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Introduction: Bladder cancer was recognized as one of the most common

malignant tumors in the urinary system, and treatment options remained largely

limited to conventional surgery, radiotherapy, and chemotherapy, which limited

patient benefits.

Methods: Researchers constructed an RNA transcriptomemap of bladder cancer

by integrating single-cell RNA sequencing and clinical data, identifying potential

molecular targets for diagnosis and treatment. We also verified the antitumor

activity of the target through in vitro experiment.

Results: A distinct tumor cell subpopulation characterized by elevated S100A8

expression exhibited high copy number variation, high stemness, and low

differentiation. It interacted with myeloid cells via the MIF-(CD74+CD44) and

MIF-(CD74+CXCR4) signaling pathways. This study underscored KDELR2’s role in

promoting cell proliferation, invasion, and migration, providing new therapeutic

insights. Prognostic analysis revealed that KDELR2 correlated with poor survival,

higher immune scores, and increased macrophage infiltration.

Discussion: The findings suggested that patients with high KDELR2 expression

might benefit from immune checkpoint therapy. KDELR2 was also shown to

enhance bladder cancer cell proliferation, invasion, and migration, highlighting it

as a promising target for macrophage-focused drug development.
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GRAPHICAL ABSTRACT

Workflow diagram of this study. Workflow showed bladder cancer single-cell RNA sequencing data were used to perform cell stemness, pseudo-
time, and cell communication analyses, leading to the identification of a cell subpopulation and the creation of a prognostic model. The KDELR2
gene was validated by in vitro experiments.
1 Introduction

On a global scale, bladder cancer holds the second position

among urological malignancies in terms of prevalence, while it

ranks ninth among all malignancies and stands as the 13th leading

contributor to cancer-related deaths worldwide (1). The main risk

factors include old age, smoking, pelvic radiation therapy, the use of

cyclophosphamide, and an enlarged prostate and urinary retention

in men, which may also increase the risk of cancer due to the

presence of carcinogens in the urine (2). Clinically recognized

bladder tumors typically present with symptoms such as

significant hemorrhage, urinary system irritative symptoms (e.g.,

urgency, frequency, and burning), and may or may not be

accompanied by massive hematuria. This is especially true for

patients with diffuse in situ carcinoma, muscle-invasive tumors,

or secondary infection-related lesions. While some bladder tumors

may be asymptomatic, they can be detected during the evaluation of

asymptomatic hematuria (3).

Current modalities for bladder cancer management encompass

surgery, chemotherapy, and radiation therapy (4). Immunotherapy

for bladder cancer had made strides in recent years, but the benefits

were limited, particularly in certain types of bladder cancer.

Therefore, researchers aimed to develop more precise targeted

therapies and combination strategies. The recently advanced

single-cell RNA sequencing(scRNA-seq) technology facilitates

precise profiling of diverse gene modules utilizing minimal cell

numbers, enabling high-resolution characterization.
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KDELR2 is an ER-resident protein involved in the ER stress

response and proper protein folding. Its expression in cancer cells

could be associated with tumor proliferation, migration, and

invasion. For instance, in breast cancer, KDELR2 was identified as

a novel target of HDAC3, with aberrant expression predicting poor

outcomes in patients (5). Though KDELR2’s role in bladder cancer

had not yet been fully explored, its involvement in other cancers

suggested it could also be crucial in bladder cancer development.

Hence, KDELR2 was considered a promising therapeutic target,

and the development of drugs aimed at KDELR2 could provide new

treatment options for bladder cancer patients. With our endeavors,

it is anticipated that this research will offer personalized diagnostic

and treatment strategies as well as immunotherapy guidance for

bladder cancer patients for patients with bladder cancer to enhance

prognosis and diminish mortality rates.
2 Materials and methods

2.1 Data source

The scRNA-seq data for bladder cancer, sourced from Gene

Expression Omnibus (https://ww.ncbinlm.nih.gov/geo/)

(GSE135337), was utilized in this study. Data pertaining to bulk

RNA-seq was acquired from the Cancer Genome Atlas (TCGA)

website (https://portal.gdc.cancer.gov/), which included clinical

details (age, gender, ethnicity) and somatic mutation information
frontiersin.org
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for bladder cancer patients. By leveraging publicly accessible data,

the quirement for ethical approval was bypassed.
2.2 Single‐cell sequencing

The gene expression data was processed in R (v4.2.0) with the

Seurat package (v4.3.0). Low-quality cells were filtered out based on

stringent criteria, including nFeature range (300–5000), nCount

range (500–50,000), and limits on mitochondrial ≤(1) and

erythrocyte gene expression ≤(5 contributions to the total gene

count. A total of 40,167 cells were obtained after quality control.

Seurat’s NormalizeData prepared the gene expression data. The

FindVariableFeatures function pinpointed the 2,000 most variable

genes (6–10). ScaleData functions (v3.1.4) prepared the gene

expression data (11), guiding subsequent principal component

analysis. The harmony R package (v.0.1.1) (12, 13) mitigated batch

effects between sample.CellCycleScoring is used to calculate cell cycle

phases (14). Clusters were formed based on the top 30 principal

components (PCs). For UMAP visualization, the same 30 PCs were

selectively used to depict gene expression patterns (15–18). A

dimensionality reduction of 30 and a resolution of 1.2 were used.
2.3 Identification of cell subpopulations

Cell clusters were initially identified with Seurat’s FindClusters

and FindNeighbors functions (18–21). Clusters were annotated

based on marker genes expression averages.
2.4 Trajectory analysis of
TCs subpopulations

Slingshot (v2.6.0) inferred cell lineages and pseudotimes,

leveraging clustering-based MSTs to define lineage architecture.

Synchronized master curves and branching curve fittings were

applied, with getCurves used to derive smooth trajectory curves.
2.5 Assessment of cell stemness

The AUCell method (22) is utilized for the identification of cells

exhibiting active gene single-cell RNA-seq data underwent analysis to

assess gene expression profiles. It takes gene sets as input and

provides an assessment of the ‘activity’ of each gene set within

every individual cell. In this particular study, it was employed to

evaluate the stemness characteristics associated with different tumor

cell subpopulations.
2.6 Enrichment analysis of
cellular subpopulations

Differentially expressed genes (DEGs) were identified using

FindAllMarkers, applying a Wilcoxon test with thresholds of
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min.pct and min.diff.pct at 0.25, and a logfc threshold of 0.25

(23). ClusterProfiler (v4.6.0) facilitated DEGs enrichment and

analysis using GO (24), KEGG, and GSEA (25–27). Significant

GO terms were identified with an adjusted P-value < 0.05.
2.7 Cell communication analysis

CellChat (v1.6.1) enables quantitative inference and analysis of

scRNA-seq data to decipher cellular interactions. CellChat’s

netVisual diffInteraction function assesses alterations in cell-cell

communication strength, while IdentifyCommunicationPatterns

determines the count of distinct communication patterns. Scatter

plots, heatmaps, and various visualization techniques are used to

visually analyze the signals entering and exiting each cell. The

CellChatDB database (http://www.cellchat.org/) is then used to

identify signaling pathways and receptor pairs associated with

specific types of TCs in cancer. A P-value threshold of 0.05 was

set to identify statistically significant cell-cell interactions across

various cell types.
2.8 Scenic analysis

Using pySCENIC (v0.10.0) in Python 3.7, we inferred single-cell

regulatory networks and clustered tumor cell subpopulations.

GRNBoost identified TF target genes, which were then refined by

DNA-motif analysis. AUCell scored regulon activities, revealing the

top 5 transcription factors (TFs) with most significant changes in

expression, based on human gene motif rankings from https://

resources.aertslab.org/cistarget/.
2.9 Development and Verification of a
Prognostic Prediction Model

The purpose of this research was to evaluate the prognostic

potential of specific prognostic genes associated with diverse

bladder cancer subpopulations in predicting patient survival

outcomes. Through a rigorous process involving univariate and

multivariate Cox proportional hazards analysis (28, 29), combined

with Least Absolute Shrinkage and Selection Operator (LASSO)

regression, we pinpointed the most influential prognostic genes as

key predictors for developing a robust prognostic model.

Subsequently, we formulated a risk scoring system, where the risk

score is calculated as the sum of the products between individual

gene expression levels and their respective coefficients.

Risk Score =on
i Xi� Yi

Employing an optimized cutoff threshold derived from the

“surv_cutpoint” function, patients were stratified into distinct low

risk and high STRS groups, allowing for a comparative analysis of

prognostic differences across patient subpopulations. To visualize

and statistically validate the predictive capabilities of our risk score

model, we leveraged the “Survival” package (v3.3.1) in R for survival

analysis and utilized the “ggsurvplot” function to generate survival
frontiersin.org

http://www.cellchat.org/
https://resources.aertslab.org/cistarget/
https://resources.aertslab.org/cistarget/
https://doi.org/10.3389/fimmu.2024.1485109
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1485109
curves (30–32). Moreover, we ensured the reliability of our model

by assessing its accuracy and calibration through the generation of

Receiver Operating Characteristic (ROC) curves (33–37) using the

“timeROC” package (v0.4.0), providing a comprehensive evaluation

of the model’s predictive performance.
2.10 Immune microenvironment analysis

We utilized the CIBERSORT R package (version 0.1.0) to

compute immune-related scores for immune cells, providing a

comprehensive evaluation of the patients’ immune milieu.

Furthermore, we scrutinized the levels of immune cell infiltration

and differential gene expression associated with immune

checkpoints, and conducted investigations into the correlation

between risk scores, immune cells, and model genes (38).

Concurrently, we employed the Tumorlmmune Dysfunction

program to appraise the response to tumor immunotherapy.
2.11 Identification of malignant cells
by inferCNV

To distinguish between cancerous and non-cancerous cellular

populations, we initially estimated the baseline copy number variation

(CNV) across various genomic regions by analyzing disruptions in

chromosome gene expression patterns. This was accomplished utilizing

the inferCNV R package (accessible at https://github.com/

broadinstitute/inferCNV/wiki), a tool specifically designed for CNV

inference. Using endothelial cells (ECs) as a benchmark, we

leveraged the inferCNV algorithm to characterize the CNV

landscape within distinct cellular subpopulations. Subsequently,

those EPCs subpopulations that exhibited marked alterations in

their CNV profiles, indicative of significant genomic instability,

were identified and classified as malignant cells, thereby facilitating

the differentiation between cancerous and non-cancerous cell types.
2.12 Cell culture

The UM-UC-1 tumor-derived cell line was propagated in MEM

medium under standardized conditions (37°C, 5% CO2

atmosphere, and 95% humidity) supplemented with 10% fetal

bovine serum (FBS) and 1% antibiotics. Similarly, the VM-CUB1

cell line was maintained in DMEM medium under identical

conditions, also enriched with 10% FBS and 1% antibiotics to

ensure optimal growth and health.
2.13 Cell transfection

RNA constructs sourced from GenePharma (Suzhou, China)

facilitated the downregulation of KDELR2 expression. The cells were

seeded onto a 6-well plate at a moderate density of 50%, subsequently

subjected to transfection procedures involving KDELR2-specific

knockdown constructs (si-KDELR2-1 and si-KDELR2-2), as well as a
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negative control construct (si-NC) for comparison. Lipofectamine

3000RNAiMAX (Invitrogen, USA) was used for transfection under

manufacturer directions. Every si-RNA (RIbbio, China) was transfected

into cells. siRNA sequences: si-1: GUAGUCCAGACCAUCCUAU; si-2:

UCGUGCUUUGUAUCUUGUC. qRT-PCR Primers : F:

TGGATCTGGCGCTTCTACTT; R: GCTGGCAAACTGAGCTTCTT.
2.14 Western blotting

After the transfected cells attained a 70% confluency level, they

were lysed in RIPA buffer. The resulting lysates were clarified through

centrifugation at 12,000 rpm for 15 minutes, preparing them for SDS-

PAGE separation. The separated proteins were then transferred onto

PVDF membranes, which were subsequently blocked with 5% BSA

for 1.5 hours at ambient temperature. Following an overnight

incubation with an Anti-KDELR2 antibody at 4°C, the membranes

were further incubated with a secondary antibody for an hour.

Ultimately, the presence of KDELR2 protein bands was detected

using an ECL Western Blot substrate for visualization.
2.15 Quantitative real-time polymerase
chain reaction

The RNA extraction process involved the utilization of Trizol

reagent, Trizol reagent was used to lyse cells and release RNA, with

chloroform and isopropanol employed to precipitate the RNA while

suppressing RNase activity. Throughout the extraction process, it

was essential to confirm that the workbench, tools, and water

utilized were RNase-free to avoid RNA degradation. Followed by

a reverse transcription step facilitated by the PrimeScript™ Kit.

Subsequently, the quantitative Real-time Polymerase Chain

Reaction was performed using SYBR Green premix as the

fluorescent dye for amplification detection.
2.16 Cell viability assay

To assess the viability of UM-UC-1 and VM-CUB1 cells post-

transfection, the Cell Counting Kit-8(CCK-8) assay was employed. Cells

were seeded in 96-well plates at a density of 5×10³ cells per well and

allowed to incubate for 24 hours. Subsequently, 10mL of CCK-8 labeling
reagent (A311-01, Vazyme) was added to each well, and the plates were

incubated in the dark at 37°C for two hours. From day one to day four,

cell viability was quantitatively determined bymeasuring the absorbance

at 450nm using an enzymatic marker (A33978, Thermo). The average

optical density values were computed and plotted on a line graph to

visually represent the cellular viability trends over time.
2.17 Transwell assay

Prior to the experiment, the cells underwent a 24-hour serum

starvation period in medium devoid of serum. Afterward, the cell

suspension was mixed with Matrigel (BD Biosciences, USA) and
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seeded into the upper chamber of Costar plates, while the lower

chamber was filled with serum-rich medium to create a

chemoattractant gradient. The cells were then incubated for 48

hours in a cell culture incubator to allow for migration and invasion.

Following incubation, the cells were fixed with 4% paraformaldehyde

and stained with crystal violet to visually assess their invasive potential.
2.18 Wound healing assay

The stably transfected cells were plated in 6-well dishes placed

in the incubator and cultured at 37°C with 5% CO₂ until the cells

reached confluence. Using a sterile 200mL pipette tip, uniform

scratches were generated across the cell monolayer in each well.

Subsequently, the wells were gently washed with PBS to remove any

dislodged cells or debris. The scratched areas were then subjected to

incubation in serum-free medium to monitor cell migration. Images

of the scratch wounds were documented at 0 hours and again after

48 hours of incubation, with the widths of the scratches measured

utilizing Image-J software for quantitative analysis.
2.19 5-Ethynyl-2’-deoxyuridine
proliferation experiments

The UM-UC-1 and VM-CUB1 cell lines, post-transfection, were

seeded at a concentration of 5×10³ cells per well in 6-well plates.

Following a 24-hour incubation period at ambient temperature, the

EdU working solution was introduced into the culture medium and

allowed to incubate for 2 hours. Subsequently, the cells underwent a

double wash with PBS and were fixed using a 4% paraformaldehyde

solution for 15 minutes to stabilize them. After fixation, the cells were

permeabilized and quenched with a mixture of 2 mg/ml glycine and

0.5% Triton X-100 for 15 minutes. Finally, the cells were stained with a

combination of 1X Apollo solution (1 ml) and Hoechst staining

reaction solution (1 ml), followed by a 30-minute incubation period.

Fluorescencemicroscopy was then employed to assess cell proliferation

by capturing images of the stained cells.
2.20 Statistical analysis

R and Python software packages are utilized for analyzing data

from databases, while GraphPad Prism, specifically version 8.0.1, serves

as the tool of choice for experimental data analysis. Throughout the

analyses, two-tailed p-values are employed, and statistical significance

is determined based on values falling below the threshold of 0.05.
3 Results

3.1 Single-cell sequencing analysis revealed
major transcriptomic features of the TME
in bladder cancer

Based on our research objectives and requirements, we

conducted a comprehensive review of the scRNA-seq data related
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to bladder cancer in public database. To explore the cellular

transcriptome characteristics of the bladder cancer TME, we

performed a systematic and comprehensive analysis of the

collected scRNA-seq data. The dataset was obtained from seven

primary tumor tissue samples and one paracancerous sample from

seven bladder cancer patients that included diverse demographic

backgrounds and clinical stages of bladder cancer. This diversity

enhanced the relevance of our findings to a broader patient

population. After removing batch effects and primary quality

control, we obtained 40,167 high-quality cells (Figure 1A).

Dimension reduction cluster analysis was performed on the

screened cells, and we found that they could be divided into 5 cell

types, including B plasma cells, ECs, epithelial cells (EPCs), myeloid

cells, and fibroblasts (Figure 1B). The bubble plot depicted the levels

of expression for the most significant genes in distinct cellular

subpopulations, categorized by cell types and tissue samples

(Figure 1C). The results found that ECs highly expressed PLVAP,

GNG11, SPARC, RGCC, IGFBP7; fibroblasts highly expressed CFD,

LUM, DCN, GSN, MT2A; EPCs showed high expression of SPINK1,

KRT19, LY6D, FXYD3 and S100A2; B plasma cells showed high

expression of IGHG1, IGLC3, IGHA1, IGKC, IGLC2; myeloid cells

showed high expression of HLA-DRA, CCL3, HLA-DPB1, C1QB

and SPP1; bladder cancer tissue cells showed high expression of

SPINK1, LY6D, KRT19, FXYD3, S100A2; paracancerous cells highly

expressed genes including CFD, LUM, DCN, GSN, MT2A,RGCC

and so on. In conclusion, we could find that EPCs marker genes had

high consistency with the highly expressed genes in cancer tissues.

At the same time, we could observe that the cell phases are different

in these 5 cell types, and most of the cells were in G1 phase

(Figure 1D). Moreover, most ECs and EPCs were mainly derived

from bladder cancer tissue, while fibroblasts were mainly derived

from paracancerous cells (Figure 1E). The above study were

consistent with Ro/e analysis, that EPCs tended to be derived

from bladder cancer tissues (Figure 1H). Through cell cycle

analysis of cell subpopulations, each cell subpopulation tended to

be distributed in different cycle phases (Figures 1C, D, F). In

addition, the proportion of EPCs in bladder cancer tissue cells

and paracancerous cells was much greater than that of other cells,

especially in bladder cancer tissue cells, as high as 97.7%

(Figures 1E, G).

Volcano plots results showed that the different genes among

ECs, fibroblasts, EPCs, B plasma cells, and myeloid cells (Figure 1I).

To investigate the biological processes of different cell types, by

using GO-BP enrichment analysis (Figure 1J), we identified that

EPCs were mainly enriched in ATP synthesis coupled electron

transport, mitochondrial ATP synthesis coupled electron transport,

cytoplasmic translation, proton motive force-driven mitochondrial

ATP synthesis and mitochondrial respiratory chain complex

assembly. Further GSEA (Figure 1K) of EPCs was performed

according to GO-BP terms. The results showed that pathways

such as mitochondrial electron transport, NADH to ubiquinone;

oxidative phosphorylation and ATP synthesis coupled electron

transport showed a positive enrichment trend, by comparison,

pathways such as adaptive immune response and extracellular

structure organization showed a trend of negative enrichment in

this genome.
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FIGURE 1

Single-cell profiling of bladder cancer identified 5 cell types. (A) The UMAP plot visualized the analysis encompassing all cells from eight bladder
cancer samples sourced from seven patients,by using single-cell RNA sequencing method(n=40,167). (B) UMAP plot showed clusters of five different
types of cells (ECs; EPCs; B plasma cells; myeloid cells; fibroblasts). (C) The bubble chart displayed the top 5 marker genes associated with each
individual cell cluster. The bar charts were color-coded by cell subpopulation, and the pie charts illustrated the proportion of each phase. The violin
plots visualized the expression levels of G2M.Score, S.Score, and nCount-RNA, with bubble size representing the percentage of gene expression and
color indicating z-score. (D) UMAP plot illustrated the cellular distribution at three different cell cycle phases (Phase: G1, G2M, S). (E) UMAP plot
showed the distribution of cell samples from bladder cancer tissue and paracancerous tissue. (F) The bar charts represented the proportions of three
cell phases in five different types of cells. (G) The bar charts represented the proportions of bladder cancer tissue and paracancerous tissue in 5
different types of cells. (H) The heatmap revealed the distribution preferences of different cell subpopulations in terms of sample origin and cell cycle
phase. (I) Volcano plots showed different expressed genes in 5 types of cells. (J) Enrichment analyses of DEGs across all cells unveiled their key
biological roles and functions. (K) GSEA identified both positively and negatively enriched biological pathways in EPCs, including mitochondrial
electron transport, NADH-ubiquinone reduction, oxidative phosphorylation coupled ATP synthesis, adaptive immune response, and extracellular
structure organization.
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3.2 Visualization analysis of bladder cancer
tissue cells

The findings of various studies have demonstrated that the

presence of TCs can trigger significant alterations at a molecular,

cellular, and physical level within the surrounding tissue, leading to

the formation of a specialized environment known as the TME.

During the initial stages of tumor development, there is an intricate

interplay between cancer cells and various components of this

microenvironment, facilitating tumor survival, local infiltration,

and metastatic dissemination (39). Therefore, TCs are the real

culprit of tumor development. We first used the infer CNV

algorithm to successfully separate 19,621 bladder cancer cells

from EPCs based on CNV (Supplementary Figure S1). Next, we

identified six subpopulations of bladder cancer cells based on the

level of marker genes expression. The circle diagram showed six cell

subpopulations. These were C0 FABP4+ TCs, C1 S100A8+ TCs, C2

TFF2+ TCs, C3 CRH+ TCs, C4 BIRC5+ TCs and C5 IL32+ TCs. In

addition, we used UMAP plots to show the nCount-RNA, nFeature-

RNA, G2M.Score and S.Score of each subpopulation (Figure 2A).

Subsequently, the bubble plots showed the marker genes of different

tissue cells and subpopulations (Figure 2B). According to the

comparison of named gene expression of each subpopulation of

tumor cell in bar charts, C0 was characterized by high expression of

FABP4. The high expression of S100A8 characterizes C1, while C2

was characterized by the elevated expression of TFF2. Similarly, C3

was distinguished by its heightened expression of CRH, and C4

exhibits a notable increase in BIRC5 expression. Lastly, the high

expression of IL32 served as a defining feature for C5. UMAP plots

showed the named gene expression of each subpopulation, which

was consistent with the results of bar charts (Figure 2C).

For further analysis of the subpopulations of TCs, we conducted

deeper visualization study. First, we performed sample sources and

cell cycle phases analysis of TCs, and combined the UMAP plots to

observe the main distribution of different TCs (Figure 2D). The

results showed that most of the C1 subpopulation of TCs in G2M

stage, compared to the other subpopulations, the highest

proportion, as high as 50.90%,at the same time, the tissue

classification results show that the C1 subpopulation is different

from other subpopulations, its mainly come from bladder cancer

tissue cells (Figures 2E, F), and the CNV score was relatively high

(Figure 2G). In addition, we conducted CNV score analysis of

bladder cancer tissue cells and paracancerous cells, the cancer tissue

cell expression level of CNV score was higher than the

paracancerous cells. There were significant differences between

them. UMAP plot showed the CNV score distribution

characteristics. Additional examination of the stemness

characteristics of specific subpopulations of cells in bladder cancer

demonstrated that the C1 subpopulation had the highest Area

Under the Curve (AUC) score for stemness. This meant that

C1 had the characteristics of low differentiation degree and

strong differentiation potential. The stemness score of bladder

cancer cells exhibited a slightly higher level compared to that of

paracancerous cells; however, the difference did not reach statistical

significance (Figure 2H).
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3.3 Heterogeneity of stemness and
development in bladder cancer
cell subpopulations

Subsequently, we conducted an analysis of gene expression

related to cell stemness in the subpopulations of TCs. And we

found that the stemness gene expression level was more significant

in the C1 subpopulation compared with the other cell

subpopulations (Figure 3A). The bar charts confirmed the above

conclusion that the C1 subpopulation is higher in CTNNB1, MYC,

HIF1A and BMI1 expression levels than other subpopulations cells

(Figure 3B). Research had indicated that the atypical activation of

CTNNB1 was linked to the development of various types of tumors,

including but not limited to colorectal cancer, ovarian cancer,

prostate cancer, hepatoblastoma, and hepatocellular carcinoma

(40). HIF1A, hypoxia-inducing factor, promotes angiogenesis and

is important for the vascular system in the embryo and for cancer

tumors (41, 42). As a proto-oncogene, BMI1 was an important

component of the polycomb gene family. High levels of BMI1

expression have been found to be significantly associated with the

onset, progression, and prognosis of diverse malignancies. BMI1

could participate in tumorigenesis by inhibiting multiple gene loci,

synergizing with other proto-oncogenes, and enhancing telomerase

activity (43). The synergistic effect of these genes precisely

demonstrateed the pro-tumor effect of C1 subpopulations. The

UMAP plots showed the expression distribution of CTNNB1, MYC,

HIF1A, BMI1 genes (Figure 3C).

Cell stemness was closely related to cell differentiation and

development. To explore the differentiation trajectory of tumor cell

subpopulations, we performed a pseudotime analysis and presented it

using UMAP plots. First, we showed the lineage trajectory of bladder

cancer tissue cells and paracancerous cells (Figure 3D), and the cell

cycle lineage trajectory (Figure 3E). The initial cell differentiation

trajectory began in the G1 phase and gradually transitioned to the S

and G2M phases according to the cell cycle sequence. We then

analyzed six different TCs subpopulations, and the UMAP plots

showed two main cell lineage tracks (Figure 3F), including lineage 1:

C0→C2→C5→C4→C3; lineage 2:C0→C2→C4→C1. The

difference between the two trajectories mainly existed in the later

stage. Combined with Figure 3D, we could find that the ended of

lineage 1 endedmainly C3 subpopulation, which contained cells from

both tumor tissues and cells from paracancerous cells. The end of

lineage 2 ended mainly C1 subpopulation, which was a tumor cell

subpopulation derived entirely from a bladder cancer tissue sample.

Combined with the evolution of TCs and based on the tissue origin,

CNV score and cell stemness of C1 subpopulation, the conclusion

that C1 subpopulation has a high degree of malignancy and is closely

related to the progression of bladder cancer was reaffirmed.

Furthermore, we conducted an analysis on the temporal

expression patterns of marker genes belonging to 6 distinct

subpopulations. The findings indicated that. different from other

cell subpopulations. The high expression of marker genes for the C1

subpopulation was predominantly observed during the later stage

(Figure 3G). To confirm the above findings, we also conducted a

temporal analysis of the expression of cell stemness genes. The
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FIGURE 2

S100A8+ TCs specifically expressed in malignant EPCs and are associated with cell stemness. (A) The circle plot represented the clustering of the six
tumor cell subpopulations identified in bladder cancer. and the contour curve outlines the boundaries of each cell subpopulation. The outer axis of the
circle plot represents the logarithmic scale of the entire cell count in each cell category. The three-color tracks representative the ratio of each tumor
cell subpopulation in cell types, cell sample types, and cell phases, respectively, and are colored according to cell categories. The UMAP graphs in the
four corners start from the upper left corner and go clockwise to show the expression distribution of nCount-RNA, nFeature-RNA, S.score, and
G2M.score across all TCs was shown. (B) The bubble charts showed the manifestation of marker genes in two sample tissues (top) and in six tumor cell
clusters (bottom). (C) The bar charts and UMAP plots collectively presented the expression profiles of six marker genes FABP4, S100A8, TFF2, CRH,
BIRC5, and IL32 across six tumor cell clusters. (D) UMAP visualized the distribution of TCs in bladder cancer tissue, paracancerous tissue, and G1, G2M,
and S phases. (E) The bar charts showed the percentage of G1, G2M, and S phases in six tumor cell clusters. (F) The bar charts illustrated the percentage
of bladder cancer tissue and paracancerous tissue across six tumor cell clusters. (G) The bar plots illustrated the CNV score expression levels across six
tumor cell clusters, bladder cancer tissue, and paracancerous tissue. Meanwhile, the UMAP plot visualized the distribution pattern of CNV scores. ****P <
0.0001. (H) The bar plots showed the AUC score of cell stemness for six tumor cell clusters and bladder cancer tissue and paracancerous tissue. The
UMAP plot showed the distribution of cell stemness AUC score. "ns" was used to say that there was no significant difference.
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primary distinction between lineage1 and lineage2 was observed in

the later stage, with a notable increase in stemness gene expression

detected in lineage2 compared to lineage1 (Figure 3H). This was

consistent with previous conclusions. Subsequently, we analyzed
Frontiers in Immunology 09
the subpopulations using GO-BP enrichment analysis to verify the

related biological processes of the two lineages (Figure 3I), and the

dynamic timing showed the expression changes of the different

genes of TCs along the two trajectories within the pseudotiming.
FIGURE 3

Analysis of tumor cell clusters for cell pluripotency and analysis of the developmental trajectory of cells. (A) The heatmap showed the z-scores of
the marker genes related to cellular stemness in six cell clusters. (B) The bar plots displayed the expression levels of four key genes associated with
cell stemness across six cellular clusters. (C) The UMAP plots showed the dispersion of the four genes related to cellular stemness within all TCs. (D)
The UMAP plot illustrated the tumor cellular trajectory changes inferred based on bladder cancer tissue and paracancerous tissue. (E) The UMAP plot
illustrated the temporal trajectories of tumor cellular differentiation, depicted based on three cell cycle phases: G1, G2M, and S. The lineage showed
the trajectory from G1 and S to G2M. (F) The UMAP plots showed the two lineages of cellular differentiation over time for the six tumor cell clusters
discussed. The lineage showed the trajectory from C0 FABP4+ TCs to C3 CRH+ TCs(left), another lineage showed the trajectory from C0 FABP4+
TCs to C1 S100A8+ TCs (right). (G) The dynamic trend graphs showed the expression of six marker genes over time at different differentiation stages.
(H) The dynamic trend graphs showed the expression of four stemness genes over time at different stages. (I) The heatmaps showed GO enrichment
pathways during the differentiation process of TCs. The top bar chart represents pseudo-time and six different types of cells. The faceted mountain
plot showed the distribution density of six tumor cell subpopulations spanning various pseudo-time stages. The trajectory plot showed the
expression of S.Score and G2M. Score (red represented S.Score, blue represented G2M. Score) as they changed with pseudotime.
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3.4 Heterogeneity of biological functions
of bladder cancer TCs

To explore the biological functions of TCs in bladder cancer, we

first analyzed the different expression genes of six tumor cell

subpopulations. The results showed that the main upregulated

genes in C1 S100A8+ TCs were RPL32, RPS8, BEST3, IGF2 and

NUPR1 (Figure 4A). Among them, RPL32 played a crucial role in

modulating cellular signaling pathways. It had found that RPL32

could participate in multiple signaling pathways during

tumorigenesis and significantly contribute to the initiation and

progression of neoplastic growth (44, 45). RPS8 was mainly

involved in protein folding and stability, and in tumor studies,

RPS8 has the potential to serve as a biomarker specific to tumors

due to its tendency for elevated expression levels in tumor tissues

and cells compared to normal tissues (46). BEST3 was a coding gene

that encoded proteins with good histocompatibility and low

expression levels. BEST3 had been observed to be present in

multiple types of cancerous tissues, and its expression level

appears to be linked with the tumor’s capacity for invasion.

Furthermore, the correlation between the expression level of

BEST3 and the efficacy of tumor therapy has prompted its

investigation as a potential therapeutic target or biomarker (47).

The role of IGF2 was pivotal in regulating cellular proliferation,

development, motility, differentiation, and viability. Furthermore,

IGF2 played a role in a variety of cancer development (48). NUPR1

had been linked to the onset and progression of cancer, and it was

commonly observed to be upregulated in different cancer forms.

Moreover, NUPR1 could act as a transcriptional regulator affecting

the expression of genes involved in cell cycle regulation, apoptosis,

and stress response. These genes had a significant correlation with

the onset and progression of neoplasms (49, 50).

Furthermore, we conducted enrichment analysis using GO-BP

and KEGG to identify enriched biological processes and pathways

associated with the DEGs in the subpopulations of TCs. And the

heatmap showed the results of the genes enrichment in the TCs

subpopulations (Figure 4B). C0 FABP4+ TCs was mainly associated

with cytoplasmic translation, translational initiation, intrinsic

apoptotic signaling pathway, ATP synthesis coupled electron

transport and mitochondrial ATP synthesis coupled electron

transport biological processes related in GO-BP, and was

associated with the ribosome, coronavirus disease-COVID-19,

chemical carcinogenesis-reactive oxygen species, oxidative

phosphorylation and parkinson disease pathways in KEGG.C1

S100A8+ TCs was mainly associated with cytoplasmic translation,

protein folding, chaperone-mediated protein folding, regulation of

apoptotic signaling pathway and the biological process of

ribonucleoprotein complex biogenesis in GO-BP, and was

associated with the fluid shear stress and atherosclerosis,

ribosome, protein processing in endoplasmic reticulum, prion

disease and parkinson disease pathways in KEGG. The

association of C2 TFF2+ TCs primarily pertained to the biological

processes related to hypoxia response, decreased oxygen levels

response, oxygen levels response, cellular response to decreased

oxygen levels, and cellular response to hypoxia in GO-BP, and was

associated with the estrogen signaling pathway, HIF-1signaling
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pathway, legionellosis, lipid and atherosclerosis and the glycolysis

pathways correlation in KEGG. The association of C3 CRH+ TCs

primarily pertained to the process of ATP production through

electron transport, mitochondrial ATP synthesis coupled with

electron transport, aerobic electron transport chain, and oxidative

phosphorylation in GO-BP, and was associated with the parkinson

disease, ribosome, huntington disease, oxidative phosphorylation

and the amyotrophic lateral sclerosis pathways correlation in

KEGG.C4 BIRC5+ TCs was mainly associated with chromosome

segregation, ATP synthesis coupled electron transport,

mitochondrial ATP synthesis coupled electron transport, nuclear

chromosome segregation, respiratory electron transport chain in

GO-BP, and was associated with the parkinson disease, huntington

disease, amyotrophic lateral sclerosis, prion disease and alzheimer

disease pathways correlation in KEGG. C5 IL32+ TCs was mainly

associated with leukocyte mediated cytotoxicity, leukocyte mediated

immunity, cell killing, lymphocyte mediated immunity and

regulation of T cell activation biological processes in GO-BP, and

was associated with the natural killer cell mediated cytotoxicity,

graft-versus-host disease, antigen processing and presentation,

primary immunodeficiency and the Epstein-Barr virus infection

pathways in KEGG.

In addition, we performed a further step GSEA of the six tumor

cell subpopulations, and we could observe that C1 S100A8+ TCs

were mainly enriched in intracellular zinc ion homeostasis

(Figure 4C). GSEA results (Figure 4D) also showed that the C1

subpopulation was positively enriched in the regulation of extent of

cell growth, regulation of axon extension, positive regulation of

mononuclear cell migration, the intracellular zinc ion homeostasis,

while it was negatively regulated in positive regulation of peptide

hormone secretion, antigen processing and presentation of

exogenous antigen, glycolytic process through glucose-6-

phosphate and glycolytic process through fructose-6-phosphate.

In summary, C1 subpopulation was mainly associated with

biological pathways such as protein folding and ribosomes, which

promoted and accelerated tumor cell migration and invasion. Cells

were very sensitive to physiological conditions, and when the

physiological conditions changed, the cells would change

accordingly. When the loaded proteins exceed the folding

capacity of the endoplasmic reticulum stress (ERS), ERS will be

caused. The core of ERS lied in the occurrence of protein

misfolding, which significantly influenced the growth and viability

of cancerous cells and may facilitate the progression of bladder

carcinoma (51, 52). Ribosomes, as a kind of nutrient, can escort the

smooth and rapid translation of viruses and provide conditions for

tumor proliferation, thus affecting the progression and development

of bladder cancer (53).
3.5 Analysis of the cell interactions in
the TME

To gain a thorough and organized comprehension of intricate

cellular reactions, our aim was to conduct an examination on

intercellular connections and networks involved in ligand-receptor

communication, with the intention of visualizing interactions between
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cells. By means of CellChat analysis, we successfully established a

network for cellular communication encompassing the majority of

cells, including ECs, fibroblasts, B plasma cells, myeloid cells and six

tumor cell subpopulations (Figure 5A). Then, we determined the

quantity of interactions through the ‘line’ connection linking two cell

types, with thicker lines indicating a higher number of interaction paths.

Additionally, we represented the strength of interactions using line

weight, where thicker lines indicated stronger interactions. Among
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different cell subpopulations. Next, we combined the CellChat maps

to explore how different cell subpopulations interact with each other

through these pathways. First, we categorized cell communication

patterns into three main types. In addition, the displayed heatmaps

illustrated the expression of cell interaction proteins in the three modes.

The two heatmaps on the left showed the outgoing signal patterns of

different cell subpopulations and the active interacting proteins in the

signal patterns, and the two heatmaps on the right showed the incoming
FIGURE 4

Perform gene and pathway enrichment analysis for each tumor cluster set. (A) The volcano plots showed the differential gene expression signatures
across the six clusters. (B) The heatmap displayed the top five enrichment pathways among the six clusters identified through GO-BP and KEGG
enrichment analysis. (C) The bubble plot showed the GSEA results of the six tumor cell clusters. (D) GSEA analyzed eight positively or negatively
enriched pathways in C1 S100A8+ TCs.
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signal patterns and interacting proteins of cell subpopulations

(Figure 5B). We could observe that in the outgoing signal pattern

diagrams, C1 S100A8+ TCs were mainly in pattern 3. Correspondingly,

ncWNT, CDH,MPZ,MK, andOCLN showed high expression levels in

pattern 3. Additionally, the incoming signal patterns of C1 S100A8+
Frontiers in Immunology 12
TCs exhibited pattern 1 including but not limited to the pathways

represented by such as EPHA, CDH, MPZ, IGF, and OCLN. The

Sankey diagrams and heatmaps (Figure 5C, D) showed the

communication pattern and target signal of each cell subpopulations,

which was consistent with the results in Figures 5B.
FIGURE 5

Bladder cancer cells was characterized by cell-to-cell signaling networks. (A) The circle charts summarized the quantity and intensity of interactions
between six tumor cell clusters and four distinct cell types, providing insights into their interconnectedness. (B) The heatmaps separately showed the
contributions of the six tumor cell clusters and four cell types in the outgoing (left) and incoming (right) signaling under three cell communication
patterns, as well as the contributions of various proteins in the three communication patterns. (C) The Sankey diagrams illuminated the outbound
communication pattern of secretory cells and the inbound communication pattern received by target cells. (D) The bar charts compared the relative
signaling strengths of six tumor cell clusters and four cell types in both incoming and outgoing patterns. Complementarily, the heatmaps visualized
the reception intensities of various proteins within these communication patterns across the same cell groups.
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3.6 Explored the cell signaling pathways in
C1S100A8+ TCs

Subsequently, we analyzed the number of cell interaction

strength between the C1 S100A8+ TCs and other cell subsets in

depth (Figures 6A, B). We could find that both in the incoming

signal or the outgoing signal, the number and intensity of the

interaction between myeloid cells and C1 S100A8+ TCs were more

significant than other cells, so we could infer that C1 S100A8+ TCs

cells and myeloid cells had a strong interaction. Subsequently, we

performed signaling network analysis and showed that C1 S100A8+

TCs and myeloid cells mainly communicate with MIF signals

pathway (Figure 6C). Then we analyzed the role of the two in the

signaling pathway (Figure 6D), which showed that C1 S100A8+ TCs

cells mainly played the role of signal sender, while myeloid cells

mainly played the role of signal sender and influencer.

By comparison, we could infer that the MIF ligand of C1

S100A8+ TCs cells acted on the CD74-CXCR4 and CD74-CD44

receptor of myeloid cells (Figures 6E, F). The cell interaction circle

diagrams (Figures 6G, H) showed the interaction relationship

between C1 S100A8+ TCs cells and myeloid cells in MIF-(CD74

+CXCR4) and MIF-(CD74+CD44) cell signaling pathway, verifying

the above statement. In order to make the results more visual, we

used the interaction hierarchy diagrams (Figures 6I, J) to show the

relationship between C1 S100A8+ TCs cells and myeloid cells (the

thickness of the line represents the interaction strength, the thicker

of the line, the relationship is more significant). The findings

indicated that the intercellular communication between C1

S100A8+ TCs and myeloid cells primarily took place through

paracrine, leading to signal crosstalk. This could disrupt normal

signal transduction, leading to alterations in the tumor immune

microenvironment, thereby facilitating the proliferation, metastasis,

and invasion of TCs (54).
3.7 TFs regulate the oncogenic mechanism
of C1 S100A8+ TCs

TFs act on genes to regulate gene transcription by binding

specific nucleotide sequences upstream of the gene, thereby

affecting cell biological functions. Firstly, we conducted cluster

analysis of bladder cancer tissue cells according to genes

expression (Figure 7A). In addition, the UMAP plots displayed

the expression of TFs in six tumor cell clusters (Figure 7B).

Subsequently, based on the heatmap of TFs correlation

(Figure 7C), we divided the TFs with similar functional and

expression into three main modules, namely M1, M2 and M3.

Next, we visualized the analysis of the divided modules, and

observed the expression levels of each TCs subpopulation in

different modules through the UMAP plots. The results showed

that C1 S100A8+ TCs cells had significant expression in the M1

module (Figure 7D). To further verify the above statement, we

performed transcription factor regulatory activity score analysis

(Figure 7E), and we can observe that in the M1 module, C5 IL32+

TCs cells have the highest transcription factor regulatory activity

score, followed by C1 S100A8+ TCs cell. The bar charts also verify
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the above statement that C1 S100A8+ TCs cells have high

expression levels in the M1 module, second only to C5 IL32+

TCs cells (Figure 7F). Subsequently, we conducted an analysis on

the top 5 TFs in the subpopulations of TCs (Figure 7G). The

specificity score identified HES1, AHR, TBL1XR1, IRF4, and SPI1

as the top 5 TFs in C1 S100A8+ TCs. Finally, we used the UMAP

plots to show the TFs distribution characteristics of C1 S100A8+

TCs cells (Figure 7H).
3.8 Constructed the prognostic model of
bladder cancer

To investigate the prognostic factors in patients, we employed

univariate Cox regression analysis to discover 21 genes that exhibited

an association with prognosis (Figure 8A). We could observe HES1

HR<1, while HR values of other genes were>1. Therefore,HES1was a

protective factor that favors patient prognosis, while others were risk

factors and unfavorable to patient prognosis. To mitigate the issue of

multicollinearity among genes, we employed LASSO regression

analysis to identify 10 genes that were associated with prognosis

(Figure 8B). Multivariate Cox regression analysis was then performed

on the above genes and used to calculate the genes risk coefficient for

these genes (Figures 8C, D). The curve graph and scatter plot revealed

variability in risk scores and survival outcomes between low STRS

(S100A8+ tumor risk score) group and high STRS group, while high

STRS group was associated with worse outcome (Figure 8E). The

heatmap showcased the distinctive expression patterns of the

prognostic genes in both cohorts, setting them apart from the rest

of the gene pool (Figure 8F), HES1 was more significantly expressed

in low STRS group and HES1 favors the prognosis of the patient,

consistent with previous conclusions. The ROC curves and AUC

values (Figure 8G) for 1-year, 3-years, and 5-years periods exceeded

the threshold of 0.6, indicating that the prediction model was specific

and valuable. The Kaplan-Meier survival curve further confirmed the

low survival profile of high STRS group (Figure 8H). Combined with

Figure 8D, the KDELR2 risk score was the highest. Hence, we

conducted an analysis using the Kaplan-Meier survival curve

(Figure 8I) and observed a notable decline in survival rates among

patients exhibiting elevated KDELR2 gene expression.
3.9 Prognostic model enrichment analysis

To provide clarity on the distinction between the two scoring

cohorts, an analysis was conducted on the genes that exhibited

differential expression (Figure 9A). The volcano plot showed the

up-regulation and downregulation trends of DEGs (Figure 9B).

Subsequently, to understand the biological processes for the above

genes, we performed various enrichment analyses. The first was GO

enrichment analysis, which reveals the main biological process, cell

composition and molecular function (Figure 9C). In GO-BP, genes

were mainly enriched in biological processes like epidermis

development, keratinization, keratinocyte differentiation,

intermediate filament organization, skin development. In GO-CC,

its predominant enrichment were observed in the cornified envelope,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1485109
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1485109
intermediate filament, and cytoskeletal components of intermediate

filaments as well as keratin filament. In GO-MF, mainly enriched in

structural constituent of skin epidermis, serine-type endopeptidase

activity, serine hydrolase activity, endopeptidase activity and receptor
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ligand activity. In addition, we performed KEGG pathway

enrichment analysis of differential genes (Figure 9D), and showed

that the related pathways were staphylococcus aureus infection,

retinol metabolism, ECM-receptor interaction, steroid hormone
FIGURE 6

The MIF signaling network was the main communication method between S100A8+ TCs and Myeloid cells. (A) The circle diagrams showed TCs as
the signal emitter and other cells as signal receiver The left side represented the communication strength, while the right side represented the
number of communications. (B) The circle diagrams showed other cells as the signal emitter and TCs as signal receiver. The left side represented the
communication strength, while the right side represented the number of communications. (C) The heatmap showed the communication probability
of various cell clusters based on the MIF signaling pathway. There was a high probability of communication between C1 S100A8+ TCs and Myeloid
cells. (D) The heatmap showed that C1 S100A8+ TCs mainly acted as signal senders, while myeloid cells mainly played a signal receiver and
influencer in the MIF pathway. (E, F) The bubble chart and violin plots displayed that in the MIF pathway, the communication crosstalk between C1
S100A8+ TCs and myeloid cells through the MIF- (CD74+CD44) and MIF-(CD74+CXCR4) ligand receptor pair. (G, H) The circle diagrams showed
the interactions between C1 S100A8+ TCs and myeloid cells in the MIF- (CD74+CD44) and MIF- (CD74+ CXCR4) signaling pathways. (I, J) The
hierarchy diagrams illustrated the autocrine and paracrine interactions between the six tumor cell clusters and ECs, fibroblasts, B plasma cells, and
myeloid cells on the MIF- (CD74+CD44) and MIF- (CD74+ CXCR4) signaling pathway.
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biosynthesis and cytokine-cytokine receptor interaction. Finally, we

performed a GSEA of the enriched pathways (Figure 9E), the results

showed that keratinization, keratinocyte differentiation, skin

development and the epidermis development related pathways
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showed a positive enrichment trend, mitochondrial respiratory

chain complex assembly, uronic acid metabolic process, the

flavonoid metabolic process and ATP synthesis coupled electron

transport related pathways showed a negative enrichment trend.
FIGURE 7

Cluster analysis of TFs and the top five TFs in C1 S100A8+ TCs. (A) The UMAP plot displayed tumor cell clustering based on gene expression levels.
(B) The UMAP plots visualizations highlighted distinct clustering patterns among TCs, grouped according to the activation levels of various TFs.
(C) The heatmap displayed three modules M1, M2, and M3 of transcription factor hierarchical clustering. (D) The UMAP plots depicted the distinct
expression patterns of TFs across the three tumor cell modules. (E) The dot plots displayed the ranking of transcription factor regulatory activity
scores for different tumor cell clusters in three modules. (F) The bar charts showed the expression levels of six cell clusters in three modules.
(G) Ranking of the top 5 transcription factor activity scores of different cell types. (H) The UMAP plots displayed the expression of the top five TFs in
C1 S100A8+ TCs.
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3.10 Disparities in immune infiltration
observed between high and low
STRS groups

We performed immune infiltration analysis on high STRS group

and low STRS group. The box plot revealed higher expression levels of
Frontiers in Immunology 16
macrophages M0 and M1, and neutrophils in the high STRS group

(Figure 10A). Those cell types belong to myeloid cells. It was

noteworthy that macrophages exhibited a higher abundance of

immune infiltration and exerted a more pronounced effect on the

high STRS group. Subsequently, we further investigated the

correlation between risk score and immune infiltration (Figure 10B).
FIGURE 8

Constructing a risk prediction model through a combined approach of univariate Cox proportional hazards analysis and Lasso regression. (A) The forest
plot displayed the top 21 genes obtained from univariate Cox analysis that were associated with prognosis. (aHR > 1 indicated poor prognosis). (B) By
setting the lambda.min = 0.017 for LASSO regression curve, we obtained 10 prognostic-related genes(up). Each line depicted the coefficient assigned to
a distinct variable, selected for its significant prognostic value. (bottom). (C) The forest plot displayed the top 10 genes obtained from multivariate Cox
analysis that were associated with prognosis. (aHR > 1 indicated poor prognosis). (D) The bar plot showed gene coefficients about those 10 prognostic-
related genes. (E) A curve graph compared the risk scores between patients in the low and high STRS groups, while a scatter plot visualized survival
outcomes, with blue dots indicating survival events and red dots signifying death events. (F) The heatmap contrasted the expression levels of ten risk
genes between the high and low STRS groups, providing insights into their differential activation patterns. (G) The ROC curve analysis, along with its
corresponding AUC value, offered a quantitative assessment of the predictive performance of the model in estimating patient survival cycles. (H) A
Kaplan-Meier survival analysis was conducted to compare the survival outcomes between patients in the high STRS group and those in the low STRS
group. (I) A Kaplan-Meier survival analysis distinguished survival trends between patients stratified into high KDELR2 group and low KDELR2 group.
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In the correlation lollipop chart, macrophages also showed a close

positive correlation with risk score. In addition, the immune-score,

stromal-score, and ESTIMATE-score of the high STRS group were

significantly higher than those of the low STRS group, while the

tumor-purity was significantly lower than that of the low STRS group

(Figure 10C). Scatter plots demonstrated positive associations between
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KDELR2 expression levels with immune-score, stromal-score, and

ESTIMATE-score as well as macrophages M0 (Figure 10D). Elevated

KDELR2 expression was linked to increased infiltration of

macrophages and a more prominent immunosuppressive

microenvironment. Therefore, target mining of macrophages might

be a potential strategy for bladder cancer immunotherapy. The
FIGURE 9

Differential gene expression and enrichment analysis. (A) The heatmap illustrated distinct patterns of gene expression between the high and low
STRS groups. (B) The volcano plot visually displayed the variation in expression levels among genes that exhibited differential expression. (C) The dot
plots sequentially displayed Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories from the GO enrichment
analysis. (D) KEGG enrichment bar plot showed top 20 enrichment pathways. (E) Eight GSEA pathways that were positively and negatively enriched.
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heatmap provided visual comparisons that supported our previous

findings (Figure 10E).

Furthermore, the bubble plot (Figure 10F) showed the correlation

between immune checkpoints and prognostic genes, OS, Risk.

Among them, CD274, CD276, CD80, CD86, HAVCR2, LAIR1,

NRP1, PDCD1LG2, TNFRSF8, TNFRSF9, TNFRSF4, and VTCN1

were significantly positively correlated with KDELR2. This suggested

that patients with high KDELR2 expression were potential candidates

for these immune checkpoint inhibitors (ICIs). In order to optimize

ICIs utilization and improve therapeutic efficacy further analysis was

conducted on gene expression levels of different immune checkpoints

between high STRS group and low STRS group using a box plot

(Figure 10G). The results indicated significantly higher expression

levels for most genes in the high STRS group compared to those in

the low STRS group. These findings suggested that application of

these ICIs to patients classified as high STRS group might result in

improved treatment outcomes.
3.11 KDELR2 inhibits the proliferation and
invasion of bladder cancer cells

In an effort to delve deeper into the impact of KDELR2 on the

patient outcome in cases of bladder cancer, we conducted in vitro

experiments. Firstly, we divided tumor cell lines of different sources

into three groups: si-NC, si-KDELR2-1 and si-KDELR2-2. The

findings indicated notable variances in the expression levels of

protein and mRNA for UM-UC-1 and VM-CUB1. Specifically,

the si-KDELR2 group exhibited lower expression levels compared to

the si-NC group (Figure 11A). In addition, we investigated the effect

of KDELR2 on tumor cell activity. First, tumor cell activity was

tested by CCK-8, and fluorescence staining showed that the tumor

cell activity in si-NC was higher than that in si-KDELR2-1 and si-

KDELR2-2. Subsequently, we used line plots to quantify indicators.

The OD values of si-KDELR2-1 and si-KDELR2-2 were found to be

significantly reduced compared to the si-NC group, aligning with

the outcomes obtained from CCK-8 staining (Figure 11B). Next, we

studied the proliferation ability of TCs. The colony formation assay

(Figure 11C) similarly corroborated the aforementioned statements.

Through EDU experiments, the microbiota density was lower after

KDELR2 was knocked out. Subsequent data analysis showed that si-

KDELR2 inhibited cell proliferation and cloning (Figures 11D, E).

In order to investigate the invasion and migration ability of the

cells, we conducted wound healing assay and transwell assay

(Figures 11F, G). After 48 hours of assay, si-KDELR2 TCs’

distance was greater than that of si-NC, while the density was

lower than that of si-NC, which proved that si-KDELR2 TCs had

low invasion and migration ability. The bar plots were consistent

with the experimental conclusion that UM-UC-1 and VM-CUB1

cells inhibited the invasion, migration and wound healing of TCs

after the knockout of si-KDELR2 (Figure 11H). In summary,

KDELR2 had obvious tumor promoting effect, which played a key

role in the development of TCs. In conclusion, our research

provided a more comprehensive understanding of the KDELR2

gene. Through a series of studies, we discovered that KDELR2

promoted tumor cell development. It could be inferred that
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KDELR2 played a key role in driving tumor cell proliferation,

migration, and other related processes. Accordingly, we could

achieve the purpose of improving prognostic survival by

inhibiting KDELR2, making it possible focus for therapeutic

intervention in cases of bladder cancer.
4 Discussion

In today’s society, bladder cancer is still a global problem,

posing a threat to human health, and its incidence has significant

population differences, the incidence of men is generally higher

than that of women, but most female patients with bladder cancer

are more serious and have a poor prognosis (55). In most cases, the

prognosis of bladder cancer is determined by the distinct attributes

and differences observed among individual patients (56). Hence, it

is imperative to conduct a thorough investigation into the diversity

of bladder cancer in order to improve patient prognosis and identify

possible targets for therapeutic interventions in this disease. Using

scRNA-seq, the cellular and molecular features of bladder cancer

tissues and identified five known cell types. For different cell

subpopulations, we performed temporal phase, sample source as

well as pathway enrichment analysis. We found that unlike other

cells, EPCs were mainly derived from bladder cancer tissue cells.

Enrichment analysis showed that ATP synthesisation-related

pathways were significantly expressed in EPCs, and Mitochondrial

electron transport and NADH to ubiquinone were positively enriched

in EPCs. ATP played a very important role in cells and was one of the

important links of energy information, which could control the life

activity of tumors (57)and make the adverse process, namely tumor

proliferation, possible, thus promoting the development of TCs (58).

Mitochondria could provide an energy source for cells, and in cells

they could influence signature functions, including avoiding cell death,

bioenergy dysregulation, genome mutation, and promoting tumor

inflammation and metastasis (59). Cancer cells would derive a kind of

tumor stem cells with the ability of self-renewal, metastasis and spread

and treatment resistance during their self-evolution, which played a

key role in tumor occurrence and development (60). Based on this, we

studied TCs of bladder cancer. First, tumor tissue was divided into six

subpopulations based on marker genes. Among them, we discovered

that TCs exhibiting elevated levels of S100A8 were exclusively derived

from tumor tissue specimens. Bubble chart showed the C1

subpopulation high expressed DMKN MT1X, S100A7, S100A9,

S100A8 genes, etc. Among them, S100A9 and S100A8 had strong

pro-inflammatory functions. According to their high expression in

cancer, they showed abundant expression in TCs and infiltrate

immune cells. The involvement of these factors was crucial in the

progression of cancer. Furthermore, it was observed that C1

subpopulation had higher expression levels of CNV score and Cell-

stemness. Therefore, we could conclude that C1 subpopulation cells

have higher malignant degree and higher differentiation potential.

Overall, C1 S100A8+ TCs had complex relationships with further

development of bladder cancer.

To clarify the relationship between C1 S100A8+ TCs

subpopulation and tumor, we performed various enrichment

analyses on cell subpopulations. C1 S100A8+ TCs were
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mainly involvedin the cytoplasmic translation, protein folding,

chaperone-mediated protein folding and signaling pathways like

ribonucleoprotein complex biogenesis. Studies had shown that

there was a special class of ribosomes in cancer cells, which could

change cell progression and metabolic reprogramming, accelerate

carcinogenic translation, and change cell function (61). In other

words, bladder cancer cells might develop more rapidly under the
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support of ribosomes, and correspondingly, their malignancy might

be higher. In addition, protein folding tends to have a relationship

with the endoplasmic reticulum. When the body’s ability to tolerate

ERS was improved, the survival ability of cancer cells will become

stronger. Similarly, the ability of immunosuppression, angiogenesis

and drug resistance would be improved accordingly (62). To further

enhanced our understanding of ribosome function and protein
FIGURE 10

Infiltration of immune cells in high STRS group and low STRS group. (A) The box plot showed estimated proportion of immune cells that were
statistically different between high STRS group and low STRS group. (B) Lollipop chart showed the correlation between different immune pathways and
risk scores, with bubble size representing the abs(correlation) and color indicating p-value. (C) Immune-score, stromal-score, ESTIMATE-score, tumor-
purity between high STRS group and low STRS group. (D) The scatter diagram showed the correlation among KDELR2 and immune-score,
macrophages-M0, stromal-score, ESTIMATE-score. (E) The heatmap showed risk scores for different immune cells in the high STRS group and the low
STRS group. (F) The bubble plot showed the degree of association between risk genes and immune checkpoints. (G) The box plot showed immune
checkpoints with statistical differences in the high STRS group and the low STRS group. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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folding, we focused on their critical roles in cancer drug resistance

and tumor evolution. Ribosomes played a vital role in maintaining

cellular proteostasis, and alterations in ribosomal biogenesis

enhanced protein synthesis capacity, allowing cancer cells to

adapt to therapeutic pressure (63). Additionally, the involvement
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of chaperone proteins and the accumulation of misfolded proteins

triggered the unfolded protein response (64), activating autophagy

or heat shock protein-mediated survival pathways, thereby

promoting resistance to chemotherapy and targeted therapies.

Defects in protein folding also led to the accumulation of
FIGURE 11

In vitro experiments confirmed the effects of KDELR2 knockdown. (A) The bar charts depicted the altered patterns of gene-encoded protein (left) and
gene RNA (right) expression in UM-UC-1 and VM-CUB1 cell lines, comparing three groups: si-NC, siKDELR2-1, and siKDELR2-2. Following targeted
KDELR2 knockdown, notable reductions in both mRNA and protein abundance levels were evident. (B) The line plot showed the longitudinal growth of
three distinct groups across two cell lines. (C) Colony-formation assay revealed a significant reduction in cell viability subsequent to KDELR2 knockdown,
in contrast to the unaltered control group. (D) The EDU staining assay confirmed that KDELR2 knockdown exerted an inhibitory effect on cell proliferation.
(E) The bar plots showed the colony numbers and cell proliferation of three groups in two cell lines. (F) The transwell assay assessed the migratory and
invasive potential of three distinct groups across two cellular lines, offering quantitative insights into their motility and aggressiveness. (G) Post-treatment
migration capacity of TCs was quantitatively assessed using wound healing assays. (H) KDELR2 knockdown led to a statistically significant decrease in cell
migration, invasion, and wound healing capacities, as evident from bar graph analysed. **P < 0.01, ***P < 0.001.
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mutations, exacerbating tumor heterogeneity and evolution (65),

and affected tumor antigen presentation, potentially resulting in

immune evasion. Moreover, ribosomal alterations impacted

translational fidelity, increasing genetic and phenotypic diversity,

further driving tumor adaptation to the microenvironment and

therapeutic interventions (66). In summary, ribosome and protein

folding and other related biological processes played an important

role in tumor development, which can accelerate the proliferation

and metastasis of TCs. In simpler terms, the progression of bladder

cancer could be hindered by targeting specific factors like ribosomes

and the process of protein folding.

To further explore the interaction between C1 S100A8+ TCs

and other cells, CellChat found that C1 S100A8+ TCs acted on

myeloid cells through the MIF-(CD74+CXCR4) and MIF-(CD74

+CD44) signaling pathways. MIF was a representative pro-

inflammatory factor that played a role in regulating immune

responses. Studies had shown that MIF expression is significantly

increased in a variety of tumors (67). High expression of MIF had

been observed to promote tumor progression and metastasis,

stimulate angiogenesis, and create an immunosuppressive

microenvironment conducive to tumor development. C1 S100A8+

TCs acted on myeloid cells CD74-CXCR4 and CD74-CD44

receptors through MIF ligands, which might promote the

transformation of normal myeloid cells into cancer-related

myeloid cells and inhibit the body’s normal anti-tumor immune

effect. Therefore, targeting MIF in TCs could be used as a potential

strategy to treat tumors (67).

To further elucidate the mechanism of carcinogenesis in the

subpopulation of C1 S100A8+ TCs, we analyzed the TFs and selected

the top five TFs according to the expression active, namely HES1,

AHR, TBL1XR1, IRF4 and SPI1.We could find that HES1 and AHR

were significantly expressed in C1 subpopulation. HES1 had a

complex relationship with various pathways, which had the

potential to trigger cellular metamorphosis and enhance its invasive

capabilities, while also playing a significant role in the differentiation,

proliferation, and immune suppression of cancer cells (68).

Furthermore, research had indicated a strong correlation between

HES1 and the stem-like properties of TCs, as well as their ability to

spread and develop resistance against drugs (69). AHR activated a

specific gene, CYP1A1, which caused many oncogenic genes to

combine with DNA to form cancer-promoting combinations, thus

promoting the development of cancer (70). The over-expression or

abnormal activation of AHR or its endogenous agonists in the TME,

and these regulatory abnormalities promoted the immune escape of

tumors. In summary, the above studies provided innovative prospects

for future immunotherapeutic interventions in bladder cancer.

In addition, to enhance the chances of survival and extend the

lifespan of individuals and improve the quality of life of patients,

our research group constructed a bladder cancer prognostic risk

model based on the top 10 marker genes of C1 S100A8+ TCs, and

evaluated the prognosis of patients characterized by high expression

of S100A8 in the TCGA cohort. We observed that a higher high

STRS group risk score, often symbolizing higher mortality, had a

worse prognosis than low STRS group. According to research

findings, KDELR2 had been found to contribute to the

advancement of bladder cancer and was often associated with
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unfavorable outcomes in individuals who had been diagnosed

with cancer (71). In vitro experiments had also proved that when

KDELR2 was highly expressed, the proliferation, migration and

invasion ability of TCs were significantly improved, while when

KDELR2 was knocked down, it had the opposite effect. This was

consistent with previous studies (5, 72). Therefore, the potential of

targeting KDELR2 should be acknowledged as a viable strategy in

the management of patients diagnosed with bladder cancer.

Additionally, the results of immune cell infiltration analysis

showed that the high STRS group had higher macrophage

infiltration levels, and the immune-score and stromal-score were

significantly higher than those of the low STRS group. Macrophages

have two phenotypes: “anti-tumor M1” and “pro-tumor M2”, which

respectively performed two opposite biological effects (73, 74).

Therefore, reshaping the macrophage phenotype and promoting

the transformation of the M0 phenotype to the M1 direction was

crucial to resist tumor immunosuppression. The higher macrophage

infiltration level in the high STRS group was obviously beneficial for

macrophage-targeted therapy in bladder cancer patients to help

promote the normal anti-tumor effect of macrophages. In addition,

with the increase of KDELR2 expression level, the macrophage

M0 immune infiltration status became more obvious, and both

immune and stromal scores increased. KDELR2 could enhance

tumor immune infiltration, inhibit anti-tumor immune response,

and lead to low response to immunotherapy in patients (71).

KDELR2 was instrumental in promoting macrophage infiltration

into the TME of bladder cancer, where it influenced the

polarization of macrophages towards the M2 phenotype (75). This

M2 polarization was associated with immunosuppression, increased

angiogenesis, and enhanced tumor survival, creating a favorable

environment for tumor progression (76). By modulating cytokine

and chemokine production, KDELR2 helped recruit macrophages

that secreted factors supporting tumor growth. Additionally, the

presence of M2 macrophages facilitated immune evasion, allowing

cancer cells to escape detection by the immune system. Thus,

targeting KDELR2 presented a promising therapeutic strategy to

disrupt these pro-tumorigenic processes and improve treatment

outcomes in bladder cancer.

To further elucidate the modulation of macrophage

phenotypes for the purpose of anti-tumor therapy, particularly

focusing on the conversion of M2 macrophages to the pro-

inflammatory M1 phenotype, previous studies showed promise

in reprogramming macrophages toward an anti-tumor state using

Toll-Like Receptor agonists, such as MPLA (77), and CSF1R

inhibitors, such as pexidartinib (78, 79). Additionally, researchers

explored targeting the STAT3 (80) and PI3K/AKT signaling

pathways (81) to suppress M2 polarization while promoting M1

activity. Cytokine-based therapies, including IFN-g and IL-12 (82),

were also employed to enhance the M1 phenotype. Our findings on

the role of KDELR2 in macrophage polarization potentially

complemented these therapeutic strategies, as KDELR2 might

have represented a novel target for further enhancing

macrophage reprogramming. Future studies could have explored

combining KDELR2 targeting with these existing therapies to

improve the efficacy of macrophage-based immunotherapies in

bladder cancer.
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In our study, although wemade every effort to conduct a thorough

analysis and carefully selected the study cohort, we acknowledged

several limitations. First, the small sample size might have led to an

erroneous association between the investigated samples and the target

genes, potentially affecting the accuracy of our assessment. Second,

bladder cancer was composed of various subpopulations. Due to the

relative rarity of bladder squamous cell carcinoma and

adenocarcinoma, we focused primarily on urothelial carcinoma in

our study. This focus might have limited the generalizability of our

findings, as different subpopulations of bladder cancer might exhibit

distinct biological behaviors and treatment responses. Lastly, our

experimental investigation into the interactions between tumor cells

and macrophages was not sufficiently in-depth. The complexity of the

TME, especially the interactions between tumor cells and immune

cells, was a current research hotspot. In bladder cancer, the cellular

components of the TME, such as tumor-associated macrophages and

cancer-associated fibroblasts, co-evolve with tumor cells, contributing

to tumor heterogeneity and promoting tumor progression and drug

resistance. Therefore, future studies need to focus more on these

interactions and how they influence tumor progression and

treatment response.

In future research, we plan to start with KDELR2 and further

investigate macrophage-targeted therapeutic strategies for bladder

cancer. By exploring KDELR2’s mechanisms in bladder cancer, we

aim to develop novel therapeutic strategies to improve patient

prognosis. Additionally, we will explore combining different

TME-targeting strategies into a rational approach that offers

better efficacy with fewer side effects, providing more treatment

options for bladder cancer patients.
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