem cell (CSC) activity (41).

HECT E3 ligase was shown to mediate the Hippo pathway in

HCC cells, including its participation in theWnt/b-catenin pathway
Frontiers in Immunology 03
(Figures 1C, D). LATS1 is one of the core components of the Hippo

pathway. NEDD4 acts as a direct targeting factor for LATS1, which

causes its ubiquitinated degradation and increases the

transcriptional activity of YAP. In QGY7703 and SMMC7721

hepatoma cell lines, siRNA-mediated NEDD4 knockdown assays

showed that decreased expression of NEDD4 inhibited cell

proliferation, invasion, and migration, promoted apoptosis, and

further supported the role of the NEDD4-LATS1 pathway in HCC

progression (42).
2.3 RBR E3 ligase

The RBR E3 is composed of two RING structural domains

(RING1, RING2) and IBR structural domain. Parkin was known to

play an oncostatic role in a wide array of tumors including HCC

and breast cancer (43). Through direct degradation of TRAF 2 and

TRAF6, parkin drives HCC cell apoptosis by inhibition of the NF-

kB pathway (44).
3 E3 ligase regulates TME in
hepatocellular carcinoma

Given the plasticity of TME and its involvement in the

progression of multiple cancers, the modification of TME into an

anticancer environment is a promising therapeutic strategy (45–49).

Currently, most drugs for TME, such as immunotherapies and

antiangiogenic drugs, have limited or unmet efficacy (50, 51).This

phenomenon may stem from the complexity of TME and the

diversity of its responses to drugs, thus making it difficult to

achieve significant clinical results with these therapies in practice.

With increasing evidence that ubiquitin signaling cascades

modulate immune cell activity and the stability of soluble factors

in the TME, a permissive or inhibitory environment for tumor

growth can be provided. Moreover, as the first major family of

ubiquitinating enzymes, the diversity and specificity of E3 ligases

endow them with roles in broadly regulating tumor signaling

pathways and biological processes, so making full use of intrinsic

E3 ligases to target key mediators seems to be an attractive strategy

for anticancer drug development.
3.1 E3 ligase on immune cells

Typically, the immune cells infiltrating the TME CD8+ T cells,

CD4+ T helper 1 (Th1), M1 macrophages and NK cells are usually

antitumorigenic, whereas the opposite is true for M2 macrophages

(52, 53).Regulatory T-cells (Tregs) show these two opposite effects

in animal models and clinical trials (54–56) (Figure 1B2).

E3 ligase can regulate the proportion and function of immune

cells in the TME by targeting the degradation of tumor suppressors.

Analysis of data from The Cancer Genome Atlas (TCGA) public

database revealed that RNF125 expression levels are positively

correlated with the infiltration of CD4+ and CD8+ T cells, as well

as macrophages, within tumors (57).WD repeat 4 (WDR4) has been
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reported to be a substrate junction for CRL, which can degrade a

tumor suppressor, the promyelocytic leukemia (PML) protein.In

this process, the expansion of Treg cells, M2 macrophages, and the

reduction of CD8+ T cells contribute to the establishment of an

immunosuppressive and pro-metastatic TME (58).

In addition, E3 ligases are crucial in immunomodulation by

regulating the ubiquitination of key proteins and influencing T cell

differentiation. In a study on HCC, In a study on HCC, Jiang et al.

found that lncRNA-EGFR binds to EGFR, inhibiting c-CBL-

mediated ubiquitination and thus preventing EGFR degradation.

This mechanism helps to maintain the continuous activation of the

RAS/RAF/MEK/ERK signaling pathway downstream of EGFR,

which ultimately promotes the differentiation of Tregs (59).

TME can induce cancer immunosuppression through the

upregulation of PD-L1 protein expression. However, E3 ligase

plays a role in inhibiting the ubiquitination and degradation of

PD-L1, thereby assisting tumor cells in evading T cell-mediated

immune surveillance. For example, the RING E3 ligase FBXO38

mediates the ubiquitination of PD-1, thereby regulating antitumor

immunity in T cells (60).In hepatocellular carcinoma, RNF125

(RING type) directly ubiquitinates PD-L1 and maintains a stable

protein level of PD-L1 (61).

Additionally, E3 ligases are crucial in regulating immune cell

differentiation and function. Macrophages, through their M1 and

M2 polarization, significantly influence tumor progression and

shape the immune environment. Next, we will explore the role of

E3 ligases in regulating the polarization of TAMs.
3.2 E3 ligase on TAMs

One of the important processes in which E3 ligases play a role is

polarization toward tumor-associated macrophages (TAMs).

(Figure 1B1) TAMs are one of the major immune cell types in

the tumor microenvironment. When TAMs are exposed to different

types of signaling stimuli, they polarize into two contrary functional

profiles: differentiation toward M1, with an anti-tumoral effect by

response to Th1; differentiation to the M2 type, with pro-tumor

effects through Th2 cytokines (62, 63). Specific E3 ligases regulate

key signaling pathways such as NF-kB and STAT6 to influence M1

and M2 polarization, further influencing the immune response in

the tumor microenvironment.

E3 ligase is one of the mediators that regulate ubiquitination in

macrophage polarization. STAT6, for instance, is one of the main

transcription factors that drive M2 macrophage polarization (64).

TRAF6 is an E3 ligase that is the main activator of K63-linked

ubiquitination of STAT6 in M2-polarized macrophages stimulated

with IL-4. In contrast, it inhibits the degradation (65).

Under hypoxic conditions, Seven in Absentia homologue 2

(SIAH2), an E3 ligase with a RING domain, is the regulator of

proteasome degradation of NRF1 (Nuclear Respiratory Factor 1)

and, therefore, switches TAM polarization to the tumor-promoting

M2 state in breast cancer (66). The underpinning mechanisms of

the SIAH2-NRF1 axis are linked to changes in mitochondria-

dependent metabolic reprogramming, with an increase in lactate.

Another RING E3 ligase, TRIM24, degrades the histone
Frontiers in Immunology 04
acetyltransferase CBP that acetylates STAT6, which inhibits TAM

polarization to M2 (67).
4 E3 ubiquitin ligases target MMPs
in TME

4.1 Role of MMPs in TME of
hepatocellular carcinoma

MMP is a zinc-dependent endopeptidase and multifunctional

enzyme that can be secreted by TAM (68, 69). MMPs are

categorized into several groups: collagenase, gelatinase,

stromelysin, membrane MMPs, and other unclassified MMPs

(70). MMPs have the ability to degrade almost all components of

the ECM, leading to structural changes in the cellular and tissue

environments. TME is composed of various cellular constituents,

along with the biochemical and biophysical elements of ECM, and is

defined by their intricate interactions within and surrounding solid

tumor masses (71, 72). In TME, MMPs play a crucial role. When

MMPs are dysfunctional, they lead to the destruction of the ECM,

which promotes cell migration and tumor metastasis (73–75). In

tumor stem cells of HCC, MMP remodel the ECM, resulting in

tumors that exhibit more aggressive and functional stemness (76).

Recent studies have demonstrated that MMP9, secreted by TAMs, is

particularly involved in ECM degradation, facilitating tumor

invasion and metastasis in HCC. Inhibiting MMP9 activity in

TAMs has been shown to reduce ECM breakdown and,

consequently, limit the metastatic potential of HCC cells (77).
4.2 Mechanism of regulating the
microenvironment of hepatocellular
carcinoma by targeting MMPs via E3 ligase

Protein expression of MMP can be controlled by E3 ubiquitin

ligases (78, 79). (Table 1) For example, TRIM55 is associated with a

decrease in MMP2 (80). TRIM66 reduces MMP9 expression (81).

EMT is a process through which epithelial cells acquire mesenchymal

traits, facilitating cancer invasion and metastasis (82). Among them,

MMP2 is the major MMP in the pathogenesis of EMT in

hepatocellular carcinoma (73). It has been demonstrated that

overexpression of TRIM55 (RING-type) effectively reduced the

migration and invasion ability of HCC cells by modulating epithelial-

mesenchymal transition and inhibiting the activity of MMP2 (80). This

suggests that E3 ligase can influence the hepatocellular carcinoma

microenvironment by affecting MMP protein expression and EMT

(epithelial-mesenchymal transition). (Figure 1B3).
5 Potential of E3 ligase as a
therapeutic target in
hepatocellular carcinoma

A growing body of evidence indicates that abnormal

ubiquitination expression is correlated with poor cancer
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prognosis. Given the critical role of various E3 ligases in the

tumorigenesis of HCC, targeting E3 ligase activity is considered a

promising therapeutic strategy for cancer treatment. p53 is one of

the most important tumor suppressors in vivo, and MDM2

regulates the level of P53. Antagonizing MDM2 seems to be an

effective strategy to develop promoter inhibitors for HCC tumors,

but further clinical trials are still needed (83–85). For example, in a

mouse model, the MDM2 inhibitor APG-115 induced synergistic

activity with anti-PD-1 antibody-based immunotherapy (86).

Recent studies have shown that Fbxw7 increases the sensitivity of

HCC cells to sorafenib (87, 88). This finding implies a potential

clinical application of Fbxw7 in enhancing sorafenib efficacy in

liver cancer treatment. Multiple compounds can target MMPs

via E3 ligase for cancer therapy. Zhang et al. found that the

natural agent ALCA upregulated NEDD4L (HECT-type) and

caused ubiquitination of b-catenin, which activated Wnt-induced

transcription of the MMP9 gene in lung adenocarcinoma cells

(89). Gallic acid reduces MMP2 and MMP9 protein levels by

inducing b-TrCP in human leukemia cells (90). Notably, MMP9

is the major MMP in the pathogenesis of EMT in hepatocellular

carcinoma (73). Therefore, utilizing compounds to regulate the

expression of E3 ligases and modulate MMP levels could represent a

promising strategy for the treatment of HCC.
6 Conclusion

Hepatocellular carcinoma is heterogeneous at the genetic and

epigenetic levels, making the development of therapeutic agents for

liver cancer difficult (91, 92). Ubiquitination, a crucial post-

translational modification of proteins, has been increasingly

recognized on a broader scale. In this intricate environment, E3
Frontiers in Immunology 05
ligases, beyond targeting substrates for proteasomal degradation, also

regulate various signaling pathways such as PI3K/AKT and Wnt/b-
catenin. Moreover, most E3 ligases in HCC are oncoproteins (93,

94). So E3 ligase is an attractive drug target for cancer therapy.

The role and importance of E3 ligases in hepatocellular

carcinoma have been widely explored, though numerous

questions still persist. As E3 ubiquitin ligases are frequently

mutated, their targeting specificity may be insufficient, which

leads to less accurate recognition of the target and may trigger

off-target effects, ultimately leading to poor therapeutic efficacy.

Recent advancements in technologies like CRISPR and PROTAC

(Proteolysis Targeting Chimeras) have opened new avenues for

more precise targeting of E3 ligases in cancer treatment. In

particular, CRISPR can be used to knock out or activate specific

genes related to E3 ligases, thereby providing a strategy to mitigate

their oncogenic effects in the TME (95, 96). On the other hand,

PROTACs (Proteolysis Targeting Chimeras), which are also small

molecule inhibitors, degrade POIs (Cullin-RING type) in a

substoichiometric manner, leading to more prolonged and potent

biological effects on the target compared to SMIs. In addition,

PROTAC dBET1 inhibits the pro-inflammatory response by

regulating MMP9 in lipopolysaccharide (LPS)-activated microglial

cells (97). As a result, PROTACs have emerged as a promising

approach for developing new targeted anticancer therapies.

Interestingly, similar to the process of ubiquitination,

SUMization (Small Ubiquitin-like Modifier) plays an important

role in most organisms, regulating a variety of cellular processes,

including DNA replication, transcription, immune response (98,

99). An increasing body of research indicates a strong association

between SUMOylation and the progression of hepatocellular

carcinoma (100). SUMO E3 ligase may also be a potential target

for the treatment of hepatocellular carcinoma.
TABLE 1 Summary of E3s in HCC.

Type
Characteristic

domains
E3s Signaling pathway

Substrates
in HCC

Effect Reference

RING RING/U-box

FBXO17 wnt/b-catenin MMP-9, MMP-2 Promote cell metastasis (36)

TRIM55 – MMP2
Promote cell migration
and invasion

(68)

b-TrCP JNK/b-TrCP MMP-9
Regulate cell motility
and promote
cell invasion

(69)

MARCH1 PI3K-AKT-b-catenin
Promote cell
proliferation, migration,
and invasion

(37)

HECT
N-terminal lobe, C-terminal
lobe, and a flexible tether

NEDD4 – LATS1
Increase YAP
transcriptional activity

(42)

Mule wnt/b-catenin b-catenin Inhibit CSC (41)

WWP2 –
caspase-7, caspase-8
and Bax

Promote cell
proliferation and
evasion of apoptosis

(40)

RBR RING1, RING2, IBR Parkin NF-kB TRAF2, TRAF6 Promote cell apoptosis (44)
HECT, homologous with E6-associated protein C-terminus; RING, really interesting new gene, U-box-; RBR, RING- between-RING;MARCH1, Membrane-associated RING-CH-1; b-TrCP, b-
Transducin Repeat Containing Protein; MDM2, Mouse Double Minute 2; YAP, Yes-associated protein; WWP2, WWDomain Containing E3 Ubiquitin Protein Ligase 2; Bax, Bcl-2-associated X
protein; NEDD4, Neural Precursor Cell Expressed Developmentally Down-Regulated Protein 4; IBR, In-Between-RING; TRAF, TNF Receptor Associated Factor.
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