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Oncolytic virotherapy represents an innovative and promising approach for the

treatment of cancer, including multiple myeloma (MM), a currently incurable

plasma cell (PC) neoplasm. Despite the advances that new therapies, particularly

immunotherapy, have been made, relapses still occur in MM patients,

highlighting the medical need for new treatment options. Oncolytic viruses

(OVs) preferentially infect and destroy cancer cells, exerting a direct and/or

indirect cytopathic effect, combined with a modulation of the tumor

microenvironment leading to an activation of the immune system. Both

naturally occurring and genetically modified viruses have demonstrated

significant preclinical effects against MM cells. Currently, the OVs genetically

modified measles virus strains, reovirus, and vesicular stomatitis virus are

employed in clinical trials for MM. Nevertheless, significant challenges remain,

including the efficiency of the virus delivery to the tumor, overcoming antiviral

immune responses, and the specificity of the virus for MM cells. Different

strategies are being explored to optimize OV therapy, including combining it

with standard treatments and targeted therapies to enhance efficacy. This review

will provide a comprehensive analysis of the mechanism of action of the different

OVs, and preclinical and clinical evidence, focusing on the role of oncolytic

virotherapy as a new possible immunotherapeutic approach also in combination

with the current therapeutic armamentarium and underlying the future directions

in the context of MM treatments.
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1 Introduction

Multiple myeloma (MM) is a hematological malignancy that

represents a significant therapeutic challenge due to its biological

complexity, heterogeneity, and propensity to develop drug

resistance (1, 2). Despite advances in therapeutic strategies, MM

remains largely incurable, with frequent relapses and refractory

disease (3).

In this context, the introduction of several immunotherapeutic

approaches, such as monoclonal antibodies, bispecific antibodies,

and CAR-T cell therapy, has changed the treatment landscape of

MM. By harnessing the immune system’s ability to recognize and

eliminate malignant cells, immunotherapy offers a promising way

to overcome treatment resistance and improve patient outcomes

(4–6).

Among the new emerging anti-cancer treatments, oncolytic

virotherapy has gained considerable attention as a complementary

and synergistic therapeutic modality within the MM treatment

paradigm (7). Oncolytic virotherapy utilizes genetically engineered

or naturally occurring viruses that selectively infect and replicate

within neoplastic cells, leading to their lytic destruction while sparing

normal tissues (8). This orchestrated cascade of events triggers

stronger immunogenic responses, including activating innate and

adaptive immune effectors against the tumor or reversing

immunologically exhausted compartments (8, 9). Indeed, oncolytic

viruses (OVs) exert profound immunomodulatory effects within the

tumor microenvironment, reshaping the balance between pro-

inflammatory and immunosuppressive signals (10). By targeting

key immunoregulatory cell populations and promoting the

recruitment and activation of cytotoxic lymphocytes, oncolytic

virotherapy enhances the local and systemic antitumor immune

response, thereby increasing therapeutic efficacy and durability

(10); OVs also could sensitize refractory tumors to subsequent

therapeutic interventions (11).

Nevertheless, despite the considerable therapeutic potential of

oncolytic virotherapy, there are still significant challenges that

require further investigation and clinical evaluations to

demonstrate its efficacy and safety. These include optimizing viral

delivery and dissemination strategies, enhancing tumor specificity

and minimizing off-target effects, addressing immune evasion

mechanisms related to pre-existing immunity, and developing

combination approaches with novel immunotherapeutic strategies

to enhance therapeutic synergy and overcome resistance to

conventional treatments (12).
2 Oncolytic virus direct mechanisms
and immunogenic effects in
multiple myeloma

A well-known antitumor mechanism employed by OVs

involves replicating within cancer cells and subsequently causing

their direct lysis. This process is referred to as direct virus-

induced oncolysis.
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The aberrant molecular landscape and disrupted cellular

homeostasis that characterize MM are closely related to the

preferential targeting of OVs towards neoplastic plasma cells

(PCs) (13).

OVs leverage the overexpression of specific surface receptors on

cancer cells as a route of targeted cell entry. Several of these

receptors, including membrane cofactor protein (CD46),

junctional adhesion molecule-A (JAM-A), intercellular adhesion

molecule-1 (ICAM-1), and decay-accelerating factor (DAF) are

frequently upregulated in MM cells (14–17). These receptors

serve as molecular gateways for OVs, facilitating viral attachment,

entry, and subsequent oncolysis (14–17).

OVs also take advantage of other molecular alterations that are

commonly found in MM cells. These alterations enable the

replication of the viruses selectively, thus enhancing their efficacy.

A pivotal player in this context is the dysregulated RAS signaling

pathway (13, 18). RAS-transformed cancer cells often exhibit defects

in the innate antiviral defense mediated by the double-stranded RNA

(dsRNA)-activated protein kinase (PKR) pathway. This compromised

antiviral response makes cancer cells more susceptible to viral

infection and facilitates unrestrained viral replication, leading to

enhanced oncolysis (19–21). Similarly, OVs take advantage of the

dysregulation of the phosphatidylinositol 3-kinase/Akt/mammalian

target of rapamycin (PI3K/Akt/mTOR) axis. The activation of this

axis enhances viral internalization and endosomal sorting, facilitating

viral propagation within host cells (22, 23).

MM cells often exhibit defects in the interferon (IFN) pathway,

which they exploit to evade immune surveillance, and consequently,

OVs replicate in tumor tissues without interference from the

antiviral effects of interferons (24, 25).

The therapeutic efficacy of OVs also depends on the indirect

activation of the immune system against tumor cells.

Indeed, following viral infection and tumor cell lysis, OVs induce

immunogenic cell death (ICD) pathways within MM cells, triggering

the release of cytokines, tumor-associated antigens (TAAs), and

other danger signals, including damage-associated molecular

pattern (DAMPs) and pathogen-associated molecular pattern

(PAMPs). These are a potent stimulus for the maturation and

activation of antigen-presenting cells (APCs), particularly dendritic

cells, initiating a robust adaptive immune response against the

tumor (24, 26–29). Additionally, virus-infected MM cells activate

pattern recognition receptors (PRRs), such as Toll-like receptors

(TLRs), thereby amplifying the immune response within the MM

microenvironment (30). OVs also play a pivotal role in modulating

the tumor microenvironment by polarizing infiltrating monocyte-

derived macrophages from an M2 phenotype, associated with

tumor-promoting activities, to an M1 phenotype, characterized

by enhanced antitumor immune responses. This polarization is

facilitated by the release of pro-inflammatory cytokines and

chemokines from infected MM cells, reshaping the immune

landscape to favor tumor suppression (28). Finally, some OV

antigens or specific antigens loaded on genetically engineered

OVs are implicated in reversing the exhausted T cell phenotype

present in the tumor microenvironment. OVs can act as agnostic

antigen vaccines, expanding the repertoire of cancer-specific
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neoantigens (29). Figure 1 illustrates the various mechanisms

through which OVs exert their anti-MM cell effects.
3 Oncolytic virotherapy for multiple
myeloma: preclinical and
clinical evidence

Preclinical and clinical studies have examined the use of human

and non-human viruses in the treatment of MM. Specifically, five

RNA viruses (Measles virus, Reovirus, Coxsackievirus A21,
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Vesicular stomatitis virus, and Bovine viral diarrhea virus) and

four DNA viruses (Adenovirus, Herpes simplex virus type 1,

Vaccinia virus, and Myxoma virus) have been studied. These

viruses have been evaluated in both monotherapy and

combination therapy associated with chemotherapy and/or

radiotherapy, as well as purging agents during autologous stem

cell transplantation. Although these therapeutic viruses are derived

from naturally occurring viral strains, they have been modified to

increase their selectivity toward cancer cells or to improve their

efficacy in eradicating MM. For instance, OVs have been engineered

by integrating targeting ligands or peptides into their capsids to

recognize MM-specific antigens or surface receptors, as well as
FIGURE 1

Direct and indirect antitumor effects of oncolytic viruses in multiple myeloma. In multiple myeloma (MM) cells, mutations or deletions are present in
genes coding for key proteins of antiviral signaling pathways, including the interferon (IFN) pathway, the RAS pathway, the double-stranded RNA-
activated protein kinase (PKR) pathway, and the phosphatidylinositol 3-kinase (PI3K) pathway. Consequently, oncolytic viruses (Ovs) can exploit these
dysregulated signaling pathways in tumor cells to promote replication, infection, virus spread, and consequently lysis of tumor cells. Following viral
infection, OVs can also induce tumor cell death through the mediation of immunogenic cells. Cytokines, viral elements (tumor-associated antigens
(TAAs), viral pathogen-associated molecular patterns (PAMPs)), and cell damage-associated molecular patterns (DAMPs) can be released. These
stimuli play a critical role in the recruitment and activation of immune cells, such as dendritic cells (DCs), natural killer (NK) cells, macrophages, and
CD8+ T cells, which can reverse the immunosuppressive microenvironment that characterizes MM.
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utilizing tissue-specific promoters or enhancers to restrict viral gene

expression within MM cells (24, 28, 31–34). Similarly, the

integration of therapeutic transgenes into OVs facilitates targeted

delivery of cytotoxic agents, immune modulators, or proapoptotic

factors specifically to MM cells, thereby enhancing the oncolytic

effect and potentiating antitumor immune responses within the

MM microenvironment (23, 28, 35, 36). Figure 2 illustrates the

main receptors through which individual viruses enter MM cells,

while Table 1 lists the clinical studies conducted to date. The

following sections will provide a detailed overview of all viruses

studied for the treatment of MM, with an analysis of the underlying

molecular mechanisms and preclinical and clinical results up to

this point.
3.1 Measles virus

Measles virus (MV) is a negative single-stranded RNA virus of

the Paramyxovirus family. Its genome encodes six proteins, three of

which are essential for viral envelope formation: matrix protein (M),

hemagglutinin (H), and fusion protein (F) (37). The hemagglutinin

facilitates entry into target cells by binding to cellular receptors such

as CD46 and Signaling Lymphocytic Activation Molecule Family

Member 1 (SLAMF1), which are particularly expressed in MM PCs,

and Nectin-4 (14, 37). The vaccine strain currently used is the

Edmonston strain (MV-Edm), which was first isolated from a patient

in 1954. An important distinction among MV strains is their

preference for specific host cell receptors: wild-type strains tend to

prefer the SLAMF1 receptor, whereas it is known that MV-Edm

selectively targets the CD46 receptor (37).

In vitro studies have shown excellent replication of MV-Edm in

several MM cell lines and primary MM cells isolated from patients’

bone marrow (BM), and a limited replication in phytohaemagglutinin

(PHA)-stimulated peripheral lymphocytes (38). MV-Edm infection

induces significant cytopathic effects in MM cells, leading to the

formation of multinucleated syncytia and subsequent cell death (38).
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Moreover, MV-Edm demonstrated antitumor efficacy by inhibiting

MM cell engraftment in xenografts in immunocompromised mice (38).

Recently, a correlation between CD46 receptor expression and

the tumor suppressor gene Tumor Protein P53 (TP53) has been

highlighted. Lok et al. showed that TP53-deficient MM cells exhibit

increased CD46 expression, with an increased susceptibility to MV

infection compared to cells with functional TP53 (39).

To enhance the oncolytic efficiency of the MV-Edm virus and

facilitate non-invasive imaging of infected tissues, a recombinant

version expressing human sodium iodide symporter (NIS) was

developed (40). This modified virus, designated MV-NIS, exhibited

a replication rate comparable to MV-Edm (40). MM cells infected

with MV-NIS have been shown to efficiently incorporate radioiodine.

Serial gamma chamber imaging showed the intratumorally spread of

the virus and the uptake of iodine-123 (123I) in both MV-sensitive

tumors that responded positively to MV-NIS treatment and non-

responsive tumors. Notably, complete regression of MV-resistant

tumors was observed when radioactive iodine, 131I, was administered

9 days after a single intravenous injection of MV-NIS (40).

To further optimize therapeutic efficacy, retargeted viruses

derived from MV-Edm were developed. These viruses were

engineered to selectively target MM cells, reducing side effects on

healthy tissues. The incorporation of antibody fragments specific

for PCs markers, such as CD38 or Wue-1, into the H envelope

protein of the MV-Edm virus resulted in enhanced directional

ability, contributing significantly to tumor growth inhibition and

increased survival in animal models (31, 41).

In addition to direct strategies for MV treatment, alternative

approaches have been developed involving the use of Cytokine-

Induced Killer (CIK) cells as vectors for oncolytic therapy. CIK cells

represent a heterogeneous subset of ex vivo expanded T

lymphocytes that exhibit phenotypic and functional properties of

both natural killer (NK) cells and T lymphocytes (42). The infected

cells exhibited a high capacity to eradicate MM cells in both culture

and animal models, significantly outperforming the efficacy of

uninfected CIK cells (43).
FIGURE 2

The interaction between oncolytic viruses and specific receptors in myeloma cells. Oncolytic viruses (OVs) can recognize and penetrate multiple
myeloma (MM) cells through interaction with specific receptors on the cell surface. The figure illustrates the various OVs and the respective
receptors with which they interact. Vaccinia virus and myxoma virus represent two distinct examples. Vaccinia virus employs endocytosis and
membrane fusion to enter cells, forming syncytia. Myxoma virus has demonstrated efficacy against MM cells; however, its specific surface receptor
remains unidentified.
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In parallel, clinical trials, such as the Phase I/II trial

NCT00450814, evaluated the efficacy of MV-NIS in the treatment

of MM (29, 44). A total of 32 patients were enrolled in this study. The

29 evaluable patients had a median age of 62 years and a median of 5

prior therapies. In Phase I, 13 patients were initially enrolled to

receive various doses of MV-NIS. Although some patients

experienced adverse reactions, including severe neutropenia, the

maximum tolerated dose was not reached, and TCID50 1011 was

established as the treatment dose for the Phase II trial (44). After

confirming the safety of the initial doses, Phase 2 was designed with

the addition of cyclophosphamide before MV-NIS treatment.

The study reported significant clinical improvement after MV-NIS

treatment. One patient treated with TCID50 10
11 achieved a complete

response lasting 9 months with an isolated relapse in the skull without

recurrent BM involvement. Four other patients showed a transient

reduction in serum immunoglobulin-free light chains of at least 25%

during the first 4 weeks of therapy, indicating a possible response to

therapy. One patient had a subjective reduction and shrinkage of his

extramedullary plasmacytomas on his back and thighs (44).

A subsequent study based on the same trial suggests that MV-NIS

boosts anti-MM T cell responses in MM patients (29). Before

virotherapy, more than 50% of patients showed T cell responses

against multiple tumor-associated antigens, indicating existing

immune activity against cancer cells. After MV-NIS treatment, T

lymphocyte responses against specific antigens such as MAGE-A3 and

MAGE-C1 were significantly enhanced. Particularly encouraging was

the case of a patient enrolled in the study with high levels of cytotoxic

T lymphocytes reactive to MV and tumor antigens. This patient

achieved long-term complete remission, highlighting the potential of

MV-NIS in combination with other immunomodulatory agents to

support durable tumor remission in MM patients (29).
3.2 Reovirus

Reovirus (RV), also known as respiratory enteric orphan virus,

got its name because it was initially not associated with any known
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disease. The Dearing strain of reovirus, classified as serotype 3 and

commercialized as Reolysin for therapeutic purposes, is a

ubiquitous, non-enveloped human virus with a genome of 10

double-stranded RNA segments (45). RV employs the JAM-A as

a means of entering tumor cells (46). MM cells exhibit high

expression of JAM-A, particularly in advanced stages of the

disease or in the presence of treatment resistance (15). The

replication is facilitated by the MM cells’ suppression of the

antiviral protein PKR, which allows for increased viral production

(47). Altered PKR allows RV to circumvent this cellular defense

mechanism, replicate efficiently, and cause lytic infection (30).

Several studies have demonstrated that RV induces

endoplasmic reticulum (ER) stress and the expression of the pro-

apoptotic protein NOXA, resulting in the apoptosis of MM cells (48,

49). RV also promotes autophagy in MM cells, contributing to

reduced cell viability (50). In mouse models, the combination of RV

with bortezomib has been shown to potentiate apoptotic activity,

increasing ER stress and NOXA expression, while reducing MM

tumor burden without significant adverse effects (48). Kennedy

et al. identified nicotinamide adenine dinucleotide (NAD+) as a

critical factor in the susceptibility of MM cells to reovirus-induced

oncolysis. Pharmacological inhibition of nicotinamide

phosphoribosyl transferase (NAMPT), a key enzyme in the NAD+

synthesis pathway, with FK866 sensitized MM cells to RV oncolysis,

causing mitochondrial dysfunction and promoting autophagy and

cell death (51). In addition, the concomitant administration of RV

with histone deacetylase inhibitors (HDACi) resulted in an

increased expression of JAM-A, rendering MM cells more

susceptible to oncolytic action (52). Furthermore, RV

demonstrated efficacy in the ex vivo purging of autologous stem

cell transplantation, selectively killing MM cells while sparing

healthy ones, thus improving therapeutic outcomes (53, 54).

Besides direct effects, it has been observed that RV exerts

indirect effects on the immune system. In mouse models, RV has

demonstrated the ability to significantly reduce tumor burden and

MM-induced bone disease, which correlates with an increase in NK

cells and effector memory CD8+ T cells (55). The combination of
TABLE 1 List of oncolytic viruses currently being tested in myeloma clinical trials.

Virus Name Phase Combination Trial No. Status References

Measles (MV) MV-NIS

I/II ± Cyclophosphamide NCT00450814 Completed (29, 44)

II Cyclophosphamide NCT02192775 Completed

I None NCT03456908 Completed

Reovirus (RV) Reolysin

I None NCT01533194 Completed (61)

I Lenalidomide or pomalidomide NCT03015922
Unknown
status

I Bortezomib + dexamethasone NCT02514382 Completed (63, 64)

I Carfilzomib + dexamethasone NCT02101944 Completed (62)

I/II Bortezomib + pembrolizumab NCT05514990 Recruiting

I
Dexamethasone + carfilzomib

+ nivolumab
NCT03605719 Completed

Vesicular stomatitis virus (VSV) VSV-IFNb-NIS I ± Cyclophosphamide NCT03017820 Recruiting (110)
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RV with lenalidomide or bortezomib has been shown to stimulate a

robust antitumor immune response in preclinical studies (56–58).

The rationale for combining OV with bortezomib is based on

the latter’s ability to also induce the ICD. This process is

characterized by the exposure of calreticulin on dying MM cells,

their phagocytosis by dendritic cells, and the induction of a specific

immune response against MM (59).

The use of RV together with lenalidomide and dexamethasone

has been demonstrated to overcome the resistance of MM cells to

direct viral death by activation of NK cells (56). RV also reduces the

protection offered by BM stromal cells, thereby improving the

overall efficacy of the treatment by lenalidomide and

dexamethasone (56).

Moreover, Thirukkumaran et al. observed that co-treatment

with bortezomib reduces regulatory T cells (Tregs) and suppressive

myeloid cells (MDSCs), thereby increasing the activity of immune

effector cells (57). Specifically, the RV-bortezomib combination

stimulates the production of pro-inflammatory cytokines such as

interferon-gamma (IFN-g), creating an inflammatory environment

that potentiates the activity of NK and CD8+ T cells.

The increased expression of immune markers such as PD-1 and

PD-L1 observed following RV treatment suggests that this approach

could be particularly effective when combined with targeted

therapies such as PD-1/PD-L1 inhibitors (60).

The clinical effects of RV in the treatment of MM patients have

been studied in various clinical trials, demonstrating an acceptable

safety profile but limited efficacy results (61–64).

In clinical trial NCT01533194, patients received two doses of

Reolysin (3×109 TCID50/day or 3×1010 TCID50/day) without

experiencing dose-limiting toxicities (DLTs). Nevertheless, no

significant objective responses were observed, with only a few

patients achieving disease stability for up to eight months (61).

Analyses indicated that viral resistance, limited antitumor immune

response, and inadequate viral dosing may have reduced treatment

efficacy. A critical factor that emerged was the lack of JAM-A receptor

expression in the patient’s cells, which may have limited viral

infection of MM cells, reducing treatment efficacy. Otherwise, RAS

mutations, which are prevalent in patients with relapsed MM, did not

demonstrate a significant correlation with treatment efficacy (61).

In a different trial (NCT02101944), the efficacy of a combined

treatment regimen comprising Reolysin, carfilzomib, and

dexamethasone was evaluated in MM patients who had

demonstrated resistance to carfilzomib (62). Six patients completed

28-day cycles, during which reovirus infection was observed in the

BM on day 9 of the first cycle. Two patients demonstrated partial

responses; however, one of them developed a cytokine storm with

severe symptoms, and the other one discontinued treatment due to

fever and severe thrombocytopenia. This cytokine storm, the first

observed in blood cancer patients treated with OVs, was associated

with T-cell activation due to combination therapy. The observed

clinical responses were attributed to the infection of MM cells, the

recruitment of CD8+ and NK cells, the increased expression of

activated PD-L1 and caspase-3, and the viral protein production in

MM cells (61).

NCT02514382 trial evaluated the safety and efficacy of RV

combined with bortezomib and dexamethasone in patients with
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relapsed and refractory MM who had previously undergone at least

one course of therapy (63, 64). The combination was well tolerated,

with most toxicities presenting as transient flu-like symptoms that

could be managed with acetaminophen, antiemetics, or

antidiarrheals. No DLTs were observed, indicating that the

maximum tolerated dose was not reached. The 3×1010 TCID50

dose of Reolysin was administered for five consecutive days in 21-

and 28-day treatment cycles. Six of eleven evaluable patients (55%)

demonstrated a reduction in paraprotein levels. In patients who

responded to the treatment, there was an association between viral

proliferation and increased apoptosis, as indicated by the increase in

cleaved caspase-3-positive cells. Immunohistochemical analysis

revealed a significant increase in cytotoxic T cells in responders,

suggesting that these cells cluster around MM cells. This spatial

change in the tumor microenvironment could contribute to the

efficacy of the treatment (64).
3.3 Adenovirus

Adenoviruses (AdVs) are non-enveloped, double-stranded

DNA viruses with an icosahedral capsid primarily composed of

hexon, penton, and fiber proteins, belonging to the Adenoviridae

family. In humans, over 100 AdV types have been identified, and

classified into seven genetically distinct species (A–G) based on

phylogenetic analysis of their genomic sequences, pathobiology, and

immunological and tumorigenic properties (65). Although human

AdVs cause significant numbers of respiratory, ocular, and

gastrointestinal diseases, severe AdV-associated illness occurs

predominantly in immunocompromised individuals. In the

general population, AdV infections are typically self-limiting and

lead to lifelong immunity (66).

Among AdV types, Ad5 (species C) is the most widely used

vector for oncolytic virotherapy, having demonstrated success in

both preclinical and clinical trials across various cancers (67). The

infection of tumor cells by Ad5 begins with viral fiber knob

attachment to receptors on the surface of malignant cells. The

receptor specificity differs according to the viral serotype. For

instance, Ad5 binds preferentially to the Coxsackie and

Adenovirus Receptor (CAR), while Ad3 binds to desmoglein-2,

CD46, or CD80/86 (68). This receptor diversity is particularly

relevant to MM, where CD46 and CAR are variably expressed on

malignant cells (69).

Preclinical studies have demonstrated the therapeutic potential

of AdVs in MM. In one investigation, AdVs were employed as a

therapeutic tool for purging MM cells, showing their ability to

deliver the TK gene into MM cells using the DF3/MUC1 tumor

promoter, with tumor cell transduction observed to be highly

efficient (>80%) (34). Treatment with ganciclovir selectively

eliminated MM cells without affecting normal progenitor cells

(34). Senac et al. demonstrated that distinct AdV serotypes,

including Ad5, Ad6, Ad26, and Ad48, can effectively infect and

destroy MM cells while exhibiting minimal cytotoxicity against

CD138- cells. Ad5 and Ad6 exhibited a high capacity to infect MM

cells through CAR and integrin receptors, while Ad26 and Ad48

utilized alternative receptors, such as CD46 and sialic acid (69).
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Innovative strategies have been developed to enhance the

therapeutic efficacy of Ad5 in MM treatment, taking advantage of

its amenability to genetic modification. Through targeted genetic

engineering, Ad5 can be optimized to improve tumor specificity

and enhance its oncolytic efficiency, thereby increasing selectivity

for malignant cells while reducing off-target cytotoxicity. Fernandes

et al. developed an oncolytic AdV, AdEHCD40L, which expresses

CD40 ligand (CD40L) under the control of hypoxia-specific

promoters (32). This vector has been demonstrated to effectively

inhibit the growth of MM cell lines in vitro and to significantly

reduce tumor volume in mouse models. The therapeutic efficacy of

AdEHCD40L has been attributed to both direct viral lysis and

CD40L-mediated induction of apoptosis, suggesting a dual

mechanism of action (32). Wenthe et al. investigated the use of

AdVs LOAd700 and LOAd703, which had been modified to express

trimerized CD40 ligand (CD40L) and 4-1BB ligand (4-1BBL),

respectively (28). The viruses demonstrated potent oncolytic

activity against MM cell lines and the activation of antitumor

immune responses. LOAd703 demonstrated superior efficacy in

controlling tumor growth in xenograft models, as evidenced by its

ability to stimulate cytotoxic T cells and increase the expression of

death receptors such as Fas (28).

Further therapeutic approaches have also demonstrated

significant potential. Tong et al. combined an oncolytic AdV

expressing TRAIL (ZD55-TRAIL) with the PI3K inhibitor

LY294002 (23). This combination enhanced the cytotoxicity of

the virus toward MM cells by inhibiting the Akt/mTOR survival

pathway and enhancing the induction of apoptosis in tumor cells.

Furthermore, the addition of the proteasome inhibitor MG132

resulted in a further increase in the expression of Death Receptor

5 (DR5), thereby sensitizing MM cells to ZD55-TRAIL-induced

apoptosis (23).

Stewart et al. developed an oncolytic AdV, ADCE1A, which

employs the MM-specific CS1 promoter to regulate E1A gene

expression. This AdV demonstrated selective infection and

replication in MM cell lines and induced oncolysis in CD138+

cells of MM patients, without affecting non-tumor cells (70).

Moreover, the combined use of a recombinant p53 AdV (rAd-

p53) and bortezomib showed synergistic inhibition of proliferation

and induction of apoptosis in MM cells. rAd-p53 enhanced the

expression of p21, arresting the cell cycle and reducing the

expression of cyclin B1, thus improving the efficacy of bortezomib

treatment (71).

However, there are significant limitations to the use of Ad5 as a

vector. First, an estimated 50–90% of the adult population is

seropositive for pre-existing anti-Ad5 neutralizing antibodies (72,

73). These neutralizing antibodies have been shown to limit the

antitumor efficacy of Ad5, particularly during systemic intravenous

delivery (74–76). Second, intravenous administration of Ad5 can

lead to liver toxicity due to significant liver sequestration, driven by

Ad5 hexon binding to coagulation factor X (FX) (77, 78). In

response to this, Alba et al. developed FX-binding-ablated Ad5

hexon vectors to mitigate this side effect (79).

To circumvent these limitations, researchers have begun

exploring alternative AdV serotypes. For example, the low

seroprevalence of antibodies against species D AdVs, coupled
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for further exploration as oncolytic agents (80). Additionally,

chimeric AdVs have been developed to evade neutralizing

antibodies (81).
3.4 Herpes simplex virus type 1

Herpes simplex virus type 1 (HSV-1) is a double-stranded DNA

virus with icosahedral symmetry, belonging to the family

Herpesviridae. It is primarily known to cause oral infections such

as cold sores (82). Recently, oncolytic versions of HSV-1 (oHSV-1)

have shown a promising ability to selectively infect tumor cells (83).

This specificity is defined by the surface glycoproteins of individual

virions, which interact with cell surface receptors, particularly

Nectin-1 and Herpes Virus Entry Mediator (HVEM) (82). These

receptors are highly expressed in MM cells, contributing to the

selectivity of oHSV-1 infection (84).

Ghose et al. demonstrated that oHSV-1 effectively infected MM

cells in vitro, causing apoptosis through cleavage of caspase-3. In

murine models, infection with oHSV-1 led to a significant reduction

in tumor volume (84). Furthermore, the combination of oHSV-1

with NK cells immunotherapy has been demonstrated to

enhance therapeutic efficacy through the activation of NK cells

and the subsequent increased release of cytokines and cytotoxic

capacity (85).

Additional therapeutic combinations including oHSV-1 with

bortezomib or lenalidomide have shown synergistic effects (25, 86).

Specifically in vitro, HSV1716 (SEPREHVIR®), when combined

with bortezomib, prevented MM cell regrowth for up to 25 days

(86); at the same time, third-generation HSV-1 T-01, when used

together with lenalidomide, increased the cytotoxic effect and

enhanced antitumor activity through the activation of NK cells

and the modulation of the immune environment (25).
3.5 Coxsackievirus A21

Coxsackievirus A21 (CVA21) is a member of the Picornaviridae

family and is a non-enveloped virus with an icosahedral structure

and a genome consisting of a single strand of positive-sense RNA.

In humans, natural infections of CVA21 are generally

asymptomatic and not associated with severe disease (87). ICAM-

1 and/or DAF cell surface receptors are responsible for the specific

adhesion of CVA21 and subsequent infection of the host cell (88).

CVA21 can bind to DAF expressed on the cell membrane but is

unable to infect a cell unless ICAM-1 is co-expressed on the cell

surface. Consequently, ICAM-1 is considered a pivotal factor in

CVA21 entry, uncoating, and replication under normal infection

conditions (88). In comparison to most non-malignant cells, MM

cells express ICAM-1 and DAF at relatively high levels, which

allows for selective oncolysis by CVA21 (16). The elevated level of

ICAM-1 expression in MM cells can be attributed to the

constitutive activation of the transcription factor NF-kB, which is

present in numerous cell lines and patient biopsies (89).
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In vitro studies have revealed that MM cell lines incubated with

different concentrations of CVA21 exhibit a rapid cytopathic effect,

even at low doses (16, 90). The oncolytic ability of CVA21 was

confirmed in MM patients’ BM mononuclear cells, demonstrating

that this effect is not limited to laboratory-adapted MM cell lines but

is also effective in primary tumor samples infected ex vivo.

Following infection with high levels of CVA21, a substantial

clearance of tumor cells was observed, with minimal effects on

non-malignant cells (16).

In SCID mice with human MM xenografts, a study

demonstrated that the tumors exhibited rapid and complete

responses to treatment with CVA21, either by intravenous or

intratumorally administration (90). However, once the tumors

regressed, the mice developed hind-limb paralysis and died

rapidly. Pathological analysis revealed the complete ablation of

tumor tissue, accompanied by the presence of diffuse myositis in

the muscle tissues. CVA21 virus was recovered from muscle

biopsies, but no evidence of central nervous system infection was

found. Toxicity was observed in tumor-bearing animals with a dose

of CVA21 up to 560 TCID50. To mitigate myositis, adenoviral

vectors encoding for mouse IFN-a were administered before

CVA21 therapy. However, the impact on tumor response or

survival was minimal (16). Ongoing studies aim to find potential

alternatives to reduce off-target effects.
3.6 Vaccinia virus

Vaccinia virus (VV) is a double-stranded DNA virus belonging

to the Poxviridae family, best known for its use in the eradication of

smallpox in the 1970s (91). This virus employs several mechanisms

to enter host cells. Once attached to the cell surface via specific

receptors, such as heparan sulfates, VV exploits the process of

endocytosis mediated by macropinocytosis to penetrate the

cytoplasm (91). Although the mechanism of high selectivity of

VV for MM cells is not fully elucidated, it is postulated that aberrant

signaling pathways through the RAS/Mitogen-Activated Protein

Kinase (MAPK) pathways may contribute to this effect (91).

Attenuated VV variants with specific genetic deletions have

been developed to selectively infect and replicate in malignant PCs,

minimizing toxicity in normal tissues. A modified VV with double

genetic deletion and insertion of a reporter gene has been shown to

effectively infect several MM cell lines, inducing apoptosis and

reducing cell viability in vitro, as well as slowing tumor growth and

improving survival in MM mouse models without causing

significant damage to healthy tissues (92). Another approach

involved the use of a VV regulated by let-7a microRNA and with

a deletion of the thymidine kinase gene (DTK), which demonstrated

preferential localization of the virus in MM cells and reduced

systemic toxicity. This engineered virus showed significant

antitumor effects and improved survival in SCID mice (93). A

further study explored the use of two novel VVs (TK-deletions) as

vectors for anti-cancer gene delivery, miR-34a and Smac,

respectively (36). The results demonstrated that the novel

oncolytic VVs can effectively infect MM cell lines and

significantly enhance exogenous gene expression. Furthermore,
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the combined use of VV-miR-34a and VV-Smac exhibited a

synergistic effect by inhibiting tumor growth and inducing

apoptosis in vitro and in vivo. The proposed underlying

mechanism is that blockade of Bcl-2 by VV-miR-34a increases

cytochrome c release from mitochondria and thus synergistically

amplifies the antitumor effects of Smac-induced cell apoptosis (36).

Finally, a VV modified to express Beclin-1 protein demonstrated

the ability to induce significant autophagic cell death in MM cells by

activating Sirtuin 1 (SIRT1) protein and promoting deacetylation

and transfer of Microtubule-Associated Protein 1A/1B-light chain 3

(LC3) from the nucleus to the cytoplasm. This suggests a novel

mechanism of action that could overcome the resistance of cancer

cells to apoptosis (35).

Preclinical data regarding the use of VV in the treatment of MM

find confirmation in a significant clinical case involving a 67-year-

old patient with IgA-type MM (94). The patient received

intravenous injections of a specific variant of VV, known as the

AS strain, which resulted in a substantial reduction in monoclonal

IgA levels and an increase in NK cell activity. It is noteworthy that

no significant adverse effects were observed throughout treatment,

which suggests a favorable safety profile for VV (94). This clinical

case not only demonstrates the efficacy of VV in reducing disease

biomarkers but also its potential to improve the patient’s

immune response.
3.7 Myxoma virus

Myxoma virus (MYXV) belongs to the genus Leporipoxvirus of

the family Poxviridae. It possesses a large linear double-stranded

DNA genome enclosed in a brick-shaped virion (95). The entire

MYXV replication cycle takes place in the cytoplasm of infected

cells, where the virus produces a variety of immunomodulatory

proteins that interact with the host. In the wild, MYXV exclusively

infects rabbits and European brown hares and is not pathogenic to

other hosts (95). Nevertheless, MYXV is capable of replicating in

human tumor cell cultures, which exhibit a particular degree of

permissiveness towards this virus. This permissiveness is attributed

to its interaction with deregulated cellular pathways, particularly the

Akt pathway (96). MM cells exhibit alterations in this pathway,

rendering MYXV a potential oncolytic agent for the treatment of

this tumor type (13).

The mechanism of action of MYXV differs from traditional

oncolytic approaches, as it induces apoptosis in MM cells through

the activation of caspase-8. This process is due to the depletion of

apoptosis inhibitory proteins (cIAPs) caused by virus-mediated

translational arrest (97). Additionally, MYXV induces autophagy,

as evidenced by increased expression of the key proteins ATG-5,

Beclin-1, and LC3B, and the presence of autophagosomes (98).

Furthermore, the virus is capable of inhibiting the Activating

Transcription Factor 4 (ATF4) expression and reducing the

Myeloid Cell Leukemia 1 (Mcl1) levels, thereby overcoming

resistance to proteasome inhibitors (99). A recent study

investigated the combination of MYXV with lenalidomide and

bortezomib, revealing a significant reduction in MM cell viability

and an increase in early apoptosis. This synergistic effect is mediated
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by increased caspase-9 expression (100). In mouse models, the

systemic administration of MYXV demonstrated efficacy in

eliminating MM cells by inducing robust CD8+ T antitumor

immune responses, suggesting the possibility of its use as a

systemic therapy in patients (101).

De Matos et al. investigated the therapeutic potential of armed

MYXV, engineered to express immunomodulatory proteins such as

IL-12 and decorin. The authors reported significant oncolytic effects

and transgene expression in MM cell lines, suggesting that this new

approach could be applied in patients resistant to other

immunotherapy strategies (102).

As with other previously treated viruses, MYXV has been

demonstrated to be effective in purging ex vivo autologous

hematopoietic stem cells (HSPCs) contaminated with MM cells,

while preserving normal HSPCs and reducing post-transplant

recurrence (103). Furthermore, ex vivo virotherapy with MYXV

demonstrated encouraging outcomes in optimizing allogeneic

hematopoietic cell transplantation. This approach significantly

reduced the proliferation of alloreactive T cells and prevented

graft-versus-host disease (GVHD) without compromising the

antitumor effect (27). Finally, infusion of autologous leukocytes

preloaded ex vivo with MYXV revealed remarkable efficacy in

targeting minimal residual disease (MRD) of MM, suggesting a

promising approach to overcome drug resistance and improve

survival rates (104).
3.8 Vesicular stomatitis virus

Vesicular stomatitis virus (VSV) is an enveloped, single-

stranded, negative-sense RNA virus belonging to the

Rhabdoviridae family (105). It employs surface molecules such as

the low-density lipoprotein receptor (LDLR) to target cells. LDLRs,

due to their ubiquitous expression, enable VSV to infect a diverse

range of cell types. However, VSV infection is typically inhibited by

the activation of PKR and the production of IFN. Given that the

PKR system is defective in cancer cells, VSV exhibits high

selectivity (106).

In MM, preclinical studies have demonstrated promising results

for the use of VSV both in vitro and in vivo (107). An attenuated

variant, VSV(D51)-NIS, with a deletion of methionine 51 in the

matrix protein and expression of the NIS gene, demonstrated specific

oncolytic activity against MM cell lines and primary MM cells,

without causing neurotoxicity in mouse models (108). Infection

was monitored noninvasively by serial gamma camera imaging of

radioactive iodine biodistribution. The combination of VSV(D51)-
NIS with 131I further enhanced the efficacy of tumor regression and

survival in immunocompetent mice (108). In addition, another study

demonstrated that a VSV-IFNb construct, which expresses IFN-b,
significantly prolonged the survival of mice with disseminated MM

(24). This was achieved through the combined action of the oncolytic

activity of VSV and the immunomodulatory properties of IFN-b.
VSV-IFNb demonstrated specific oncolytic activity against human

MM cells and primary patient samples, although with variable

susceptibility (24). Moreover, the combination of VSV with

bortezomib demonstrated synergistic effects in vivo, despite the
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therapeutic efficacy observed may be mediated by host immune

responses (109).

These promising results led to the design of a phase I clinical

trial (NCT03017820) to assess the safety and optimal dosing of

VSV-IFNb-NIS in patients with relapsed or refractory MM. The

study included 15 patients with relapsed/refractory hematologic

malignancies, of whom 7 had MM (110). Patients received a single

intravenous infusion of VSV-IFNb-NIS across four dose levels

(DL), with the highest dose being 1.7 × 10¹¹ TCID50 (DL4). No

dose-limiting toxicities were observed, although 1 of 2 MM patients

treated at DL4 experienced grade 2 cytokine release syndrome,

which was transient and resolved within 24 to 48 hours (110).

Overall, MM patients did not show significant clinical responses,

with disease stabilization being the best outcome observed. Notably,

one MM patient had an osteolytic lesion in the right ilium that

showed increased 99mTc-pertechnetate uptake on days 1 and 5 post-

treatment, indicating viral presence. This lesion also demonstrated

reduced [18F]Fluorodeoxyglucose activity on PET/CT, suggesting

an initial response to therapy, although the patient experienced

overall disease progression. A separate lesion in the left acetabulum

showed no changes post-treatment, with increased size and bone

destruction observed at the 6-month follow-up (110). Additional

study arms have been added to this ongoing phase I trial to explore

the safety and efficacy of combining VSV-IFNb-NIS with drugs that

modulate antiviral or antitumor immune responses.
3.9 Bovine viral diarrhea virus

Bovine viral diarrhea virus (BVDV) is a small, enveloped RNA

virus belonging to the genus Pestivirus of the family Flaviviridae

(111). BVDV is a significant pathogen of cattle, causing syndromes

affecting the intestinal, respiratory, and reproductive systems. It is

important to note that BVDV is not pathogenic to humans (111). It

has been demonstrated that BVDV utilizes CD46 as a receptor for

entry into host cells, a process analogous to that observed with the

MV (112). Furthermore, several studies have shown that members

of the heparan sulfate family, including the CD138 molecule (a

distinctive marker of MM), act as cellular receptors for BVDV

binding to host cells (113).

Marchica et al. investigated the efficacy of BVDV in the

treatment of MM cells, emphasizing its potential as a novel

therapeutic strategy (17). Specifically, BVDV demonstrated a

selective cytotoxic effect on MM cells, with a significant increase

in cell death and activation of apoptotic markers. In ex vivo

experiments, BVDV treatment significantly reduced the

percentage of viable CD138+ cells within mononuclear cells

isolated from BM aspirates of MM patients, without altering the

viability of other cell populations. Moreover, pretreatment with

bortezomib markedly augmented the cytotoxic impact of BVDV on

MM cell lines, indicating a synergistic effect resulting from the

activation of the caspase-3-mediated apoptotic pathway (17).

Finally, in mice injected subcutaneously with MM cells, BVDV

treatment significantly reduced tumor burden without evidence of

toxicity to vital organs such as the heart and lungs (17).
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4 Challenges and optimization
strategies in myeloma
oncolytic virotherapy

Oncolytic virotherapy presents a promising avenue for treating

MM, but it faces significant challenges related to delivery, immune

evasion, and biosafety that must be meticulously addressed (114).

In diseases such as MM, characterized by systemic involvement,

intravenous (i.v.) delivery of OVs provides a feasible strategy to

target malignant cells residing in the BM and other extramedullary

sites (114). However, systemic delivery introduces several obstacles,

including poor extravasation from tumor vasculature, non-specific

sequestration in the liver, and rapid neutralization by pre-existing

antiviral antibodies or treatment-induced neutralizing anti-viral

antibodies. Neutralization by the immune system, especially in

immunocompetent hosts, limits the therapeutic potential of OVs

by reducing their circulation time and preventing effective tumor

targeting (115). Various strategies have been developed to

circumvent these issues. For instance, PEGylation, a polymer-

based technique, has been shown to shield OVs from antibody-

mediated neutralization and prevent nonspecific accumulation in

the liver, thereby prolonging their systemic half-life (116). Similarly,

encapsulation in nanoparticles, including graphene, has

demonstrated efficacy in protecting viral particles during systemic

circulation (117). In addition, “stealth” viruses, such as MeV-

Stealth, have been engineered to evade pre-existing immunity

(118). MeV-Stealth, specifically re-engineered to evade

neutralizing antibodies in measles-immune patients, has

demonstrated promising results in targeting CD46-expressing

MM cells (118). An equally significant challenge is the rapid

clearance and liver trapping observed particularly with AdV

(119). Ad5, as described above, binds to coagulation FX, which

mediates liver transduction, leading to off-target effects and reduced

therapeutic efficacy (79). To mitigate this, researchers have

genetically modified Ad5 to remove its FX-binding domain,

preventing sequestration in the liver without compromising its

oncolytic function (79). Moreover, CAR-independent infection

mechanisms have been developed to enhance tumor-specific

targeting while avoiding liver trapping, a critical advancement for

systemic virotherapy (120).

To further improve the efficacy of OVs, immunosuppressive

agents such as cyclophosphamide have been co-administered to

transiently suppress both innate and adaptive antiviral responses.

Cyclophosphamide not only enhances viral replication but also

depletes regulatory T cells, rebooting the immune system and

promoting an enhanced antitumor response (121). Ruxolitinib, a

JAK/STAT inhibitor, has also been employed to enhance viral

replication by inhibiting interferon responses in IFN-competent

tumor cells, allowing for improved OV propagation while

mitigating the risk of excessive cytokine release or rapid tumor

lysis syndrome (122). In addition to these pharmacological

interventions, the use of non-human or rare viruses presents a

promising alternative to circumvent the issue of pre-existing

immunity. These viruses, being non-pathogenic to humans, are

unlikely to encounter neutralizing antibodies in the human
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population (123). However, they do pose biosafety risks,

including potential shedding or recombination with wild-type

viruses, underscoring the need for stringent safety protocols in

clinical settings (114). While clinical trials involving OVs such as

MV-NIS, Reolysin, and VSV-IFNb-NIS in MM have shown

acceptable safety profiles, with responses ranging from partial

remission to disease stabilization, the risk of latent viral infections

or recombination remains a concern (29, 44, 61–64, 110). For

instance, HSV-1, which serves as the backbone for T-VEC, the

first FDA-approved oncolytic virus, has been associated with latent

infections, highlighting the importance of long-term safety

surveillance (124). In the case of the MV-NIS trial specifically,

viral shedding in sputum and urine was typically limited to the first

8–15 days following therapy, suggesting a controlled window of

viral presence post-treatment (44). Nonetheless, the potential for

reactivation or recombination, as seen with other viral platforms,

warrants close surveillance even after the acute phase has passed.

A critical advantage of OVs is their potential to synergize with

immune-based therapies, such as bispecific T-cell engagers (BiTEs)

and CAR-T cell therapies (125, 126). OVs can serve as genetic

engineering platforms to express BiTEs, which can redirect T cells

to target tumor-specific antigens without relying on MHC-I antigen

presentation (125). However, due to their small molecular weight and

short half-life, BiTEs typically require continuous infusion, which

increases the risk of systemic adverse effects (127). The selective

replication of OVs in tumor cells provides a means to restrict BiTE

expression to the tumor microenvironment, reducing off-target

effects and enhancing therapeutic specificity (125). Moreover, OVs

can reshape the tumor microenvironment by inducing the

production of pro-inflammatory cytokines and chemokines, which

promote the infiltration and activation of CAR-T cells (126). This

ability to reprogram the immunosuppressive tumor niche is

particularly valuable in MM, where the tumor microenvironment

often limits the efficacy of CAR-T cell therapy alone (126).

Genetic modifications of OVs to enhance tumor tropism are

also crucial. The heterogeneity of MM, along with the variability in

viral receptor expression across patients, complicates the

implementation of uniform treatments. Investigating differentially

expressed genes in MM cells and designing ligand-pseudotyped

OVs that target these specific markers could significantly enhance

tumor selectivity (11).

Overall, continued research is needed to optimize safety and

efficacy of OVs in MM, including monitoring for long-term risks

such as viral persistence or recombination. Nevertheless, the

integration of OVs with immunotherapies holds significant

promise for overcoming the current barriers in MM treatment.
5 Conclusions

Over the past decade, in the field of oncolytic virotherapy,

significant progress has been made, in exploring the use of different

viruses, both natural, engineered, and of non-human origin. This

innovative approach is particularly promising in the context of

immunotherapy for the possible capacity to potentiate the effect of

other drugs and to potentiate immune-mediated MM cell death.
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Oncolytic virotherapy may also represent an innovative strategy for a

possible personalized approach due to the specific characteristics of

tumoral cells and their microenvironment that make them susceptible

to viral therapy. While OVs show potent anti-MM activity both in

vitro and in vivo in pre-clinical mouse models, their clinical use as

monotherapy has limitations. To maximize therapeutic efficacy, it is

critical to combine OVs with other therapeutic agents including

proteasome inhibitors and immunotherapeutic agents such as

immunomodulatory imide drugs, monoclonal antibodies, and T

cell therapy.

In conclusion, the future success of oncolytic virotherapy in the

treatment of MM will depend on key factors such as the identification

of biomarkers predictive of tumor response, the improvement of

administration strategies, and the enhancement of the immune

response through combination approaches. It is hopeful that

through continued research and the integration of innovative

therapeutic strategies the full potential of oncolytic virotherapy can

be realized with an appropriate clinical development for MM patients.
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