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Background: Breast cancer, characterized by its heterogeneity, is a leading cause

of mortality among women. The study aims to develop a Machine Learning-

Derived Liquid-Liquid Phase Separation (MDLS) model to enhance the prognostic

accuracy and personalized treatment strategies for breast cancer patients.

Methods: The study employed ten machine learning algorithms to construct 108

algorithm combinations for the MDLS model. The robustness of the model was

evaluated using multi-omics and single-cell data across 14 breast cancer

cohorts, involving 9,723 patients. Genetic mutation, copy number alterations,

and single-cell RNA sequencing were analyzed to understand the molecular

mechanisms and predictive capabilities of the MDLS model. Immunotherapy

targets were predicted by evaluating immune cell infiltration and immune

checkpoint expression. Chemotherapy targets were identified through

correlation analysis and drug responsiveness prediction.

Results: TheMDLSmodel demonstrated superior prognostic power, with amean

C-index of 0.649, outperforming 69 published signatures across ten cohorts.

High-MDLS patients exhibited higher tumor mutation burden and distinct

genomic alterations, including significant gene amplifications and deletions.

Single-cell analysis revealed higher MDLS activity in tumor-aneuploid cells and

identified key regulatory factors involved in MDLS progression. Cell-cell

communication analysis indicated stronger interactions in high-MDLS groups,

and immunotherapy response evaluation showed better outcomes for low-

MDLS patients.

Conclusion: The MDLS model offers a robust and precise tool for predicting

breast cancer prognosis and tailoring personalized treatment strategies. Its

integration of multi-omics and machine learning highlights its potential clinical

applications, particularly in improving the effectiveness of immunotherapy and

identifying therapeutic targets for high-MDLS patients.
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Introduction

Breast cancer (BC) is a heterogeneous disease and is the most

common cancer in women. Breast cancer morbidity and mortality

are separately reported as 11.7% and 6.9%, respectively, by

GLOBCAN, 2020 (1). In women, it remains one of the most

common causes of cancer-related death (2). Therefore,

improving the efficiency of early diagnosis to identify breast

cancer more reliably has become a research hotspot worthy

of attention. Developing personalized treatment strategies

for the clinic is crucial, and one approach involves creating

predictive models to aid in the early detection and diagnosis of

breast cancer.

Despite significant advances in developing predictive models

for breast cancer, the outcomes remain suboptimal. Breast cancer

incidence is believed to be closely associated with transcriptional

dysregulation or genetic mutations (3). Recent insights into the

biophysical behavior of cells highlight the role of liquid-liquid

phase separation (LLPS), involving multivalent interactions

among RNA, proteins, and other molecular structures. These

interactions often result in the formation of droplet-like units

known as membranelles, which exhibit distinct liquid-like

properties (4, 5). These organelles maintain a stable internal

environment by dynamically exchanging components with

surrounding cellular structures (6, 7). The concept of protein

and nucleic acid LLPS has emerged as a new research paradigm

due to its significant impact on cellular activity and its underlying

mechanisms (8). LLPS plays a pivotal role in various biological

processes, including chromatin organization, transcription, DNA

damage response, autophagy, X chromosome inactivation, and

even tumor growth and metastasis (9–11). For example, the long

non-coding RNA (lncRNA) SNHG9 has been shown to induce

LLPS in the kinase LATS1, promoting the growth of breast cancer

cells (5).

The role of autophagy-related genes, immune genes, and other

factors in predicting tumor prognosis has been extensively studied

(12, 13). However, few investigations have explored the potential of

LLPS-related genes in this context. Notably, recent studies have

highlighted the prognostic significance of LLPS-related genes in

cancers such as lung squamous cell carcinoma, where they have

been incorporated into prognostic models (14). In our research on

BC progression, we conducted a comprehensive analysis to

elucidate the importance of LLPS. Leveraging single-cell

sequencing techniques, we evaluated LLPS activity across various

immune cell types. Machine learning algorithms were then

employed to identify LLPS genes associated with BC prognosis,

allowing us to construct predictive models (15, 16). These

models demonstrated the efficacy of LLPS in predicting BC

patient outcomes, immune status, responsiveness to immune

checkpoint inhibitors (ICIs) and chemotherapy, as well as in

identifying potential therapeutic targets and drugs. Through

rigorous evaluations, LLPS emerged as a promising tool

for precise prognostication and treatment stratification in

BC patients.
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Methods

Data acquisition

We conducted a retrospective collection of 14 distinct breast

cancer cohorts sourced from The Cancer Genome Atlas (TCGA),

Gene Expression Omnibus (GEO), and Metabric (17). These

cohorts comprised samples with comprehensive survival data,

which were subsequently utilized for in-depth analysis. In total,

our study encompassed 22,162 patients across the 14 cohorts for the

purpose of prognostic assessment. The distribution of patients

across cohorts was as follows: TCGA-BRCA (n = 1076),

GSE202203 (n = 3206), GSE96058 (n = 3409), GSE20685 (n =

327), GSE86166 (n = 330), GSE1456 (n = 159), GSE21653 (n = 244),

GSE7390 (n = 198), GSE11121 (n = 200), GSE6532 (n = 87),

GSE88770 (n = 108), GSE48391 (n = 81), GSE131769 (n = 298) and

Metabric (n = 1747).
Machine learning derived LLPS signature

To develop a LLPS signature specific to breast cancer, we

adopted the methodology outlined by our previous research (18).

Our approach entailed the utilization of ten diverse computational

techniques: Random Survival Forest (RSF), Least Absolute

Shrinkage and Selection Operator (LASSO), Gradient Boosting

Machine (GBM), Survival Support Vector Machine (Survival-

SVM), Supervised Principal Component (SuperPC), Ridge

Regression, Partial Least Squares Cox Regression (plsRcox),

CoxBoost, Stepwise Cox regression, and Elastic Net (Enet).

Notably, RSF, LASSO, CoxBoost, and Stepwise Cox were selected

for their capacity to diminish dimensionality and identify

pertinent variables.

We then combined the machine learning algorithms into 108

unique combinations to construct a robust MDLS model. Each

combination was trained on multi-omics data, with the average

Concordance Index (C-index) used as the performance metric to

identify the most predictive model. Through iterative cross-

validation, we systematically evaluated the predictive accuracy of

each algorithm combination across multiple breast cancer cohorts.

From the analysis, we identified the most consistent and predictive

model. Four LLPS-related genes (POP1, TUBA1C, RACGAP1, and

PLK1) were selected as key features based on their prognostic value, as

determined by univariate Cox regression analysis. These genes formed

the foundation of the final MDLS signature, which was optimized to

predict patient outcomes in breast cancer.

To define the high- and low-MDLS groups, we used the

surv_cutpoint function from the “survminer” R package. This

function calculated the optimal cutoff value that maximally

separated patients into high- and low-risk groups based on their

survival data. Patients with MDLS risk scores above the cutoff were

classified as the high-MDLS group, indicating a higher risk profile,

while those with risk scores below the cutoff were classified into the

low-MDLS group.
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The performance of the MDLS signature was validated across

14 independent breast cancer cohorts, incorporating both bulk

tumor and single-cell RNA sequencing data. In total, the cohorts

involved over 9,723 breast cancer patients, ensuring a

comprehensive evaluation. Additionally, we compared the MDLS

signature with 69 published breast cancer signatures, and the MDLS

demonstrated superior prognostic power across the cohorts.
Genomic alteration analysis

To delineate genetic disparities between the two MDLS groups,

we conducted an analysis of both genetic mutation levels and Copy

Number Alterations (CNA) utilizing the TCGA-BRCA database.

The Tumor Mutation Burden (TMB) of both high- and low

MDLS breast cancer patients was extracted from the raw mutation

file. Utilizing the maftools landscape, we depicted the most

frequently mutated genes (mutation rate > 5%). Additionally,

patient-specific mutational signatures were identified using the

deconstructSigs package (19). Notably, we emphasized four

prominent mutational signatures (SBS3, SBS1, SB12, SBS11)

within the TCGA-BRCA dataset that displayed heightened

mutation frequencies. We identified the five most common

regions of amplification and deletion and specifically highlighted

the four predominant genes in chromosomal regions 8q24.21

and 5q11.2.
Single-cell data processing

For the preparation of the dataset for single-cell RNA

sequencing analysis, we employed Seurat (v4.0) to process the

data extracted from GSE161529 (20). This process involved

filtering out genes with no expression and retaining those with

nonzero expression levels. Normalization of the expression matrix

was performed using Seurat ’s “SCTransform” function.

Dimensionality reduction of the dataset was achieved through

(principal component analysis) PCA and UMAP reductions. To

identify distinct cellular groupings, Seurat’s “FindNeighbors” and

“FindClusters” functions were utilized. To ensure dataset integrity

and reliability, the DoubletFinder package was employed to

eliminate potential doublets (21). Cells failing to meet defined

quality standards, such as exhibiting mitochondrial gene content

exceeding 15% or containing fewer than 500 genes, were excluded.

Through stringent quality control measures, a total of 47,784 cells

were retained for subsequent analysis. Cell types were determined

by manual annotation based on the presence of established

marker genes.
Inference of regulons and their activity

In our investigation, we adopted the Single-Cell rEgulatory

Network Inference (SCENIC) approach to construct gene

regulatory networks (GRNs) from single-cell RNA sequencing

data. SCENIC involves a three-step process: initially, it identifies
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co-expression modules between transcription factors (TFs) and

their potential target genes. Subsequently, for each module, it

identifies the direct target genes, prioritizing those enriched with

the motif of the associated TF. A regulon is then defined,

comprising a TF and its direct targets. Finally, the regulatory

activity score (RAS) is computed for each cell by assessing the

area under the recovery curve.

While the conventional SCENIC protocol encounters

challenges with scalability for extensive datasets and is susceptible

to variations in sequencing depth, we introduced a modification to

enhance both scalability and robustness. This involved partitioning

the data into metacells before applying SCENIC to these gene

expression profiles (22). This adjustment significantly enhances

data quality and reduces computational demands, representing a

notable advancement in the application of SCENIC to single-cell

RNA-seq data analysis.
Regulon clustering

We implement a comprehensive computational approach to

elucidate the regulatory interplay between transcription factors

(TFs) and their corresponding target genes, with a particular

focus on TF clustering. Initially, the method entails filtering TF-

target interaction data to isolate pairs that exceed a predefined

significance threshold (>1), ensuring prioritization of regulatory

interactions of utmost relevance. Subsequent analysis aims to

identify key regulatory TFs by assessing the extent of their target

gene regulation, highlighting them as central nodes within the

regulatory network for in-depth investigation.

To visually represent the complex network of TF-target

interactions, an undirected graph model is constructed. The

spatial arrangement of this graph is refined using a force-directed

algorithm to intuitively depict the network’s architecture,

emphasizing the interplay between TFs and their targets.

Additionally, to enhance comprehension of the network’s

structure, the Leiden algorithm is applied for community

detection. This process unveils the modular configuration of TFs

based on their regulatory interconnections, assigning each TF to a

distinct cluster. This facilitates a nuanced analysis of the regulatory

landscape, enabling insights into the functional organization of TFs

within the network.
Cell-cell communication analysis

Using the “CellChat” R package, CellChat objects were generated

based on the UMI count matrices for each respective group (23). The

“CellChatDB.human” database served as the reference for ligand-

receptor interactions. Interpreting intercellular communication was

executed using the default settings provided by the package. To

assess and compare interaction counts and intensities, CellChat

objects from each group were merged using the “mergeCellChat”

function. Variations in the number and intensity of interactions

among specific cell types across different groups were visualized

using the “netVisual_diffInteraction” function. Additionally, changes
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in signaling pathways were identified with the “rankNet” function,

and the distribution of signaling gene expression among the groups

was illustrated using both the “netVisual_bubble” and

“netVisual_aggregate” functions.

Furthermore, we applied the NicheNet package to analyze

intercellular communication from the perspective of ligand

activity and the expression patterns of specific downstream

targets regulated by these key ligands (24). This approach enables

a detailed understanding of the signaling processes underlying

interactions between different cell types, leveraging information

about ligand-target relationships to infer communication pathways

within the cellular microenvironment.
Evaluation of TME disparities and
immunotherapy response

In our endeavor to comprehensively and accurately assess

immune cell infiltration levels, we conducted an analysis of

adverse infiltrated immune cells across multiple algorithms,

including MCPcounter, EPIC, xCell, CIBERSORT, quanTIseq,

and TIMER, among patients stratified by the MDLS (25–31).

Additionally, to depict the immune landscape and architecture

within the tumor microenvironment (TME) with precision, we

evaluated the ESTIMATE and TIDE indices. These measures

provide crucial insights into the potential for immunotherapy and

offer prognostic implications for breast cancer patients.

Furthermore, we quantified immune checkpoints, which serve as

indicators of the immune state and offer preliminary predictions of

patient responsiveness to immune checkpoint inhibitor (ICI) therapy.

This comprehensive approach to evaluating the immune profile

within the TME is essential for advancing personalized medicine

and refining treatment strategies for breast cancer patients.
Determination of therapeutic targets and
drugs for high MDLS patients

Our methodology for identifying therapeutic targets and drugs for

high MDLS patients commenced by filtering out duplicate

compounds from the Drug Repurposing Hub, resulting in a refined

list of 6,125 compounds. The selection of therapeutic targets associated

with breast cancer outcomes was established through Spearman

correlation analysis. Specifically, we assessed the relationship

between the MDLS and gene expression levels, selecting genes with

a correlation coefficient greater than 0.3 and a P-value less than 0.05.

Additionally, genes demonstrating a correlation coefficient below -0.3

and a P-value below 0.05 were identified as linked to poor prognosis.

The significance of these genes was further evaluated by examining the

relationship between CERES scores from the Cancer Cell Line

Encyclopedia (CCLE) and risk scores (32).

To enhance predictions regarding drug responsiveness, we

utilized data from the Cancer Therapeutics Response Portal

(CTRP) and the PRISM project, both of which offer extensive

drug screening and molecular data across diverse cancer cell lines.
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Differential expression analysis was conducted between bulk

samples and cell lines. Subsequently, the pRRophetic package was

employed to implement a ridge regression model for predicting

drug response. This model, trained using expression data and drug

response metrics from solid Cancer Cell Lines (CCLs),

demonstrated excellent predictive accuracy, validated through 10-

fold cross-validation (33).

Furthermore, to identify the most promising therapeutic drugs

for breast cancer, Connectivity Map (CMap) analysis was

performed. This entailed comparing gene expression profiles

across different risk subgroups and submitting the top 300 genes

(comprising 150 up-regulated and 150 down-regulated genes) to the

CMap website. Interestingly, a negative CMap score indicated a

higher therapeutic potential against breast cancer, suggesting an

inverse relationship between the CMap score and a compound’s

effectiveness as a potential treatment.
Patient stratification

To assess gene expression in breast cancer specimens, RNA

extraction was performed using TRIzol reagent (Invitrogen,

Carlsbad, CA, USA), followed by cDNA synthesis and quantitative

reverse transcription PCR (qRT-PCR) using GoScript reverse

transcriptase and Master Mix (Promega), following the

manufacturer’s guidelines. The CFX96 Touch Real-Time PCR

Detection System (BioRad, Hercules, CA, USA) was employed for

data acquisition. Gene expression quantification was executed using

the 2-DDCq method, with GAPDH utilized as the normalization control.

Subsequently, patients were categorized based on their gene expression

profiles, utilizing a predefined formula derived from the MDLS. This

stratification played a crucial role in identifying patients with distinct

risk profiles, thereby enabling tailored therapeutic interventions.
Immunohistochemistry experiment

Tissue samples were obtained from 30 breast cancer patients

undergoing surgery at Guizhou Provincial People’s Hospital

(Supplementary Table S1). These samples underwent Hematoxylin

and Eosin (H&E) staining using established protocols. The diagnosis

was independently confirmed by two pathologists.

For the immunohistochemistry (IHC) analysis, procedures for

paraffin-embedded samples were followed, as outlined in previous

studies (34, 35). Protein expression levels were assessed

independently by two pathologists, adhering to standardized

protocols and scoring systems consistent with methodologies

from prior research (35).
Statistical analysis

Statistical analyses were performed to assess the differences

between the high- and low-MDLS groups. Continuous variables

were compared using the unpaired Student’s t-test or Mann-
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Whitney U test, depending on the distribution of the data. Chi-square

test or Fisher’s exact test was employed to compare categorical

variables. Pearson’s correlation test was used to evaluate

correlations between gene expression levels and clinical variables.

Survival outcomes were analyzed using Kaplan-Meier analysis,

and differences between groups were evaluated with the log-rank

test. Cox proportional hazards regression models were used for both

univariate and multivariate survival analyses to identify

independent prognostic factors.

All statistical analyses were conducted using R (version 4.0.5),

and the survminer R package. Statistical significance was defined as

a p-value of less than 0.05, with differences considered significant at

*p < 0.05, **p < 0.01, or ***p < 0.001.
Results

Construction of a LLPS signature based on
machine learning

From the DrLLPS database (36), we collected LLPS genes to

conduct differential expression analyses in TCGA-BRCA between

tumor and normal tissues. A ten-fold cross-validation process was

applied to construct prediction models using 108 algorithm

combinations and calculated the mean C-index of each algorithm

in the training cohort (TCGA-BRCA) and 8 external cohorts. The

combination of StepCox[forward] and survival-SVM with the

highest mean C-index (0.649) was selected as the final model

(Figure 1A). We assessed the prognostic value of these LLPS

genes based on univariate Cox regression and calculated the

Hazard ratio (HR) for these genes in the nine enrolled cohort

(Figure 1B). As shown in Figure 1C, four positively correlated risk

factor genes (POP1, TUBA1C, RACGAP1, PLK1) were screened to

build the machine learning derived LLPS signature (MDLS). The

findings revealed that our model successfully differentiated between

high- and low-MDLS patients, suggesting that MDLS can offer

valuable reference information for predicting the survival of breast

cancer patients (Supplementary Figure S1).
Evaluation of MDLS with 69 published
signatures in BC

Univariate and multivariate Cox analysis showed that MDLS was

an independent risk factor compared with other clinical indicators

(Supplementary Figure S2A). The nomogram consisting of MDLS,

stage and age was resorted to accurately predict the OS of BC patients

at distinctive times, and the prediction effect of MDLS is better

(Supplementary Figures S2B–F). The kernel-smoothing hazard plot

show that high-MDLS patients had a poorer outcome and higher

recurrence frequency than low-MDLS patients (Supplementary

Figure S2G). To evaluate the stability of the predictive model of the

MDLS, 68 published signatures in BC were manually collected and

assessed in 10 independent cohorts. We demonstrated that only the

MDLS had consistent statistical significance across all cohorts

(Figure 2A). We compared the predictive power of MDLS with
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those 69 features across 10 cohorts using the C-index (Figure 2B).

Our model showed significantly better accuracy than the others in

almost all cohorts (ranking first in six cohorts, second in one cohort,

fourth in one cohort, fifth in one cohort, and ninth in one cohort),

revealing the stability of the MDLS.
Genetic alteration landscape of MDLS

To explore genomic heterogeneity between high- and low-

MDLS groups, we analyzed gene mutation and copy number

variation across the groups (Figure 3A). We observed high tumor

mutation burden (TMB) in the high-MDLS patients (Figures 3A,

C). Combining the 10 oncogenic signaling pathways in the TCGA

database, we found that a total of 12 classical tumor suppressor

genes and 6 oncogenes were mutated more frequently in the high-

MDLS group (Figure 3B). Moreover, mutational signature analysis

shows that the frequencies of SBS2, SBS13, SBS7b, SBS7d were

significantly higher in low-MDLS (Figures 3A, D). The number of

classical mutations (SBS2 and SBS13) in APOBEC3 was examined,

the results showed the same trend (Figure 3D). Next, we delved

deeper into the CNA scenery of the two groups. Compared to the

low-MDLS group, the high-MDLS group owned evidently higher

deletion or amplification in the chromosome arm levels, like the

amplification of 3q26.32, 4q13.3, 8q24.21, 10p15.1, 12p13.33, and

the deletion of 5q11.2, 5q21.3, 14q24.1, 15q13.1, 19q13.32

(Figures 3A, E). At the gene level, there was significant gene

amplification on chromosome 8q24.21 (PVT1, MYC, CCDC26,

GSDMC) and significant gene deletion on chromosome 5q11.2

(GPBP1, RAB3C, DDX4, ITGA1) in the high-MDLS group

(Figure 3A). In conclusion, tumor suppressor gene deletion and

oncogene amplification in the high-MDLS group may be one of the

reasons for the poor prognosis.
Understanding the biological mechanisms
of MDLS at the single-cell level

We selected 8 patients with breast cancer for further evaluation

of MDLS, including 4 tumor tissues and 4 normal tissues

(Supplementary Figures S3A, B). The cells were divided into 17

clusters and 7 cell types (Figures 4A, B). Statistical analysis was

conducted to determine the overall number and proportion of these

seven types of cells in the bodies of these eight tumor patients

(Supplementary Figures S3C, D). Representative markers for each

cell type are shown (Figure 4C; Supplementary Figure S3E). Single-

cell sequencing revealed transcriptome differences for each cell type

between tumors and normal tissues (Figure 4D). The results show

that macrophages, T cells, and epithelial cells are notably enriched

in tumor tissues, while other cells are highly represented in

normal tissues.

Next, MDLS was integrated into the single-cell analysis for scoring

(Figure 4E). The cells were segregated into two groups based on the

media MDLS scores of the epithelial cells (Figure 4F). The potential

pathways of MDLS were enriched and visualized by differential

expression analysis and GSEA (Supplementary Figures S3F, G). A
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tumor microenvironment consists of tumor epithelial cells, tumor

stromal cells, and extracellular matrix. Most cancers are caused by a

destroyed epithelial cell population, causing tumor cells to grow

rapidly. Take the epithelial cells for example, high-MDLS group was

notably enriched in proteasome, focal adhesion, Ribosome,

spliceosome. While the low-MDLS group was predominantly

associated with reactive oxygen, oxidative phosphorylation

(Supplementary Figure S3G). Further observation on copy-number

alteration by the copyKat algorithm was employed to distinguish

between normal cells and tumor cells (Figure 4G). Ultimately, a
Frontiers in Immunology 06
higher MDLS score was observed in tumor-aneuploid cells compared

to tumor-diploid cells, indicating the significance of MDLS in breast

cancer progression (Figure 4H).
Exploring specific regulatory factors driving
MDLS and cell recognition

We used the SCENIC pipeline to analyze single-cell RNA-seq

data with cis-regulatory sequence information to comprehensively
FIGURE 1

Construction of a LLPS signature based on machine learning. (A) The C-indexes of 108 machine-learning algorithm combinations in the nine testing
cohorts. (B) Key LLPS genes associated with breast cancer prognosis. (C) Genes to construct the MDLS.
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construct GRNs. The UMAP analysis visualized the cell data into

seven cell clusters and performed RAS scores on the MDLS score

(Figures 5A, B). In summary, the gene expression information was

converted to the activity score of transcription factors known as

RAS. PCA and variance analyses revealed the transcription factors

associated with the formation of MDLS and cell types

(Figures 5C, D).

We identified seven key regulatory factors for cell types and

scored each regulator specificity according to Jensen-Shannon

divergence. The regulator with higher regulon specificity score

(RSS) might be correlated specifically with that cell type

(Figure 5E). We selected the regulator with the highest RSS value

for each cell type to further examine its functional properties

(Figure 5F; Supplementary Figure S4A). Take the epithelial cells

for example, PBX1, SPDEF and ATF3 were found to be the most
Frontiers in Immunology 07
specific regulatory factors in the RSS sequencing of epithelial

cells (Figure 5F).

Each cell type has its own form and function, and the

characteristics of the cell type need to be maintained by the

coordinated interaction of transcription factors and their

corresponding target genes. According to the Leiden algorithm,

we compared the RAS scores of each regulon pair across the atlas to

characterize the combinatorial patterns of the MDLS. A highly

modular diagram shows the formation of 12 modules (Figure 5G;

Supplementary Figure S4B). The module B and C play a key role in

MDLS progression (Figure 5H; Supplementary Figure S4B). We

focus on the key transcription factors that drive epithelial cell

transcriptome changes in MDLS. Using GSEA analysis to identify

multiple pathway variants in epithelial cells, MAPK/MTORC1

signaling and G2M checkpoint were activated in the high-MDLS
FIGURE 2

Evaluation of MDLS with 69 published signatures in BC. (A) The stability of the MDLS was compared with 69 published models. (B) C-indices of
MDLS and 69 published signatures in 10 datasets.
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group (Figures 5I, J). The results further confirmed that

transcription factors are involved in these pathways and the

progression of MDLS (Figure 5K). The detailed regulatory

network of transcription factors that influence MDLS progression

were further demonstrated (Figure 5L).
Cell-cell communication based on MDLS

To emphasize the complex interactions between cells

interactions in BC progression, we applied the CellChat analysis

to assess communication between seven different types based on

MDLS. The number and strength of interactions were assessed,

revealing that the group with high-MDLS had higher cell-to-cell

communication (Figure 6A). In the high-MDLS group, endothelial

cells, epithelial cells, and fibroblasts displayed a massive amount of

interaction. Nevertheless, macrophages and T cells have weaker
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interactions with other cells (Figure 6B). We further investigated 51

signaling pathways of cell communications, therein, 48 signaling

pathways were primarily activated in high-MDLS cells, including

laminin, collagen, and cxcl, except for FN1, MK, and CCL

(Figure 6C). The interaction between endothelial and epithelial

cells in the high-MDLS group was stronger, while the

communication with T cells was weaker (Figure 6D). Using

epithelial cells as an example, the high-MDLS group had higher

pathway specificity compared to the low-MDLS group, such as MIF,

VISFATIN, LAMININ and THBS pathway (Figure 6E).

Nichenetr analysis was utilized to assess the activity of ligands

regulating epithelial cell incoming and outgoing in different MDLS

groups. Further analyses were focused on the differences in the activity

of the ligand-receptor pairs. A Circos diagram illustrates the interaction

of ligand-receptor pairs in different cell types (Figure 6F). The high

interaction of TGM2-SDC4 indicates that fibroblasts and endothelial

cells are the primary transmitter cells influencing changes in the
FIGURE 3

Genetic alteration landscape of MDLS. (A) Genomic alteration landscape based on MDLS. (B) Detailed comparison of 10 oncogenic signaling
pathways between groups with high and low MDLS. (C) Comparison of TMB. (D) Mutant signatures were shown for SBS2 and SBS13, SBS7b and
SBS7d. (E) Comparison of CNA at the chromosome arm level. *P<0.05, **P<0.01, ****P<0.0001.
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epithelial cell pathway (Figure 6G). Figure 6H provides a detailed

roadmap of TGM2 ligand reaching the target receptor SDC4 through

other receptors or transcription factors.
Analyzing potential immunotherapy targets
for MDLS

We applied six algorithms to evaluate the immune infiltration.

High-MDLS group had more immune infiltration, such as CD4+

memory T cells, CD8+ T cells and M1 macrophages (Figure 7A). The

expression of ICIs is also assessed as a key indicator of

immunotherapy responsiveness. The expression of ICIs was higher

in the high-MDLS group, such as TNFRSF14, PD-1, PD-L1,

LAG3, IDO1 (Figure 7B). IHC was performed to support the

above results using the representative cell markers and clinical

ICIs (Figure 7C).

Next, we used ESTIMATE analysis to predict tumor purity and

the presence of infiltrating stroma/immune cells in tumor tissue.

The results showed that low-MDLS patients had higher ESTIMATE

scores and Stromal scores compared to the higher score patients but

had lower tumor purity (Figure 8A). It suggests that the low-MDLS

patients are more likely to receive immunotherapy. Meanwhile,

TIDE value, dysfunction and exclusion value is higher in low-MDLS

patients (Figure 8B). Notably, patients with low-MDLS combined

with high-TIDE had a higher survival rate than patients with other

types (Figure 8C). The results showed that the anti-tumor immune

activity of low-MDLS patients was higher than that of high-MDLS

patients (Figure 8D). Immune checkpoints have long been used in
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the immunotherapy of cancer, so we evaluated the ability of the

MDLS to predict the immune checkpoint blocking response. MDLS

in the IMvigor210 (anti-PD-L1) and GSE78220 (anti-PD-1) cohorts

was further assessed. In IMvigor210 (Figures 8E–H) and GSE78220

(Figures 8I–L), patients with low-MDLS exhibited better survival

rates and clinical benefits compared to those with high-MDLS. In

summary, patients with low-MDLS may derive greater benefits

from ICIs treatment.
Identifying therapeutic agents for high-
MDLS patients

Chemotherapy remains a cornerstone treatment for cancer. In

this study, we devised a targeted approach for breast cancer patients

with high-MDLS levels, leveraging sensitivity data collected from

multiple datasets. Initially, we employed Spearman’s correlation

analysis to identify key therapeutic targets. The analysis revealed a

positive correlation between MDLS and the abundance of six

potential targets (PSMA7, PRMT5, SLC25A13, INCENP, TREM1,

FOXM1). Importantly, these targets also exhibited notably negative

correlations with their respective CERES scores, indicating their

potential as therapeutic targets for patients with high-MDLS levels

(Figure 9A). Therein, five of six targets were found to be closely

linked to various drug action pathways, underscoring their

significance as critical therapeutic targets for this patient

subgroup (Figure 9B).

Subsequently, we obtained 12 chemical compounds from the

CTPR and PRISM datasets, including. An analysis comparing the
FIGURE 4

Understanding the biological mechanisms of MDLS at the single-cell level. (A) The distribution of 17 cell clusters. (B) The distribution of 7 cell types.
(C) The representative markers in 7 cell types. (D) The proportion of 7 types of cells in normal and BC tissues. (E) Specific single cell distribution map
in the MDLS value. (F) The distribution of MDLS value across various cell types. (G) CopyKat algorithm analyzed the distribution of diploid and
aneuploid cells. (H) Comparison of the MDLS score between diploid and aneuploid cells within the epithelial cell population. ****P<0.0001.
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AUC values of these compounds between the two MDLS groups

revealed higher AUC values in patients with low-MDLS, indicating

a less favorable response to chemotherapy in this demographic

(Figures 9C, D). A comprehensive multiple-perspective analysis was
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then conducted to select the most effective therapeutic drugs from

these 12 candidates. This analysis included detailed evaluations of

each compound’s clinical status, experimental evidence, mRNA

expression levels, and CMap scores. Ultimately, methotrexate was
FIGURE 5

Exploring specific regulatory factors driving MDLS and cell recognition. (A) Distinct clusters within a cell population based on RAS. (B) MDLS levels across the
cell population, with varying color intensities reflecting the magnitude of scores. (C) A variance analysis plot highlights the impact of cell types and MDLS on
transcription factor activity, using color mapping to PC1 to emphasize the primary variance influenced by these factors. (D) Variance analysis plot, color
mapped to PC2, explores additional dimensions of MDLS. (E) Key regulators for 7 cell types, and specific scores for each regulator. (F) The most specific
regulator in epithelial cells (PBX1, SPDEF and ATF3). (G) The network graph using the Leiden algorithm, mapped. (H) The graph concentrates on modules A
and D, which significantly contribute to MDLS. (I) GSEA identifies pathway variations linked to MDLS in epithelial cells. (J) Representative pathways activated
or inhibited in the context of high MDLS. (K) Transcription factors contributing to the activation pathway. (L) The regulatory networks of mtorc1 signaling.
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identified as the most suitable therapeutic drugs for patients with

high-MDLS, based on their CMap score (Figure 9E).
Discussion

The National Cancer Report 2019 states that breast cancer is now

the predominant form of tumor among females, resulting in over

300,000 new cases and more than 66,000 fatalities annually (37). At

present, chemotherapy for breast cancer still lacks effective molecular

targeted therapy strategies. And low-sensitivity chemotherapy can

easily cause drug resistance, reduce chemotherapy’s benefits, and lead

to recurrences and metastases (38). Clinicians and researchers lack

biomarkers for screening, stratification, and prognostic follow-up,
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leading to overtreatment and undertreatment. Improving the

therapeutic effect has become the primary goal in the treatment of

breast cancer, and one of the ways to achieve this goal is to construct

an effective prognostic model of breast cancer.

In physics and chemistry, LLPS was originally defined as a

technique for separating liquids from liquids (39). There has been

preliminary evidence that LLPS plays a role in cell biology and

oncology in recent years. A membranelles aggregate is formed in

cells when the LLPS protein is activated (40). There are many normal

physiological processes that are mediated by LLPS, including protein

degradation, transcription, and DNA damage repair (41). As LLPS

interacts with extracellular matrix, it may cause some carcinogenic

condensates to form, activating downstream signaling pathways in

tumor cells (42). Research has consistently demonstrated that genetic
FIGURE 6

Cell-cell communication based on MDLS. (A) Number and strength of cellular interactions in MDLS groups. (B) The number and intensity of
intercellular communication in 7 cell types. (C) The signal pathways involved in intercellular communication of MDLS. (D) Scatter plots compare
outgoing and incoming interaction strengths between cell types in low and high MDLS. (E) Pathway specificity in epithelial cells includes notably
specific pathways in aggressive cancer phenotypes. (F) Ligand-receptor pair interactions in different cell types. (G) Top-predicted ligand-receptor
pairs, pointing to heightened interactions, especially involving TGM2-SDC4 in high MDLS cells, indicative of aggressive behavior. (H) A detailed map
of the routes of TGM2 ligands to the target receptor SDC4.
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abnormalities are closely associated with cancer development, and

phase separation can be a contributor to tumor growth (43). LLPS

especially affects epigenetic dysregulation, which might trigger

tumorigenesis and progression (44, 45). There is evidence that

LLPS has therapeutic potential as a novel cancer intervention target

(44). Hence, in this study, we constructed a prognostic model using

LLPS genes to improve the prognosis of BC.
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We first identified the differences in the roles of 52 LLPS genes

across different datasets and pointed out the complex relationships

between these genes and BC prognosis. The RSF algorithm was used

to recruit key LLPS genes, and finally identified four genes (POP1,

TUBA1C, PACGAP1 and PLK1) to build a prediction model.

Nucleus-localized POP1 encodes a ribonuclease involved in

tRNA preprocessing (46). In patients with connective tissue
FIGURE 7

Differential expression and immunohistochemical analysis of immune markers in tumor microenvironments between MDLS subgroups. (A) Heatmap
providing a comparative view of immune cell infiltration in tumor samples with low and high MDLS, utilizing various computational algorithms for
quantification. Each row represents a different type of immune cell, with the color intensity reflecting the level of infiltration. Red text indicates
increased infiltration in the high MDLS group, while blue text indicates decreased infiltration. (B) Box plots illustrating the distribution of gene
expression levels for ICIs across low versus high MDLS conditions, with statistical significance denoted by ns for not significant; *P < 0.05; **P <
0.01; ***P < 0.001; ****P < 0.0001. (C) Representative immunohistochemistry images showcasing the staining intensity of various immune markers
between high and low expression conditions, visually depicting the differential expression of these markers in correlation with MDLS levels.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1485123
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1485123
disease, POP1 is also an autoantigen and suppresses inflammation

(47, 48). In recent years, the potential of POP1 for the prognostic

and diagnostic value of tumors has been preliminarily elucidated.

Zhu et al. established a prognostic model for colorectal cancer, and

POP1 is a new prognostic marker for colorectal cancer (49).

Through bioinformatics analysis, Liang et al. found that POP1

was a gene in the pyroptosis-related prognostic model of gastric

cancer (50). The TUBA1C subtype of a-tubulin is microtubule-

related. It is a multifunctional cytoskeletal protein that plays an
Frontiers in Immunology 13
essential role in cell mitosis and cell division (51, 52). Studies have

shown that when TUBA1C expression level is increased, the growth

and progression of tumor cells are significantly affected (53, 54). In

recent years, studies have also reported the potential role of

TUBA1C in the immune system, including innate and adaptive

immunity (55). Moreover, TUBA1C are found to be involved in the

growth, invasion, and metastasis of lung cancer (56, 57). The

RACGAP1 GTPase regulator mediates cytokinesis by activating

RHOA and inactivating RAC1. The RacGAP1 receptor mediates
FIGURE 8

Analyzing potential immunotherapy targets for MDLS. (A) ESTIMATE scores, immune score, stromal scores and tumor purity between tow MDLS
patients. (B) Difference of TIDE, Dysfunction, Exclusion between the MDLS groups. (C) The survival probability curves of four combinations of MDLS
and TIDE. (D) The correlation of MDLS with 7 steps of tumor immune cycle and 10 signaling pathways related to tumor immunology. (E, I) Violin
charts display the relationship between MDLS levels and responses to anti-PDL1 (E) and anti-PD1 (I) therapies. (F, J) Survival probabilities of low and
high MDLS patients in anti-PDL1 (F) and anti-PD1 (J) cohorts, respectively, illustrating the impact of MDLS on survival outcomes. (G, K) Analysis
estimates the predictive ability of MDLS via AUC values, considering TMB combinations, in anti-PDL1 (G) and anti-PD1 (K) cohorts, evaluating the
efficacy of MDLS as a biomarker. (H, L) The percentages of complete response/partial response (CR/PR) and stable disease/progressive disease (SD/
PD) in anti-PDL1 (H) and anti-PD1 (L) cohorts are shown, based on MDLS levels, to assess treatment effectiveness. ****P < 0.0001.
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the switching from Rac to RhoA activation that regulates cell

motility and migration (58). An inhibition of migration and

invasion is observed when RACGAP1 is silenced in cell lines that

express it endogenously (59). Also involved in regulating cell
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proliferation is RACGAP1, which interferes with the mitotic

spindle apparatus (60). Pol-like kinases (PLKs) are a kinase-like

protein family with highly conserved structural domains that

regulate cell cycle progression, and a main subtype of PLKs is
FIGURE 9

Identifying therapeutic agents for high-MDLS patients. (A) Spearman correlation of MDLS with 6 potential therapeutic targets expression and CERES
value (red: positive correlation, blue: negative correlation). (B) Network analysis highlights the intricate connections between these five therapeutic
targets and their associated drug action pathways. (C, D) Box plots compare the AUC values of identified compounds, sourced from the CTRP (C)
and PRISM (D) datasets, between low and high MDLS patient groups. Observations of higher AUC values in low MDLS patients indicate less favorable
chemotherapy outcomes for this subgroup, pointing to the need for personalized treatment strategies. (E) A summary table outlines the multi-
perspective analysis of the nine candidate compounds, detailing their clinical status, experimental evidence, mRNA expression levels, and CMap
scores. Vincristine and gemcitabine are highlighted as a potentially suitable therapeutic agent for high MDLS patients based on its favorable CMap
score, suggesting it could be particularly effective in this patient subset. ***p<0.001.
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Polo-like kinase 1 (PLK1) (61). The PLK1 protein is required for

spindle assembly, mitosis, and DNA damage response as well as

maintaining genomic stability (62). Tumors have been found to

express PLK1 abnormally in numerous studies, including colorectal

cancer (63), melanoma (64), cervical cancer (65). According to

some studies, inhibiting the expression of PLK1 by antibodies, RNA

interference, or kinase inhibitors is effective in inhibiting tumor cell

proliferation and inducing cell death (66). Blocking the expression

of PLK1 can result in the death of cancer cells by disrupting various

phases of cell division, making PLK1 a promising candidate for

cancer treatment (67).

Some types of solid tumors can be treated with cancer

immunotherapies, but tumor cells employ camouflage and evolve to

escape immune attack. Consequently, identifying effective biomarkers

is essential to improving the efficacy of cancer treatments and

predicting survival. According to the correlation between MDLS and

immune infiltration, macrophage abundance is higher in breast cancer

patients. It is believed that monocyte-attracting chemokines are

primarily responsible for macrophage infiltration in tumors, such as

CCL2 and CCL5 that can be produced by tumor cells, endothelial cells,

macrophages, and fibroblasts within the tumor microenvironment

(68). It has been reported that tumor-infiltrating macrophages

frequently have a more “tumor-promoting” M2 phenotype as a

result of exposure to Th2 cytokines such as IL-13 and IL-4, and the

immunosuppressive cytokines TGF-b and IL-10 (69). The M1

(classical macrophage phenotype) macrophage, in contrast, can

develop anti-tumor properties when stimulated by antimicrobial

products such as lipopolysaccharide with or without concurrent

exposure to proinflammatory cytokines (70). Reports on human and

canine mammary carcinomas indicate that macrophage infiltration is

related to poorer prognoses, despite the diversity among macrophage

subsets (71). It is speculated that high levels of M2 macrophage

infiltration are associated with poor prognosis of breast cancer.

Subsequently, transcriptome analysis identified the MDLS

activity of eight types of immune cells at the single-cell level and

found that the MDLS activity of tumor aneuploid epithelial cells

was higher than that of tumor diploid and normal samples. It is

believed that epithelial-mesenchymal transitions (EMT) are

responsible for distant metastases from epithelial cancers like

breast cancer. In EMT, intercellular tight junctions are disrupted,

and the cell-cell connection is lost. The morphology of the

epithelium is reduced and the mesenchyme is gained as a result

(72). Self-renewal of these cells is increased, as well as heterogeneity

in their subpopulations. Self-renewal of these cells is increased, as

well as heterogeneity in their subpopulations. The gene map

revealed that many genes are differentially expressed during EMT,

and we identified several interrelated pathways and a set of signaling

molecules involved in the EMT process and subsequent tumor

metastasis and progression. CellChat analysis showed that cell-to-

cell interactions and ligand-receptor interactions were stronger in

the normal group. These results suggest that stronger intercellular

communication is beneficial to the development of organisms.

This study revealed a counterintuitive yet significant finding:

patients classified within the low- MDLS group exhibited a better

response to immunotherapy despite having lower counts of CD8+ T

cells and reduced expression of immune inhibitory factors
Frontiers in Immunology 15
compared to their high-MDLS counterparts. These results

highlight the complexity of the TME and suggest that the mere

quantitative presence of cytotoxic lymphocytes may not be the sole

determinant of an effective anti-tumor immune response. The

diminished expression of immune inhibitory checkpoints in the

low-MDLS group, such as PD-1, CTLA-4, and PD-L1, observed in

our data, suggests a less suppressive TME. Typically, these

inhibitory molecules play pivotal roles in immune escape

mechanisms by hindering T-cell effector functions. Lower levels

of these inhibitors might, therefore, imply a TME that is less adept

at evading immune surveillance, thereby facilitating a more robust

immune-mediated tumor rejection despite the numerically lower

presence of CD8+ T cells.

Furthermore, the functional quality and the interplay of

immune cells within the TME might provide additional insight.

Even with fewer CD8+ T cells, the immunological milieu in low-

MDLS patients might be characterized by a higher proportion of

functionally potent and less exhausted T cells. This hypothesis

aligns with recent studies suggesting that the activation state and

functional capacity of T cells can be more critical than their absolute

numbers in determining the outcome of cancer immunotherapy.

Additionally, the orchestration of various immune cells, including

regulatory T cells, myeloid-derived suppressor cells, and other

components of the immune cell repertoire, could differ

fundamentally between the two groups, influencing the overall

treatment response. The lower expression of immune inhibitory

factors in the low-MDLS group may also facilitate a more effective

antigen presentation and T-cell priming, further enhancing the

anti-tumor immune response.

The findings from this study advocate for a more nuanced

understanding of the TME and suggest that the interrelationships

and functional states of different immune components can critically

influence the efficacy of immunotherapy. They also underscore the

potential of integrating comprehensive immune profiling into

clinical decision-making to tailor immunotherapeutic strategies

more precisely.

In conclusion, the differential response to immunotherapy in

breast cancer groups underscores the importance of considering

qualitative and functional aspects of the immune cells, beyond their

numerical abundance. This approach could lead to more

personalized and effective therapeutic interventions, particularly

in immunotherapy.
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