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Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses

significant challenges regarding morbidity and mortality rates. In the context of

HCC, immune cells play a vital role, especially concerning the presentation of

antigens. This review explores the intricate interactions among immune cells

within HCC, focusing on their functions in antigen presentation and the

modulation of T-cell responses. We begin by summarizing the strategies that

HCC uses to escape immune recognition, emphasizing the delicate equilibrium

between immune surveillance and evasion. Next, we investigate the specific

functions of various types of immune cells, including dendritic cells, natural killer

(NK) cells, and CD8+ T cells, in the process of antigen presentation. We also

examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-

associated protein 4 (CTLA-4) and the pathways involving programmed cell

death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen

presentation, while taking into account the clinical significance of checkpoint

inhibitors. The review further emphasizes the importance of immune-based

therapies, including cancer vaccines and CAR-T cell therapy, in improving

antigen presentation. In conclusion, we encapsulate the latest advancements

in research, propose future avenues for exploration, and stress the importance of

innovative technologies and customized treatment strategies. By thoroughly

analyzing the interactions of immune cells throughout the antigen presentation

process in HCC, this review provides an up-to-date perspective on the field,

setting the stage for new therapeutic approaches.
KEYWORDS

hepatocellular carcinoma, dendritic cells, natural killer cells, CTLA-4, PD-1/PD-L1
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1483834/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1483834/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1483834/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1483834/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1483834/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1483834/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1483834&domain=pdf&date_stamp=2024-10-22
mailto:pumch_ytwang@126.com
mailto:zjtao@cmu.edu.cn
https://doi.org/10.3389/fimmu.2024.1483834
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1483834
https://www.frontiersin.org/journals/immunology


Ning et al. 10.3389/fimmu.2024.1483834
1 Introduction

Hepatocellular carcinoma (HCC), the predominant type of liver

cancer, poses a considerable challenge to global health, illustrated by

rising incidence figures and concerning mortality rates (1–3). The

complex relationships between cancerous cells and the host’s immune

system are crucial in influencing the development and progression of

HCC. Understanding how immune cells participate in the antigen

presentation process related to HCC is vital, as this insight is

fundamental to improving our grasp of tumor immunology and

formulating effective therapeutic strategies (4). This review seeks to

explore the complex interactions between immune cells and HCC,

emphasizing their functions in antigen presentation and the regulation

of T cell responses (5). HCC is frequently associated with chronic liver

conditions, such as viral hepatitis, alcoholic liver disease, and non-

alcoholic fatty liver disease (5, 6). These risk factors lead to a

microenvironment that fosters immune dysregulation, allowing

tumor cells to escape immune detection and grow (7, 8).

The immune system’s ability to recognize and destroy abnormal cells

is fundamental to cancer progression. In this context, the process of antigen

presentation acts as a critical checkpoint (9, 10). Antigen-presenting cells

(APCs), including dendritic cells (DCs) and macrophages, play a vital role

in the capture of tumor-specific antigens and their subsequent delivery to

CD8+ cytotoxic T cells. This process initiates a cascade of immune

responses aimed at targeting cancerous cells. Nevertheless, the complex

mechanisms linked to antigen presentation in HCC and their influence on

the anti-tumor immune response remain subjects of ongoing research.

Understanding the immune dynamics related to HCC antigen

presentation carries important therapeutic implications. While

immune checkpoint inhibitors have achieved impressive results

across various types of cancer, their effectiveness in HCC has

been limited. This discovery suggests that gaining a deeper insight

into the immune landscape within the microenvironment of HCC is

essential for creating improved immunotherapy approaches (11,

12). Additionally, creating personalized treatment modalities, such

as cancer vaccines and adoptive T cell therapies, relies on a clear

understanding of the mechanisms of antigen presentation (13, 14).

As investigations reveal the complex interactions among immune

cells and HCC, it is essential to present a thorough summary of the

current understanding. This review aims to consolidate existing research

to illuminate the varied functions of immune cells in relation to antigen

presentation within HCC. By exploring the detailed communication

among immune cells, tumor cells, and the tumor microenvironment, we

seek to clarify the elements that contribute to immune evasion and

identify potential pathways for enhancing anti-tumor immune responses.

Through this analysis, the review enhances the overall comprehension of

tumor immunology and establishes a foundation for developing

innovative and focused immunotherapeutic approaches targeting HCC.
1.1 Immune escape mechanism of
hepatocellular carcinoma

HCC is recognized as the main liver cancer that often arises in

the context of ongoing liver inflammation, particularly associated
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with conditions such as viral hepatitis and liver damage from

alcohol (15–17). The management of immune surveillance plays a

crucial role in identifying and eliminating cancerous cells.

Nevertheless, HCC has skillfully developed various strategies to

avoid immune detection, promoting its unrestricted growth and

advancement (18). An essential factor contributing to the immune

evasion observed in HCC is the increased expression of inhibitory

immune checkpoint proteins. Among these, programmed death

ligand 1 (PD-L1) stands out prominently, alongside cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) (19–21). These

molecules interact with their corresponding receptors on T cells,

hindering their activation and subsequent effector functions,

thereby weakening the immune response aimed at cancerous cells.

Furthermore, the microenvironment surrounding tumors in

hepatocellular carcinoma (HCC) frequently exhibits a suppressive

immune profile, largely as a result of the buildup of regulatory T

cells (Tregs) and myeloid-derived suppressor cells (MDSCs) (22–

24). This aggregation of cells leads to the suppression of effector T

cells and natural killer (NK) cells, ultimately undermining the

immune response directed at malignant cells (25, 26). At the

same time, HCC cells display a tendency to release a variety of

immunosuppressive cytokines and chemokines, particularly

transforming growth factor-beta (TGF-b) and interleukin-10 (IL-

10), contributing to the overall reduction of anti-tumoral immune

responses (Figure 1).

Alterations in both genetic and epigenetic factors observed in

HCC cells contribute to immune evasion, as demonstrated by

changes in human leukocyte antigen (HLA) expression and

modifications in mechanisms for antigen presentation (27–29).

These irregularities enable HCC cells to avoid detection and

destruction by cytotoxic T cells, crafting a sophisticated evasion

strategy. Recently, clinical studies have highlighted the effectiveness

of immunotherapeutic approaches aimed at these immune escape

routes. In these initiatives, immune checkpoint blockers like anti-

programmed cell death protein 1 (PD-1) and anti-PD-L1 antibodies

have demonstrated effectiveness in certain groups of HCC patients

by re-energizing the inhibited immune response directed towards

the tumor. Furthermore, investigating combination therapies

targeting various immune evasion pathways shows potential in

enhancing the effectiveness of treatment option.
1.2 Interaction between immune cells and
tumor microenvironment

The complex interactions between various groups of immune

cells and the tumor microenvironment (TME) in HCC represent a

dynamic and multifaceted mechanism that significantly influences

the progression of the disease (11, 30). A broad spectrum of

research has uncovered important elements of this relationship,

emphasizing the sophisticated ways in which distinct immune cell

populations interact and communicate within the TME. Tumor-

associated macrophages (TAMs) are key players in the immune

milieu, predominantly exhibiting a pro-tumoral M2 phenotype in

the context of HCC. This behavior fosters both tumor development
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and neovascularization by releasing factors such as vascular

endothelial growth factor (VEGF) and IL-10 (31, 32). Tregs,

another critical aspect of the immune response, build up in the

TME and considerably influence antitumor immunity by effectively

inhibiting cytotoxic T cells and establishing an immunosuppressive

environment (33). Concurrently, MDSCs play a pivotal role in

promoting immune evasion mechanisms, as they reduce T cell

functionality and stimulate angiogenesis, further complicating the

already intricate landscape of immune escape within the TME (34).

Additionally, the complex interactions of immune checkpoints

in the HCC microenvironment trigger a series of sophisticated

molecular exchanges that shape the trajectory of antitumor immune

responses. Importantly, PD-1 found on T cells, when engaging with

its corresponding ligand PD-L1 on tumor cells, induces a state of

immune exhaustion, undermining the processes of effective tumor

recognition and elimination (35, 36). In a similar vein, CTLA-4

inhibits the activation of antitumor T cell responses through its

proficient suppression of costimulatory signals (37, 38). These

diverse interactions collectively create a complex landscape

dependent on a fragile balance between immune activation and

inhibition, a balance that is significantly disrupted in the context

of HCC.

Deepening our understanding of these complex interactions

offers considerable potential for identifying new therapeutic

avenues for HCC. Targeted strategies that modulate immune cell

dynamics and interrupt the detailed network of immune evasion

mechanisms may prove effective in halting tumor progression and

enhancing antitumor immune responses. The rapid progress of

breakthroughs in immunotherapy, including immune checkpoint

blockers and adoptive T cell treatments, underscores the growing

dynamism within this field. Furthermore, the integration of cutting-

edge methodologies, including single-cell genomics and spatial

transcriptomics, has the potential to reveal previously unexplored
Frontiers in Immunology 03
complexities within the immune environment of HCC (39). These

revelations could lead to the creation of precision immunotherapeutic

strategies specifically designed to address the unique immunological

context of individual HCC patients, signaling a new era in the

management of this challenging malignancy.
1.3 Balance of immune surveillance
and escape

The intricate equilibrium between immune monitoring and evasion

significantly impacts the advancement of HCC. A range of research

efforts supports the complex interactions between tumor cells and the

immune system of the host. While immune surveillance conducts a

complex process to recognize and eliminate cancerous cells, HCC

employs various strategies to evade detection and destruction by the

immune system. The mechanisms of immune evasion in HCC are

illustrated by the heightened expression of inhibitory immune

checkpoint proteins, notably characterized by increased levels of PD-

L1 (40, 41). This orchestrated interaction with PD-1 on T cells leads to

their exhaustion and results in a weakened antineoplastic effector

response (42). The TME within HCC acts as an architect, shaping an

environment conducive to immunosuppression, which is significantly

influenced by the recruitment of regulatory Tregs and MDSCs. The

consolidation of these immunosuppressive entities ultimately suppresses

the functionality of effector immune cells. This delicate equilibrium is

further influenced by fluctuating levels of pro-inflammatory cytokines,

notably IL-6 and tumor necrosis factor-alpha (TNF-a), which play dual
roles by enhancing antitumoral immunity while also promoting

inflammation within the tumor microenvironment (43–45).

Therapeutic strategies designed to counteract these complex

mechanisms include immune checkpoint inhibitors and adoptive T

cell therapies. The primary aim of these therapeutic approaches is to
FIGURE 1

Hepatocellular carcinoma (HCC) cancer immunoediting is a dynamic and multifaceted process, comprising the stages of cancer initiation,
elimination, equilibrium, and eventual escape. Immune surveillance initially destroys nascent cells, followed by immune equilibrium controlling
growth. Over time, HCC evades detection, leading to progression. Understanding these stages reveals the complex immune-HCC relationship,
emphasizing therapeutic potential.
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restore balance, thereby enhancing immune responses against HCC

cells. Immune checkpoint inhibitors, known for their ability to

disrupt immune inhibitory interactions, represent a powerful front

in overcoming the immune-suppressive barriers established by

HCC. In conjunction with this, adoptive T cell therapies provide

a means to rejuvenate the functionality of effector T cells, thereby

revitalizing the immune response. Together, these therapeutic

modalities hold transformative potential, envisioning a

therapeutic landscape that favors a recalibrated immune

response against HCC and, consequently, a more effective

therapeutic trajectory.
2 Role of immune cells in HCC
antigen presentation

In the realm of HCC, the coordination of immune cells is vital

to the intricate process of presenting antigens, which is essential for

triggering adaptive immune responses aimed at combating cancer

cells. Dendritic cells (DCs) are particularly important in this

immune response, as they adeptly capture antigens from tumor

cells, process them, and present tumor-derived peptides on their

surface within the major histocompatibility complex (MHC)

framework (46, 47). This essential interaction between antigens

and MHC molecules is recognized by CD4+ and CD8+ T cells,

which in turn triggers a specific immune response against HCC

(48–50). However, HCC can evade this immune response through

various mechanisms that interfere with antigen presentation,

leading to immune resistance. Notably, tumor-infiltrating myeloid

cells, including DCs, undergo changes that render them

immunosuppressive, diminishing their ability to present antigens

effectively. Moreover, HCC cells themselves can modulate MHC

expression or suppress antigen processing and presentation,

enabling them to escape detection by T cells. Therapeutic

strategies, such as immune checkpoint inhibitors, are designed to

counter these inhibitory signals and enhance antigen presentation,

aiming to elicit robust antitumor immune responses, which holds

promise in the treatment of HCC (Figure 2).

As we delve deeper into this intricate environment, the

expanding array of immune cell subsets within the HCC

microenvironment significantly influences the dynamics of

antigen presentation. Regulatory T cells (Tregs), known for their

suppressive effects on immune responses, interact closely with

antigen-presenting DCs, modulating the strength and

effectiveness of immune activation (51) (Figure 2). MDSCs,

characterized by their strong immunosuppressive properties,

contribute to a complex interplay that dampens antigen

presentation, creating a microenvironment that supports HCC

progression. Understanding and targeting this complex interplay

is crucial for developing new therapies that overcome immune

suppression, enhance antigen presentation, and strengthen

antitumor immune responses (52).

From a broader therapeutic perspective, the quest to enhance

antigen presentation and reinvigorate immune responses is fraught

with challenges. The inherent plasticity of the immune landscape,
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coupled with the complexity of the HCC microenvironment,

complicates the development of effective interventions. While

immune checkpoint inhibitors have shown promise, ongoing

efforts must balance the enhancement of immune responses with

the potential for immune-related adverse effects. The potential for

combination therapies, including but not limited to immune

checkpoint inhibitors, offers hope in dismantling the mechanisms

of immune escape (53, 54). Identifying the most effective and lasting

therapeutic approaches will require careful exploration through a

multidisciplinary approach that integrates experimental findings

with clinical observations.
2.1 Function and regulation of
dendritic cells

DCs play a crucial role at the crossroads of the immune system,

orchestrating key regulatory functions within both the innate and

adaptive immune responses (55, 56). As specialized antigen-

presenting cells, DCs are responsible for capturing, processing,

and presenting antigens to T cells, thereby initiating and

modulating a range of immune responses. In the complex

environment of HCC, the essential role of DCs is evident in their

ability to recognize tumor-derived antigens and initiate the priming

of tumor-specific T cells (57, 58, 108). DCs utilize a variety of

mechanisms, including phagocytosis, macropinocytosis, and

receptor-mediated endocytosis, to capture tumor antigens. The

antigens that have been captured are subsequently transformed

into peptide fragments, which are displayed on the surface of DCs

through major histocompatibility complex (MHC) molecules. This

process of presenting antigens, aided by co-stimulatory signals from

DCs, triggers the activation of naïve T cells, ultimately leading to the

formation of tumor-specific cytotoxic CD8+ T cells and CD4+ T

helper cells.

The functionality of DCs is closely tied to their maturation

process, which is meticulously regulated. While immature DCs are

highly efficient at capturing antigens, they have limited ability to

stimulate T cells (59, 60). This changes when DCs are exposed to

inflammatory signals, such as pathogen-associated molecular

patterns (PAMPs) or danger-associated molecular patterns

(DAMPs). These signals drive DCs into a mature state,

characterized by increased surface expression of co-stimulatory

molecules like CD80 and CD86, and the release of various

cytokines. Maturation is critical for equipping DCs with the

capacity to effectively prime T cells (61, 62). However, the tumor

microenvironment in HCC can influence DC function, potentially

leading to the development of tolerogenic DCs. These tolerogenic

DCs exhibit reduced antigen presentation and diminished T cell

activation, contributing to immune evasion by the tumor.
2.2 Role of natural killer cells

NK cells are a critical component of the innate immune defense,

playing a vital role in the surveillance of HCC and other
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malignancies. These specialized lymphocytes have the unique

ability to detect and eliminate target cells, including tumor cells,

without requiring prior sensitization (63, 64). In HCC, NK cells are

key players in antitumor immunity, primarily due to their capacity

to recognize stress-induced ligands such as MHC class I-related

chain A/B (MICA/B) and UL16-binding proteins (ULBPs) on the

surface of cancer cells. The cytotoxic arsenal of activated NK cells,

which includes perforin and granzymes, is instrumental in

triggering apoptosis in tumor cells. Beyond direct cytotoxicity,

NK cells also secrete immune-modulatory cytokines, notably
Frontiers in Immunology 05
interferon-gamma (IFN-g), which amplify the immune response

and contribute to a coordinated antitumor effect (65). Nonetheless,

the function of NK cells in HCC is intricate and greatly influenced

by the tumor microenvironment. The immunosuppressive nature

of the HCC microenvironment can dampen NK cell activity

through various mechanisms. A major factor is the upregulation

of inhibitory ligands, such as PD-L1, on tumor cells, which interact

with PD-1 receptors on NK cells, leading to functional exhaustion.

Additionally, the presence of Tregs and MDSCs further suppresses

NK cell function. To counteract these inhibitory influences and
FIGURE 2

Immune cells play a pivotal role in HCC antigen presentation. (A) Antigen presentation by immune cells orchestrates anticancer responses. Dendritic
cells (DCs) capture antigens and present to CD8+ T cells, with CD4+ T cells enhancing this process. HCC develops immune escape mechanisms,
impairing antigen presentation. In-depth study may reveal new immunotherapy targets. (B) DCs capture and process antigens for presentation to
CD8+ T cells. NK cells directly kill HCC cells. CD4+ T cells assist in antitumor immunity. HCC employs immune escape mechanisms; comprehensive
understanding is crucial for treatment strategies.
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enhance NK cell activity in HCC, research is increasingly focused

on innovative immunotherapies, including immune checkpoint

inhibitors and adoptive NK cell therapies.

To summarize, NK cells have an essential yet intricate function

in the immune response to HCC. While they contribute

significantly to tumor surveillance and destruction, the tumor

microenvironment presents formidable challenges that undermine

their effectiveness. Advances in immunotherapy that harness the

full potential of NK cells may offer new therapeutic avenues and

transform treatment strategies for HCC.
2.3 CD8+ T cell function and activation

Cytotoxic T cells (CTLs), referred to as CD8+ T lymphocytes,

play a crucial role in the immune system’s response to HCC and

various other cancers (66). These cells are highly adept at

recognizing and eliminating infected or transformed cells, making

them crucial for maintaining immune surveillance. In the HCC

microenvironment, their activation is initiated when their T cell

receptors (TCRs) interact with tumor-associated antigens presented

by major histocompatibility complex class I (MHC-I) molecules,

typically facilitated by professional antigen-presenting cells such as

dendritic cells (67). This interaction triggers the activation of CD8+

T cells, leading to their clonal expansion and differentiation into

effector CTLs. These effector cells then migrate to the tumor site,

where they deploy their cytotoxic arsenal, including perforin and

granzymes, to induce apoptosis in cancer cells. Additionally, CD8+

T cells produce cytokines like IFN-g, which not only enhance the

antitumor immune response but also activate other immune cells,

thereby contributing to the establishment of an immunogenic

environment within the tumor microenvironment.

Despite their significant role, CD8+ T cells face numerous

challenges within the HCC microenvironment. A major obstacle

is the creation of an immunosuppressive environment, rich in

soluble factors such as vascular endothelial growth factor (VEGF)

and transforming growth factor-beta (TGF-b), which negatively

impact CD8+ T cell activation and function (68). Moreover, HCC

cells often downregulate MHC-I expression, rendering themselves

less visible to CD8+ T cells and disrupting their ability to recognize

and target malignant cells (69). To overcome these challenges,

therapeutic strategies have been developed, focusing on immune

checkpoints like the PD-1/PD-L1 axis (109). These approaches aim

to block inhibitory pathways, thereby restoring the full functional

capacity of CD8+ T cells and improving clinical outcomes for

patients with HCC.
2.4 Other immune cell types contribute

Besides the main immune cell subsets mentioned earlier, a

varied range of additional immune cell populations contributes

significantly to the intricate immune reaction against HCC (70, 71).

Neutrophils, for instance, exhibit a dual role depending on their

polarization, functioning both in promoting tumor growth and in
Frontiers in Immunology 06
exerting antitumor effects. Some subsets of neutrophils contribute

to inflammation and cancer progression, while others support

antitumor immunity by enhancing T cell infiltration and

activation. Mast cells also significantly influence the tumor

microenvironment by releasing various mediators that promote

angiogenesis and recruit other immune cells. Although present in

lower numbers within the HCC microenvironment, B cells

contribute to antitumor immunity through antibody production

and antigen presentation. Recent research has emphasized the role

of gd T cells and innate lymphoid cells (ILCs) in regulating the

immune response in HCC, which may impact tumor development

and alter treatment results.
3 Regulation of immune checkpoint in
HCC during antigen presentation

The control of immune checkpoints while presenting antigens is

vital for maintaining a balance between immune activation and

tolerance in the context of HCC (37, 72). The intricate relationship

involving immune checkpoints like PD-1 and its ligand, PD-L1,

plays a significant role in influencing the immune response directed

at cancer cells (73). Within the HCC environment, inflammatory

signals promote the increased expression of PD-L1 on tumor cells,

which aids in forming an immunosuppressive microenvironment.

This process involves the interaction between CD8+ T cells and

antigen-presenting cells (APCs), including dendritic cells. The

interaction between PD-1 on T cells and PD-L1 on APCs results

in T cell fatigue, which diminishes their ability to produce cytokines

and perform cytotoxic functions. This mechanism, while preventing

excessive immune activity, also allows tumor cells to evade

immune detection.

Findings from clinical research underscore the promise of

immune checkpoint blockade as a treatment strategy. Employing

anti-PD-1/PD-L1 antibodies represents a potentially effective

method to rejuvenate fatigued CD8+ T cells, thus amplifying the

immune response toward tumors in patients with HCC (74). As our

understanding of the delicate interplay between immune

checkpoints, antigen presentation, and immune evasion in HCC

expands, strategies aimed at deciphering and modifying this

complex relationship offer the potential for substantial progress in

boosting the effectiveness of antitumor immunotherapy. The active

modulation of immune checkpoints during the process of antigen

presentation highlights their essential function in influencing the

immune response against HCC. Approaches focused on modifying

immune checkpoint interactions could significantly enhance

antitumor immunity and improve clinical outcomes for

HCC patients.
3.1 The role of CTLA-4 and PD-1/PD-
L1 pathways

The intricate involvement of the CTLA-4 and PD-1/PD-L1

pathways in HCC underscores their essential roles in regulating
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immune responses and significantly impacting tumor development

(Figure 3A). CTLA-4, a key receptor expressed on activated T cells,

competes with the CD28 receptor for binding to B7 ligands on

antigen-presenting cells. By doing so, CTLA-4 functions as a

negative regulator, effectively inhibiting T cell activation and

acting as an immune checkpoint that prevents hyperactive

immune responses, which could otherwise lead to autoimmune

damage (75). In the context of HCC, CTLA-4 exerts its suppressive

effects by curtailing the activity of tumor-infiltrating lymphocytes,

thereby facilitating tumor immune evasion and contributing to the

progression of the malignancy (Figure 3).
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Conversely, the PD-1 pathway serves a unique function in

preserving peripheral tolerance and inhibiting autoimmunity. PD-1 is

expressed on the surface of activated T cells, B cells, and myeloid cells,

and interacts with its ligands, PD-L1 and PD-L2, which are expressed

on a variety of cell types, including both neoplastic and immune cells

(76, 77). This interaction is particularly relevant in the

microenvironment of HCC, where the binding of PD-1 on T cells to

PD-L1 on tumor or immune cells creates an immunosuppressive

environment that promotes T cell exhaustion. The fatigue reduces T

cells’ capability to efficiently target cancer cells, thereby undermining

the immune system’s effectiveness in regulating tumor development.
FIGURE 3

Combination therapies hold great potential for HCC. (A, B) Pancreatic cancer in the context of HCC often requires multifaceted treatment. The
combination of immune checkpoint inhibitors with tyrosine kinase inhibitors or locoregional therapies is an attractive strategy, aiming to
synergistically impede tumor growth, etc. This leverages complementary mechanisms of different treatments, laying the foundation for effective
therapy. (C) Blocking CTLA-4 or PD-1 signaling is a promising approach in HCC immunotherapy. These checkpoints regulate T cell activity and are
exploited by tumor cells to evade immune surveillance. Inhibitors targeting them release T cell responses. Clinical trials show encouraging results,
potentially revolutionizing HCC treatment. Manipulating these pathways is a promising strategy to enhance immunity and improve outcomes.
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Clinical studies have provided compelling evidence for the

therapeutic potential of targeting these immune checkpoints in

HCC. The development and application of immune checkpoint

inhibitors, such as ipilimumab, which targets CTLA-4, and

nivolumab, which targets the PD-1/PD-L1 axis, have shown

promising results in enhancing antitumor immune responses.

These inhibitors work by reinvigorating exhausted T cells, thereby

restoring their ability to fight against tumor cells and leading to

improved survival rates among HCC patients. The success of these

therapies has opened new avenues for the treatment of HCC and

has underscored the critical importance of continued research into

the mechanisms of immune checkpoint regulation.
3.2 Clinical application of immune
checkpoint inhibitors

The clinical integration of immune checkpoint inhibitors has

revolutionized the therapeutic landscape for HCC and various other

malignancies (78). By strategically focusing on regulatory pathways

like CTLA-4 and PD-1/PD-L1, these inhibitors activate the immune

system’s natural ability to identify and destroy cancerous cells. In the

context of HCC, these agents have shown significant promise.

Notably, well-conducted clinical trials, including KEYNOTE-240

and CheckMate-040, have provided robust evidence of the efficacy

and safety of immune checkpoint inhibitors like pembrolizumab and

nivolumab in treating advanced HCC (79–81). These trials have

demonstrated notable improvements in overall survival and sustained

responses in a specific subset of patients. Combination therapies

involving immune checkpoint inhibitors and other immunotherapies

exhibit substantial potential in HCC. Evidence indicates that these

combinations can synergistically enhance efficacy by activating the

immune system through multiple pathways, thereby improving

therapeutic outcomes (82, 83). As our understanding of HCC

immunological mechanisms advances and new therapies continue

to emerge, these combination strategies are likely to be further

refined, offering improved survival benefits for HCC patients. The

potential of combining immune checkpoint inhibitors with other

therapeutic strategies, such as tyrosine kinase inhibitors and

locoregional treatments, holds great promise for enhancing

therapeutic outcomes (84). However, as this therapeutic approach

continues to gain traction, several critical considerations must be

addressed. Essential elements comprise the classification of patients

according to significant clinical indicators, the discovery of predictive

biomarkers, and the meticulous management of adverse immune-

related effects. These aspects are vital for enhancing the clinical

application of immune checkpoint inhibitors. The main challenges

in implementing personalized immunotherapy for HCC include

tumor heterogeneity, the complexity of immune escape

mechanisms, and the lack of effective biomarkers for predicting

therapeutic efficacy. Future studies should concentrate on a more

thorough investigation of the immune evasion mechanisms in HCC,

the identification of novel therapeutic targets and biomarkers, as well

as the evaluation of the safety and effectiveness of new treatments via

extensive clinical trials. The scientific community must continue to
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advance research efforts, focusing on strategies that effectively

integrate immune checkpoint inhibitors with other treatments and

identify prognostic markers. This ongoing research is essential to

developing personalized treatment regimens tailored to the unique

characteristics of individual patients.
4 Application of antitumor
immunotherapy in enhancing
antigen presentation

Antitumor immunotherapy signifies a groundbreaking method

for treating cancer, improving the presentation of antigens and

bolstering the immune system’s reaction to malignant cells. This

method leverages the complex interactions among immune cells,

tumor antigens, and the tumor microenvironment to thwart immune

evasion and reinstate effective immune surveillance. In the context of

HCC and various other malignancies, treatment approaches seek to

enhance the pathways for antigen presentation, thereby promoting

the activation of CTLs along with other essential immune cells.

A fundamental component of antitumor immunotherapy is the

deployment of immune checkpoint inhibitors (ICIs). These inhibitors

target suppressive molecules on immune cells—for instance, PD-1 on

T cells and its ligand PD-L1 on tumor cells (85, 86). By inhibiting

these interactions, ICIs remove inhibitory controls on the immune

system, enhancing T cells’ ability to recognize and eliminate cancer

cells more effectively. Clinical research, including the KEYNOTE-240

and CheckMate-040 trials, has substantiated the effectiveness of ICIs

like pembrolizumab and nivolumab in boosting antigen presentation

and fostering antitumor immunity in advanced HCC cases. These

treatments not only reactivate exhausted CD8+ T cells but also

increase tumor-infiltrating lymphocytes (TILs) and amplify tumor

antigen-specific immune responses (87–89).

Another strategy to augment antigen presentation involves cancer

vaccines, which are designed to elicit a targeted immune response

against tumor antigens (90). Comprising either tumor-associated

antigens (TAAs) or neoantigens from mutated cancer-specific

proteins, these vaccines are pivotal in initiating an immune reaction.

DCs are crucial in the process of capturing, processing, and presenting

antigens to T cells. Clinical trials investigating various cancer vaccine

modalities, including peptide-based, protein-based, and nucleic acid-

based vaccines in HCC, have demonstrated encouraging results in

enhancing antigen-specific T cell responses and improving clinical

outcomes. Additionally, adoptive T cell therapy (ACT) involves the ex

vivo expansion and modification of patient-derived T cells to boost

their antigen recognition and cytotoxic activity (91–93). Chimeric

antigen receptor (CAR) T cell therapy, a subset of ACT, involves

engineering T cells to express CARs that target specific tumor

antigens. While CAR T cell therapy has achieved significant success

in treating hematological malignancies, its application in HCC is

under investigation. ACT enhances antigen presentation by directly

infusing highly specific and potent T cells into the patient,

counteracting tumor-induced immunosuppression and enhancing

the potential for tumor eradication.
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4.1 Overview and application prospect of
cancer vaccine

The development of immunotherapy is propelled by cancer

vaccines that harness the immune system’s ability to recognize and

destroy tumor cells (94, 95). Specifically tailored to induce targeted

immune responses against cancer-specific antigens, these vaccines

activate CTLs and foster the development of immunological

memory, thereby enhancing antigen presentation and triggering

robust immune responses in HCC and other malignancies, which

may improve clinical outcomes.

Various types of cancer vaccines exist, including peptide-based,

protein-based, nucleic acid-based, and whole-cell vaccines (96, 97).

Peptide-based vaccines administer short peptides derived from tumor

antigens to prime T cells for cancer cell recognition and targeting.

Protein-based vaccines use entire proteins or their fragments from

tumor cells to provoke immune reactions. Vaccines that utilize nucleic

acids deliver either DNA or RNA encoding tumor antigens, which aids

in the synthesis of these proteins and stimulates the immune response.

Whole-cell vaccines employ either intact tumor cells or their lysates to

prompt immune recognition of a wide array of tumor antigens. At the

core of these vaccination approaches are DCs, which take up, process,

and present antigens to T cells, thereby initiating the immune response.

In clinical settings, the use of cancer vaccines in HCC has been

evaluated, such as in a phase III trial of the peptide-based vaccine

adjuvant MelCancerVac, which targets melanoma-associated antigens

in HCC patients. Although primary endpoints were not met, the trial

underscored the potential to induce tumor-specific immune responses.

Additionally, early-phase trials of the TERT-encoding DNA vaccine

GRANITE-001 have yielded promising results by stimulating T cell

responses against telomerase reverse transcriptase (TERT), an antigen

prevalent in various cancers, including HCC.

The future of cancer vaccines in HCC appears promising but is

not without its challenges. The heterogeneity of tumor antigens and

immune responses among patients calls for the identification of

both unique and common antigens to optimize vaccine design.

Additionally, the tumor microenvironment’s immunosuppressive

characteristics and possible mechanisms of immune tolerance

might reduce the effectiveness of vaccines. To overcome these

barriers, combination strategies, including the integration of

cancer vaccines with immune checkpoint inhibitors, are under

investigation to enhance therapeutic outcomes. The potential of

cancer vaccines to improve antigen presentation and target specific

immune responses against cancer cells underscores their role in

advancing personalized immunotherapy approaches in HCC.

Ongoing investigations and clinical studies are crucial for the

advancement and enhancement of cancer vaccine approaches,

offering the potential to greatly influence the treatment of HCC.
4.2 Role of CAR-T cell therapy in
antigen presentation

CAR-T cell therapy, a pivotal advancement in immunotherapy,

has profoundly influenced antigen presentation and the immune
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response to cancers, including HCC. This therapy involves T

lymphocytes engineered to express chimeric antigen receptors

(CARs) that merge the antigen-binding domain of an antibody

with T cell signaling domains (98). These engineered receptors

allow CAR-T cells to identify specific tumor-associated antigens

without the need for major histocompatibility complex (MHC)

presentation, circumventing conventional antigen presentation

pathways. In practice, T cells are harvested from patients,

genetically modified to bear CARs that target tumor-specific

antigens, and then reinfused (99). These CAR-T cells then

recognize and bind to tumor cells displaying these antigens,

triggering direct cytotoxic attacks and cytokine release, which not

only promotes tumor cell destruction but also enhances antigen

presentation through direct T-cell engagement.

Research in the clinical field highlights the considerable potential

of CAR-T cell therapy for the treatment of HCC. A noteworthy

investigation centered on CAR-T cells targeting glypican-3 (GPC3), a

unique antigen commonly found in advanced HCC cases, revealed

impressive antitumor effectiveness, with several patients showing

marked tumor reduction and increased survival duration (100).

Additional investigations into CAR-T cells targeting other antigens

like alpha-fetoprotein (AFP) and mesothelin in preclinical and early

clinical phases further attest to the adaptability of this approach in

HCC. However, challenges such as the immunosuppressive nature of

the tumor microenvironment, tumor antigen variability, and

potential antigen escape mechanisms pose hurdles to the lasting

effectiveness of CAR-T cell therapy. Additionally, immune

checkpoint inhibitors and CAR-T cell therapies are associated with

certain adverse effects, including skin toxicity, gastrointestinal

reactions, and cytokine release syndrome. To address these issues,

strategies that combine CAR-T therapy with immune checkpoint

inhibitors are being explored to counteract immunosuppression and

enhance therapeutic results. Adverse reactions can be effectively

mitigated through close monitoring, appropriate medication, and

supportive care, thereby ensuring patient safety. Ongoing research

into identifying optimal antigens and developing effective and safe

CAR constructs is critical to refining and expanding the utility of

CAR-T cell therapy in HCC treatment.
5 Research progress and
future prospects

5.1 Application of new technologies in the
study of immune cell function

Recent advancements have significantly enhanced our

understanding of immune cells in both healthy and diseased

states, including HCC. Single-cell RNA sequencing (scRNA-seq)

has proven to be a powerful tool for delineating gene expression at

the individual cell level (101). In HCC, scRNA-seq has exposed the

diversity within immune cell populations in the tumor

microenvironment, offering insights into their functional states

and interactions (90). Further, developments in high-dimensional

flow cytometry and mass cytometry have enabled the simultaneous
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measurement of multiple markers on individual cells, improving

our grasp of immune cell phenotypes and functionalities. Spatial

transcriptomics have also been employed to map immune cells

within tumors, illuminating their spatial distribution and

intercellular communication. These technological breakthroughs

collectively provide a detailed picture of the dynamic immune

responses and the mechanisms of immune escape in HCC, setting

the stage for more targeted therapeutic approaches.
5.2 Development of individualized
treatment strategies

The transition to personalized medicine is increasingly evident

in the realm of HCC immunotherapy, underscored by the unique

immune profiles and tumor characteristics exhibited by each

patient (102). Detailed profiling of tumor antigens and immune

cell infiltrates enhances the formulation of customized treatment

plans (103). The identification of neoantigens through genomic

sequencing has facilitated the creation of personalized vaccines and

adoptive T cell therapies (104). Additionally, the discovery of

biomarkers that predict responses to immune checkpoint

inhibitors aids in selecting appropriate treatments, reducing

ineffective approaches and improving patient outcomes. The

combination of various omics data, such as genomic,

transcriptomic, and proteomic analyses, assists in identifying the

key molecular factors and pathways that contribute to immune

dysfunction in HCC (105, 106). Looking ahead, the amalgamation

of these insights with cutting-edge immunotherapies promises to

refine clinical results by aligning interventions with the specific

immunological profiles of HCC patients.
5.3 Directions and challenges for
future research

Despite substantial progress, numerous pivotal challenges and

directions remain in the domain of HCC immunotherapy. Initially,

deciphering the intricate relationships between immune cells and

the tumor microenvironment remains a challenging endeavor. It is

crucial to comprehend the diverse functionalities of immune cells

and their communication networks to devise potent combination

therapies. Secondly, addressing the immunosuppression prevalent

within the HCC microenvironment demands innovative

approaches. The synergy of immune checkpoint inhibitors,

immune modulators, and targeted therapies presents a promising

route to counteract immune escape mechanisms (107). Thirdly, the

enhancement of adoptive T cell therapies, such as CAR-T cells,

hinges on refining engineering techniques to boost tumor specificity

and longevity. Additionally, the development of universally

applicable CAR-T cells or allogeneic methods could mitigate

logistical and manufacturing hurdles (7). Lastly, the quest for

biomarkers that can stratify patients and predict treatment

responses is critical. Effective predictive markers are essential to
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tailor therapy choices, minimizing adverse effects while maximizing

therapeutic efficacy.
6 Conclusion and discussion

In summary, a detailed investigation of immune cell dynamics

and antigen presentation within HCC has revealed complex

interaction layers that critically affect tumor progression, immune

reactions, and therapeutic results. The immune evasion tactics

utilized by HCC illustrate the tumor’s capacity to circumvent

immune surveillance and underscore the importance of immune

checkpoints like CTLA-4 and PD-1/PD-L1 in regulating the

intricate equil ibrium between immune activation and

suppression. Various immune cells, including DCs, NK cells, and

CD8+ T cells, engage in a sophisticated interaction within the

tumor microenvironment. This interaction influences antigen

presentation, immune infiltration, and ultimately, tumor control.

The introduction of novel approaches such as cancer vaccines and

CAR-T cell therapies opens promising pathways to enhance antigen

presentation and empower the immune system to more effectively

recognize and combat cancer cells.

Clinical investigations, such as the KEYNOTE-240 and

CheckMate-040 trials, have corroborated the significant clinical

advantages of immune checkpoint inhibitors in reinvigorating

immune responses and enhancing outcomes for advanced HCC.

Nevertheless, hurdles in patient stratification, biomarker

identification, and the management of immune-related side effects

persist. The integration of innovative technologies, such as single-

cell RNA sequencing and high-dimensional flow cytometry, has

afforded profound insights into the functionality of immune cells.

This technological prowess has unraveled the complexities of

immune cell populations and their interplay within HCC, thereby

facilitating the crafting of personalized treatment modalities that

leverage unique patient characteristics to maximize therapeutic

efficacy. Furthermore, advancements in CAR-T cell therapy

underscore its potential in augmenting antigen presentation, thus

spearheading a new frontier in immunotherapy for HCC and

potentially other malignancies.

Looking forward, the unraveling of the complex interactions

between immune cel l s and tumors within the HCC

microenvironment is imperative. This understanding is critical for

the informed development of combination therapies aimed at

counteracting immunosuppression. The quest for biomarkers that

accurately predict treatment responses continues to be a focal point,

promising to refine therapy selection to enhance patient outcomes

and minimize side effects. Ongoing research is essential to perfect

adoptive T cell therapies and address challenges such as

immunosuppression, tumor heterogeneity, and scalability of

manufacturing processes.

In summary, the comprehensive analysis of immune cell

function and antigen presentation within HCC has laid a robust

groundwork for innovative cancer immunotherapy strategies. The

synergy of cutting-edge technologies, tailored treatment
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approaches, and a nuanced comprehension of the immune

landscape is poised to transform the management of HCC,

thereby reshaping the therapeutic paradigm for patients in

dire need.
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55. Théry C, Amigorena S. The cell biology of antigen presentation in dendritic cells.
Curr Opin Immunol. (2001) 13:45–51. doi: 10.1016/S0952-7915(00)00180-1

56. Unanue ER, Cerottini JC. Antigen presentation. FASEB J. (1989) 3:2496–502.
doi: 10.1096/fasebj.3.13.2572499

57. Knight SC, Burke F, Bedford PA. Dendritic cells, antigen distribution and the
initiation of primary immune responses to self and non-self antigens. Semin Cancer
Biol. (2002) 12:301–8. doi: 10.1016/S1044-579X(02)00016-0

58. Argüello RJ, Reverendo M, Gatti E, Pierre P. Regulation of protein synthesis and
autophagy in activated dendritic cells: implications for antigen processing and
presentation. Immunol Rev. (2016) 272(1):28–38. doi: 10.1111/imr.12427

59. Edelson RL. Cutaneous T cell lymphoma: the helping hand of dendritic cells.
Ann N Y Acad Sci. (2001) 941:1–11. doi: 10.1111/j.1749-6632.2001.tb03705.x

60. Mbongue JC, Nieves HA, Torrez TW, Langridge WH. The role of dendritic cell
maturation in the induction of insulin-dependent diabetes mellitus. Front Immunol.
(2017) 8:327. doi: 10.3389/fimmu.2017.00327

61. Scales HE, Meehan GR, Hayes AJ, Benson RA, Watson E, Walters A, et al. A
novel cellular pathway of antigen presentation and CD4 T cell activation in vivo. Front
Immunol. (2018) 9:2684. doi: 10.3389/fimmu.2018.02684

62. Knight SC. Dendritic cell-T-cell circuitry in health and changes in inflammatory
bowel disease and its treatment. Dig Dis. (2016) 34:51–7. doi: 10.1159/000442926

63. Erokhina SA, Streltsova MA, Kanevskiy LM, Grechikhina MV, Sapozhnikov
AM, Kovalenko EI. HLA-DR-expressing NK cells: Effective killers suspected for
antigen presentation. J Leukoc Biol. (2021) 109(2):327–37. doi: 10.1002/
JLB.3RU0420-668RR

64. Nakamura T, Sato T, Endo R, Sasaki S, Takahashi N, Sato Y, et al. STING agonist
loaded lipid nanoparticles overcome anti-PD-1 resistance in melanoma lung metastasis
viaNK cell activation. J Immunother Cancer. (2021) 9(7). doi: 10.1136/jitc-2021-002852
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