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learning identification and
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Min Lin1, Xuan Wang1 and Yu Xu1*

1Department of Ophthalmology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University,
Shanghai, China, 2Shanghai Jiao Tong University School of Medicine, Shanghai, China
Background: Diabetic retinopathy (DR) is a major complication of diabetes,

leading to severe vision impairment. Understanding the molecular

mechanisms, particularly PANoptosis, underlying DR is crucial for identifying

potential biomarkers and therapeutic targets. This study aims to identify

differentially expressed PANoptosis-related genes (DE-PRGs) in DR, offering

insights into the disease’s pathogenesis and potential diagnostic tools.

Methods: DR datasets were obtained from the Gene Expression Omnibus (GEO)

database, while PANoptosis-related genes were sourced from the GeneCards

database. Differentially expressed genes (DEGs) were identified using the DESeq2

package, followed by functional enrichment analysis through DAVID and

Metascape tools. Three machine learning algorithms—LASSO regression,

Random Forest, and SVM-RFE—were employed to identify hub genes. A

diagnostic nomogram was constructed and its performance assessed via ROC

analysis. The CIBERSORT algorithm analyzed immune cell infiltration. Hub genes

were validated through RT-qPCR, Western blotting, immunohistochemistry, and

publicly available datasets. Additionally, the impact of FASN and PLSCR3

knockdown on HUVECs behavior was validated through in vitro experiments.

Results: Differential expression analysis identified 1,418 DEGs in the GSE221521

dataset, with 39 overlapping DE-PRGs (29 upregulated, 10 downregulated).

Functional enrichment indicated that DE-PRGs are involved in apoptosis, signal

transduction, and inflammatory responses, with key pathways such as MAPK and

TNF signaling. Machine learning algorithms identified six PANoptosis-related hub

genes (BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3) as potential biomarkers. A

diagnostic nomogram based on these hub genes showed high diagnostic

accuracy. Immune cell infiltration analysis revealed significant differences in

immune cell patterns between control and DR groups, especially in Activated

CD4 Memory T Cells and Monocytes. Validation confirmed the diagnostic

efficiency and expression patterns of the PANoptosis-related hub genes,

supported by in vitro and the GSE60436 dataset analysis. Furthermore,

experiments demonstrated that knocking down FASN and PLSCR3 impacted

HUVECs behavior.
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Conclusion: This study provides valuable insights into the molecular

mechanisms of DR, particularly highlighting PANoptosis-related pathways, and

identifies potential biomarkers and therapeutic targets for the disease.
KEYWORDS

diabetic retinopathy, PANoptosis, machine learning, bioinformatics analysis,
differentially expressed genes, biomarkers
1 Introduction

Diabetic retinopathy (DR) is one of the most common

microvascular complications of diabetes mellitus and a leading

cause of vision impairment and blindness among working-age

adults worldwide (1, 2). The increasing prevalence of diabetes has

contributed to a corresponding rise in the incidence of DR, making

it a significant public health concern (3). DR is characterized by

damage to the retinal microvasculature, leading to a series of

pathological changes including microaneurysms, hemorrhages,

retinal edema, and neovascularization (4, 5).

The pathogenesis of DR is multifactorial and complex,

involving a combination of genetic, metabolic, and environmental

factors (6). Hyperglycemia-induced oxidative stress, inflammation,

and dysregulation of angiogenic factors play pivotal roles in the

progression of the disease (7–9). Recent advances in understanding

the molecular mechanisms of DR have highlighted the importance

of various cell death pathways, including apoptosis, necroptosis,

and pyroptosis, collectively referred to as PANoptosis, in retinal cell

injury and vascular dysfunction (10, 11).

Despite significant progress in elucidating the mechanisms

underlying DR, there remains a critical need for the identification

of specific molecular targets that can be leveraged for diagnostic and

therapeutic purposes (12). Effective treatment strategies have been

hampered by the heterogeneity of the disease and the lack of reliable

biomarkers for early detection and progression monitoring. In this

context, the identification of differentially expressed PANoptosis-

related genes (DE-PRGs) holds promise for advancing our

understanding of DR and discovering novel therapeutic targets.

In our study, we aimed to address the challenges in DR by

identifying DE-PRGs and exploring their potential as biomarkers and

therapeutic targets. Using high-throughput sequencing data from the

Gene Expression Omnibus (GEO) database, we identified 1418

differentially expressed genes (DEGs) in the GSE221521 dataset,

with 39 specifically related to PANoptosis. Functional enrichment

analysis revealed these DE-PRGs are key players in apoptosis

regulation, signal transduction, and inflammatory responses, with

involvement in pathways such as MAPK and TNF signaling. By

employing machine learning algorithms such as LASSO regression,

Random Forest, and Support Vector Machine - Recursive Feature

Elimination (SVM-RFE), we identified six hub genes (BEX2, CASP2,

CD36, FASN, OSMR, and PLSCR3), which were validated via RT-
02
qPCR and immunohistochemistry (IHC) in both in vitromodels and

clinical samples. A diagnostic nomogram based on these hub genes

demonstrated high predictive capability, enhancing clinical decision-

making. Additionally, Gene Set Variation Analysis (GSVA) and

immune cell infiltration analysis further underscored the relevance

of these hub genes in DR pathology and highlighted their potential as

novel therapeutic targets. Our findings provide a foundation for

future research into personalized medicine approaches for the

effective management and treatment of DR.
2 Methods

2.1 Data collection

Microarray data of the GSE60436 dataset and high-throughput

sequencing data of the GSE221521 dataset were downloaded from the

GEO database (https://www.ncbi.nlm.nih.gov/geo/) (13). The

GSE221521 dataset comprised gene expression profiling analysis

of RNA-seq data, involving blood samples from 50 healthy controls

and 69 individuals with DR. The GSE60436 dataset contained

microarray data on gene expression profiles of fibrovascular

membranes, including samples from 6 individuals with

proliferative diabetic retinopathy (PDR) and 3 healthy controls.

The GSE221521 dataset was designated as the training set for

identifying DEGs, while the GSE60436 dataset was used as the

validation set. PANoptosis-related genes were identified through a

search in the GeneCards database, based on a correlation score

greater than 3.
2.2 Identification of differentially expressed
PANoptosis-related genes

Differential gene expression analysis was conducted separately

for each dataset. For the GSE221521 dataset, the DESeq2 package

was used to normalize raw read counts and identify DEGs by

comparing DR samples with healthy controls (14). Genes with |log2

Fold Change| > 0.585 and p-value < 0.05 were considered significant

DEGs. In this study, we identified the overlapping genes between

DEGs and PANoptosis-related genes, defining them as DE-PRGs

for subsequent analysis.
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2.3 GO and KEGG pathway
enrichment analysis

To explore the functional and interactive roles of these

PANoptosis-related DEGs in biological pathways, we utilized the

DAVID online database to perform GO and KEGG pathway

enrichment analyses (15). A significance level of p-value < 0.05

was used as the threshold criterion. In this study, the results

were visualized using the bioinformatics platform (https://

www.bioinformatics.com.cn). Additionally, the GO enrichment

analysis was supplemented using the Metascape online tool

(https://metascape.org) (16).
2.4 Gene set variation analysis

We also quantified the activity of 50 hallmark pathways using

the GSVA R package to uncover the potential biological functions of

key genes (17). Gene sets were obtained from the Molecular

Signatures Database (MSigDB) (18). In this analysis, significance

criteria of |t| > 1 and p < 0.05 were applied to select significant

differences, where t > 1 and t < -1 represent pathway activation in

the high-expression and low-expression groups, respectively.
2.5 Machine learning

To identify candidate biomarkers and establish a diagnostic

model, we employed three machine learning algorithms: LASSO

regression, Random Forest, and SVM-RFE (19, 20). The genes

identified at the intersection of these three algorithms were

considered as the hub genes for diagnosis.
2.6 Nomogram construction and receiver
operating characteristic evaluation

The hub genes were used to construct a nomogram with the

“rms” R package, facilitating the prediction of DR risk. Receiver

Operating Characteristic (ROC) curve analysis was conducted to

assess the diagnostic performance of the hub genes and the

nomogram, with the Area Under the Curve (AUC) value

providing a measure of diagnostic accuracy.
2.7 Analysis of immune cell infiltration

We estimated the relative abundance of immune-infiltrating

cells using the CIBERSORT algorithm (21). Bar and box plots were

generated to illustrate immune cell proportions and their

differences between healthy controls and the DR group. The

“ggplot2” package was utilized to visualize the correlations

between hub genes and immune cell types (22).
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2.8 Cell culture and RNA extraction

Human umbilical vein endothelial cells (HUVECs) (ATCC,

Cat. CRL-1730) were purchased from ATCC and cultured in

endothelial cell medium supplemented with 10% fetal bovine

serum (FBS) and 1% penicillin-streptomycin at 37°C in a 5%

CO2 incubator. To establish a DR cell model, cells were treated

with high glucose (30 mM) for 48 hours, while the control group

was treated with normal glucose (5 mM) for the same duration.

RNA was extracted from HUVECs using the RNA Quick

Purification Kit (SB-C6015, Share-bio, Shang Hai).
2.9 Clinical sample collection and
RNA extraction

Samples were obtained from DR patients and healthy controls at

the ophthalmology department of Xinhua Hospital, with informed

consent and Institutional Review Board approval from Xin Hua

Hospital Affiliated to Shanghai Jiao Tong University School of

Medicine (Approval No. XHEC-D-2024-146). Peripheral blood

was collected in EDTA-coated tubes and processed within two

hours. Total RNA was extracted using the EZ-press Whole Blood

RNA Purification Kit (B0006, EZBioscience).
2.10 Quantitative real-time and
western blotting

To assess mRNA expression levels, cDNA synthesis was

performed on extracted RNA using the reverse transcription kit

(RR036A, Takara). RT-qPCR was conducted with the TB Green®

Premix Ex Taq™ II kit (RR820A, Takara). Primer sequences for the

core genes are provided in Supplementary Table S1. b-actin served

as the internal control. Relative expression levels were calculated

using the 2^-DDCt method.

Protein expression was analyzed byWestern blotting. Cells were

lysed, and proteins were separated by SDS-PAGE before being

transferred to PVDF membranes. Membranes were blocked and

then incubated with primary antibodies: CD36 (#28109, Cell

Signaling), FASN (A19050, Abclonal), PLSCR3 (A20915,

Abclonal), and b-actin (SB-AB2001, Share-bio) as a loading

control. After washing, membranes were treated with an HRP-

conjugated secondary anti-rabbit IgG antibody (SA00001-2,

Proteintech). Bands were detected using an enhanced

chemiluminescence system.
2.11 Immunohistochemistry staining

Fibrovascular membrane samples in patients with PDR were

fixed in formalin for 24 hours, paraffin-embedded, and sectioned at a

thickness of 4 µm for IHC staining. Paraffin-embedded tissue sections
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underwent deparaffinization using xylene and rehydration through

graded ethanol solutions to distilled water. Antigen retrieval was

performed by heating the sections at 94°C for 25 minutes in a citrate

buffer (pH 6.0), followed by cooling to room temperature. To block

endogenous peroxidase activity, sections were incubated in a 3%

hydrogen peroxide solution at room temperature for 25 minutes,

protected from light. Non-specific binding was prevented by blocking

with 3% bovine serum albumin (BSA) for 30 minutes at room

temperature. The sections were then incubated overnight at 4°C

with primary antibodies, including Anti-CD36 (1:600, GB112562-

100, Servicebio), Anti-FASN (1:200, GB15546-100, Servicebio) and

Anti-PLSCR3 (1:100, GB11859-100, Servicebio). After primary

antibody incubation, secondary antibodies were applied, and

sections were developed with DAB substrate. The sections were

counterstained with hematoxylin, and images were captured using

the Zeiss fluorescence microscope.
2.12 In vitro experiments

Cell transfection was performed using Lipofectamine™ 3000

reagent (L3000015, Invitrogen). Following the manufacturer’s

instructions, small-interfering RNA (siRNA) was mixed with the

transfection reagent and added to the cell culture medium. The

specific siRNA sequences used in the experiments are listed in

Supplementary Table S2.

Cell proliferation was assessed using the 5-ethynyl-2’-

deoxyuridine (EdU) incorporation assay. The Click-iT EdU

Imaging Kit (SB-C6015, Share-bio, Shang Hai) was used

following the manufacturer’s protocol. EdU-positive cells were

observed and counted under a fluorescence microscope. The

percentage of EdU-positive cells was calculated using the formula:

EdU-positive cell percentage (%) = [count of EdU-positive cells

(green)/count of Hoechst-33342-stained cells (blue)] × 100%.

Cell viability was measured using the Cell Counting Kit-8 (SB-

CCK8, Share-bio, Shang Hai). Cells were seeded in a 96-well plate,

and CCK-8 reagent was added followed by incubation at 37°C for 1

hours. Absorbance was measured at 450 nm using a microplate

reader to evaluate cell proliferation.

The wound healing assay was used to assess cell migration

ability. Cells were seeded in a 6-well plate and allowed to reach 90%

confluence. A straight line was scratched across the cell monolayer

using a sterile pipette tip. Images of the scratch area were captured

at 0 hours and 36 hours using a microscope to evaluate cell

migration. The wound closure percentage was calculated using

the formula: Wound closure rate (%) = [(initial wound area -

remaining wound area)/initial wound area] × 100%.
2.13 Statistical analysis

For group comparisons, an independent Student’s t-test was

used to analyze variables with a normal distribution, while the

Wilcoxon rank-sum test was employed for those without a normal
Frontiers in Immunology 04
distribution. Statistical analyses were performed using R (version

4.2.0), with a significance threshold set at p < 0.05.
3 Results

3.1 Identification of differentially expressed
PANoptosis-related genes

The overall design is shown in Figure 1. A total of 1418 DEGs

were identified in the GSE221521 dataset, with 1079 genes

significantly upregulated and 339 genes s ignificantly

downregulated. The volcano plot of DEGs is shown in Figure 2A.

Using a correlation score threshold of >3, we identified 1324

PANoptosis-related genes from the GeneCards database,

comprising 1313 apoptosis genes, 11 necrosis genes, and 31

pyroptosis genes (Supplementary Table S3). Through Venn

diagram analysis, we identified 39 overlapping genes, of which 29

were upregulated and 10 were downregulated as DE-PRGs

(Figures 2B, C).
3.2 Functional enrichment analysis

Functional enrichment analysis revealed that the DE-PRGs in

DR were significantly involved in several key biological processes

and pathways. GO analysis indicated that these genes play crucial

roles in the regulation of apoptotic processes, signal transduction,

and inflammatory responses (Figure 3A). They were predominantly

associated with cellular components such as the plasma membrane,

cytosol, nucleus, and extracellular regions, and were enriched in

molecular functions including protein binding, enzyme binding,

and receptor binding activities.

KEGG pathway analysis revealed that these genes are involved

in critical DR-related pathways, including endocrine resistance,

thyroid hormone signaling, estrogen signaling, MAPK signaling,

and the TNF signaling pathway, highlighting their roles in

inflammation, cellular stress responses, and metabolic

dysregulation (Figure 3B).

Supplementary GO enrichment analysis using the Metascape

tool further confirmed the involvement of DE-PRGs in pathways

related to endocrine resistance, inflammation, and signaling

mechanisms crucial for retinal health and disease (Figure 3C).
3.3 Screening key PANoptosis-related
genes via machine learning

Using LASSO regression, RF algorithm, and SVM-RFE, we

screened potential candidate hub genes for DE-PRGs. LASSO

regression identified 14 potential hub genes and evaluated model

performance using ROC curves, with an AUC of 0.93 (Figures 4A–

C). The RF algorithm ranked these genes based on their importance

(Figures 4D, E). The SVM-RFE method extracted 17 genes as

candidate biomarkers and similarly evaluated model performance
frontiersin.org
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using ROC curves, with an AUC of 0.939 (Figures 4F–H). By

intersecting the results from these three methods, we identified six

key hub genes (BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3)

as potential biomarkers for DR (Figure 4I).
3.4 Nomogram-based diagnostic evaluation

To enhance the diagnosis and prediction capabilities for the six

identified hub genes, we developed a nomogram (Figure 5A). The

calibration curve indicated a high agreement between the predicted

probabilities from our nomogram diagnostic model and the actual

observed outcomes (Figure 5B). Moreover, decision curve analysis

(DCA) highlighted the potential benefits of using the nomogram for

clinical decision-making in the diagnosis of DR (Figure 5C). The

calculated AUCs and their 95% confidence intervals for the

nomogram as well as for each hub gene are provided

(Figures 5D–J). Notably, all six hub genes achieved AUC values
Frontiers in Immunology 05
exceeding 0.7, and the nomogram demonstrated an even higher

AUC compared to any single hub gene, underscoring its robust

diagnostic capability for DR.
3.5 GSVA analysis of six hub genes in DR

Our GSVA analysis revealed significant correlations between

specific genes and signaling pathways (Figure 6). Notably, CD36,

CASP2, FASN, OSMR, and PLSCR3 showed a significant positive

correlation with the “WNT_BETA_CATENIN_SIGNALING”

pathway and a significant negative correlation with the

“NOTCH_SIGNALING” pathway. In contrast, BEX2 exhibited

an opposi te trend, be ing negat ive ly corre lated with

“WNT_BETA_CATENIN_SIGNALING” and positively correlated

with “NOTCH_SIGNALING”. Additionally, we observed that

“APOPTOSIS” was significantly positively correlated with CD36.
FIGURE 1

Flowchart of the research. (ns indicates no significance, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001).
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3.6 Immune cell infiltration analysis

Our findings suggest that DE-PRGs are significantly associated

with immune cell infiltration in DR. Therefore, we proceeded with

immune cell infiltration analysis to gain further insights into the

involvement of the immune system in DR (Figure 7A). From the

dataset of DE-PRGs, we identified that Activated CD4 Memory T

Cells, Monocytes, and M0 Macrophages exhibited significant

differences. Notably, in DR patients, Activated CD4 Memory T

Cells were significantly downregulated, while monocytes and M0

Macrophages were significantly upregulated (Figure 7B).

Furthermore, we conducted a correlation analysis between the six

hub genes and the 22 types of immune cells. The analysis revealed

that Activated CD4 Memory T Cells had a significant negative

correlation with BEX2, while showing significant positive

correlations with PLSCR3, OSMR, FASN, CD36, and CASP2

(Figure 7C). These findings indicated that various immune cell

types infiltrate differently in DR patients, highlighting potential

targets for novel therapeutic strategies.
Frontiers in Immunology 06
3.7 Validation of PANoptosis-related
hub genes

To comprehensively validate the expression and roles of the six

identified hub genes (BEX2, CASP2, CD36, FASN, OSMR, and

PLSCR3), we employed multiple methodologies. Initially, RT-qPCR

was performed on blood samples from clinical patients. Results

consistently showed that, compared to healthy controls, DR

patients exhibited significantly higher expression levels of CASP2,

CD36, FASN, OSMR, and PLSCR3, while BEX2 was significantly

downregulated (Figure 8A). Furthermore, IHC staining was

conducted on proliferative fibrovascular membranes from patients

with PDR to validate the protein levels of CD36, FASN, and

PLSCR3. The findings revealed high expression of these genes in

fibrovascular membranes, aligning with the transcriptional data

from RT-qPCR (Figure 8B).

In the second phase, an in vitro DR cell model was utilized to

assess the expression levels of the six target genes. Notably, in

HUVECs exposed to high glucose conditions, all hub genes except
FIGURE 2

Analysis of differentially expressed PANoptosis-related genes (DE-PRGs) in DR. (A) Volcano plot showing DEGs in the GSE221521 dataset. Red dots
indicate upregulated genes, blue dots indicate downregulated genes, and gray dots indicate non-significant genes. (B) Venn diagram illustrating the
overlap between DEGs and PANoptosis-related genes from the GeneCards database. A total of 39 DE-PRGs were identified (29 upregulated, 10
downregulated). (C) Heatmap displaying the expression levels of the 39 overlapping DE-PRGs in the GSE221521 dataset. Red indicates upregulation,
and blue indicates downregulation.
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PLSCR3 showed expression patterns that mirrored our previous

findings (Figure 8C). Western blotting was also performed to

validate the protein expression levels of CD36, FASN, and

PLSCR3. The results corroborated the transcriptional alterations,

confirming upregulation at the protein level (Figure 8D).

Additionally, findings were further validated using the public

dataset GSE60436, which includes RNA sequencing data from the

fibrovascular membranes of PDR patients. Analysis showed that the

expression patterns of the six hub genes in this dataset were

consistent with observations from RT-qPCR and protein

expression validations. This consistency underscored the

robustness and universality of these hub genes (Figure 8E).
Frontiers in Immunology 07
3.8 PANoptosis-related hub genes
promoted proliferation and migration
in HUVECs

Following the validation of gene expression, we proceeded with

in vitro cell experiments, utilizing siRNA to knock down the genes

CD36, FASN, and PLSCR3 in HUVECs. The efficiency of the

knockdown was assessed using Western blotting and RT-qPCR.

Results showed that FASN and PLSCR3 were significantly

downregulated at both the mRNA and protein levels

(Figures 9A–D). In contrast, the knockdown of CD36 was less

effective (Supplementary Figure S1).
FIGURE 3

Functional enrichment analysis of DE-PRGs in DR. (A) GO enrichment analysis of DE-PRGs. The bar plot shows the top enriched GO terms across
three categories: Biological Processes (BP), Cellular Components (CC), and Molecular Functions (MF). (B) KEGG pathway analysis of DE-PRGs.
(C) Supplementary GO enrichment analysis performed using the Metascape online tool.
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Biological assays further revealed that silencing FASN or

PLSCR3 significantly inhibited the proliferation (Figures 9E, F)

and migration (Figure 9G) of HUVECs. These findings suggest that

FASN and PLSCR3 play crucial roles in promoting cell proliferation

and migration, potentially contributing to the progression of

diabetic retinopathy.
4 Discussion

DR ranks among the top causes of blindness in adults globally,

posing a significant public health challenge (23, 24). PANoptosis, a

unique form of programmed cell death that integrates the pathways
Frontiers in Immunology 08
of pyroptosis, apoptosis, and necroptosis, has garnered attention

due to its role in inflammatory responses and cellular homeostasis

(25, 26). Although the individual pathways of pyroptosis, apoptosis,

and necroptosis are well-studied, the interplay and regulation

among them in PANoptosis remain complex and not fully

understood. Recent research in the context of glaucomatous

retinal ganglion cell (RGC) damage has highlighted the

involvement of PANoptosis. For instance, treatment with

melatonin has been shown to rescue RGC survival and reduce the

loss of retinal nerve fiber layer thickness, potentially by inhibiting

the expression of PANoptosis-associated proteins (26). Our study

aimed to elucidate the role of PANoptosis-related genes in DR and

leverage machine learning techniques to identify and validate key
FIGURE 4

Identification of key hub genes for PANoptosis-related genes in DR using machine learning algorithms. (A-C) LASSO regression analysis:
(A) Coefficient profiles of the 14 potential hub genes, (B) Tuning parameter (lambda) selection in the LASSO model using 10-fold cross-validation,
and (C) ROC curve with an AUC of 0.93. (D, E) Random Forest (RF) algorithm: (D) Error rate of the RF model as a function of the number of trees,
and (E) Variable importance plot ranking the genes based on their importance. (F-H) Support Vector Machine-Recursive Feature Elimination (SVM-
RFE) method: (F) Bar plot of the 17 candidate biomarkers, (G) Cross-validation error curve for the SVM-RFE model, and (H) ROC curve with an AUC
of 0.939. (I) Venn diagram showing the intersection of hub genes identified by RF, RF, and SVM-RFE methods, resulting in six key hub genes (BEX2,
CASP2, CD36, FASN, OSMR, and PLSCR3).
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genetic biomarkers, providing a comprehensive understanding of

the underlying mechanisms and potential therapeutic targets.

In our analysis, we identified 1418 DEGs from the GSE221521

dataset, of which 39 were PANoptosis-related after intersecting with

a curated list of 1324 PANoptosis-related genes. Functional

enrichment analysis revealed that these genes are implicated in

crucial biological processes such as apoptotic regulation, cytokine

production, immune responses, and response to chemical stimuli.

Pathway analysis pinpointed significant involvement in TNF

signaling, Toll-like receptor signaling, MAPK pathway, and other

critical inflammation-related pathways. These findings highlighted

the integral role of PANoptosis in mediating inflammatory and

immune responses in DR.

The pathogenesis of DR involves hyperglycemia-induced

damage, which in turn leads to chronic inflammation and

subsequent retinal damage (27–30). Chronic hyperglycemia in

DR induces oxidative stress and inflammatory cytokine
Frontiers in Immunology 09
production, activating PANoptosis pathways (31, 32). This

activation results in the release of pro-inflammatory cytokines

like IL-1b and IL-18, exacerbating inflammation and contributing

to the breakdown of the blood-retinal barrier (33, 34). Our

findings highlighted the involvement of PANoptosis-related

genes in TNF and Toll-like receptor signaling pathways,

underscoring their critical roles in mediating inflammation and

retinal damage. Targeting these pathways could potentially

mitigate inflammation and protect retinal cells. Similar

observations have been reported in recent studies, underscoring

the importance of these signaling pathways in DR pathogenesis.

For instance, inflammation and VEGF-mediated pathways are

crucial in DR and diabetic macular edema, with therapies

targeting these pathways being essential for management (27).

Inflammatory cells and cytokines contribute to micro-

inflammation and the disruption of the blood-retinal barrier in

DR (8). Additionally, multiple biochemical pathways activated
FIGURE 5

Nomogram-based diagnostic evaluation for DR using six identified hub genes. (A) Nomogram developed for predicting the probability of DR based
on the six hub genes (BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3). (B) Calibration curve of the nomogram, showing the agreement between
predicted probabilities and actual observed outcomes. (C) Decision curve analysis (DCA) demonstrating the clinical utility of the nomogram for DR
diagnosis. (D-J) ROC curves for the nomogram and each of the six hub genes: (D) Nomogram, (E) BEX2, (F) CASP2, (G) CD36, (H) FASN, (I) OSMR,
and (J) PLSCR3.
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during diabetes elevate the expression of angiogenic and

inflammatory mediators, exacerbating retinal damage (35).

Through machine learning approaches including LASSO

regression, RF algorithm, and SVM-RFE, we identified six key hub

genes: BEX2, CASP2, CD36, FASN, OSMR, and PLSCR3. Notably,

these hub genes have been previously associated with various cell

death and inflammatory mechanisms, supporting their roles as

pivotal regulators in DR. BEX2 is known for regulating cell survival

and apoptosis, potentially protecting retinal neurons from

hyperglycemia-induced damage in DR (36). CASP2, a critical

enzyme in apoptosis, is linked to increased retinal cell death under

diabetic conditions, contributing to neurodegeneration in DR (37,

38). CD36, a scavenger receptor involved in lipid metabolism and

inflammation, is associated with oxidative stress and inflammation in

DR (39, 40). FASN plays a significant role in lipid biosynthesis, with

dysregulation contributing to retinal vascular abnormalities and

inflammation in DR (41). PLSCR3, involved in mitochondrial

function and apoptosis, is linked to mitochondrial dysfunction and

cell death in retinal cells under hyperglycemic conditions (42). OSMR

mediates inflammatory signaling pathways, with increased expression

contributing to the chronic inflammation and vascular permeability

observed in DR (43, 44).

To further evaluate the diagnostic value of these hub genes, we

constructed a nomogram model. The nomogram is a predictive tool

that integrates multiple predictors to estimate the probability of a

clinical event (45). In our study, the nomogram was constructed by
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incorporating the six hub genes identified through machine

learning. Calibration curves, DCA, and ROC curves were used to

validate the model’s accuracy and clinical utility. The calibration

curves indicated good agreement between predicted and observed

outcomes (46), while the DCA demonstrated the clinical benefits of

using the nomogram (47). The ROC curves further confirmed the

high diagnostic accuracy of the nomogram, reinforcing the

potential of these genes as robust biomarkers for DR (48).

GSVA further elucidated the association of these hub genes with

crucial signaling pathways such asWNT/b-catenin signaling, Notch

signaling, and apoptosis. The WNT pathway is known to play a

critical role in regulating various physiological and pathological

processes, including cell growth, apoptosis, and angiogenesis

(49, 50). Recent studies have indicated that WNT signaling is

activated in the retina of both human patients and animal models

with DR, contributing significantly to the disease’s progression (51).

Specifically, the activation of these pathways in DR suggests a

complex regulatory network involving both inflammatory and cell

death processes, with WNT signaling being particularly pivotal in

this context (52).

The interplay between PANoptosis and mechanisms like

autophagy, senescence, and ferroptosis adds complexity to DR

pathogenesis. Autophagy, typically a survival process, can lead to cell

death if dysregulated, affecting cell fate in DR (53). Senescence, marked

by cell cycle arrest, may exacerbate retinal damage by promoting

inflammation through the senescence-associated secretory phenotype
FIGURE 6

Gene Set Variation Analysis (GSVA) of PANoptosis-related genes. (A-F) GSVA results showing the correlation between specific PANoptosis-related
genes and various signaling pathways: (A) BEX2, (B) CASP2, (C) CD36, (D) FASN, (E) PLSCR3, and (F) OSMR. The bar plots display the t-values of
GSVA scores between DR and control samples.
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(54, 55). Ferroptosis, an iron-dependent cell death, shares pathways

with PANoptosis, particularly in oxidative stress regulation (56, 57).

Understanding these intersections could reveal therapeutic targets to

modulate cell death and inflammation in DR.

Immune cell infiltration analysis revealed distinct changes in

immune cell populations in DR patients, particularly linking
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activated CD4 memory T cells, monocytes, and M0 macrophages

with the expression levels of the hub genes. Activated CD4 memory

T cells are known to play critical roles in autoimmune responses

and chronic inflammation, which are key features in the

pathogenesis of DR (58). Monocytes and M0 macrophages

contribute to tissue damage by secreting pro-inflammatory
FIGURE 7

Immune cell infiltration analysis in diabetic retinopathy (DR). (A) Stacked bar plot showing the proportion of 22 types of immune cells in DR and
control samples. (B) Box plot illustrating the significant differences in the proportions of Activated CD4 Memory T Cells, Monocytes, and M0
Macrophages between DR and control samples. Activated CD4 Memory T Cells were significantly downregulated in DR patients, while Monocytes
and M0 Macrophages were significantly upregulated. (C) Heatmap displaying the correlation between the six hub genes (BEX2, CASP2, CD36, FASN,
OSMR, and PLSCR3) and the 22 types of immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.
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cytokines and phagocytosing cellular debris (59). The expression

levels of hub genes like CASP2 and CD36 were found to correlate

with the abundance of these immune cell types, suggesting that

these genes may influence immune cell behavior and contribute to

disease progression (60, 61).

Based on our bioinformatics analysis of the dataset GSE221521,

we identified six hub genes. Since this dataset was derived from

peripheral blood samples, we initially collected peripheral blood

samples from clinical patients with DR to validate our findings

using RT-qPCR experiments. Firstly, RT-qPCR analyses of

peripheral blood from DR patients indicated significant

upregulation of the hub genes CASP2, CD36, and FASN, while

BEX2 was significantly downregulated. Secondly, IHC staining was

performed to visualize the protein expression of CD36, FASN, and

PLSCR3 in the fibrovascular membranes of patients with PDR. The

IHC results corroborated the RT-qPCR findings, confirming the

upregulation of these genes in PDR tissues.

Finally, in vitro studies with HUVECs, a model widely recognized

for its relevance and reproducibility in vascular research, exposed to

hyperglycemic conditions, mimicked the diabetic environment and

showed similar expression changes to those observed in patient

samples, except for PLSCR3 (62). Alongside these studies, Western

blot experiments were carried out to verify protein-level expression

changes for CD36, FASN, and PLSCR3. These experiments reinforced

previous research findings and revealed that while PLSCR3 mRNA
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levels exhibited no change, its protein expression was notably increased.

This discrepancy highlighted the potential for post-transcriptional

regulation mechanisms affecting PLSCR3. Moreover, the results for

FASN and PLSCR3 demonstrated their ability to promote the

proliferation and migration of HUVECs, suggesting a key role in

vascular pathology associated with DR. In the context of PANoptosis,

these findings emphasized the significance of FASN and PLSCR3 not

only in endothelial cell behavior but also in their potential involvement

in cell death pathways that integrate components of pyroptosis,

apoptosis, and necroptosis. Specifically, the role of PANoptosis in

vascular endothelial cells has been validated in various contexts,

including renal injury induced by trichloroethylene, demonstrating

HUVECs’ reliability for studying endothelial responses (63).

While our study provides valuable insights into the molecular

mechanisms underlying diabetic retinopathy, several limitations

should be acknowledged. Firstly, the relatively small sample size

may limit the generalizability of our findings, necessitating

validation in larger, more diverse cohorts. Additionally, while

powerful, the use of advanced machine learning algorithms

carries inherent risks of overfitting, which should be considered

when interpreting our results. Although we validated the expression

of hub genes through RT-qPCR and Western blotting, further in

vivo and in vitro studies are necessary to confirm their functional

roles in diabetic retinopathy. Understanding how these identified

hub genes directly regulate PANoptosis in retinal cells remains a
FIGURE 8

Validation of six hub genes in diabetic retinopathy (DR) through multiple approaches. (A) RT-qPCR validation of six hub genes in clinical blood
samples from DR patients compared to healthy controls. (B) IHC validation in proliferative membrane samples from PDR patients. The images show
the protein expression levels of CD36, FASN and PLSCR3 in the proliferative membranes (Scale bar: 100 mm or 50 mm). (C) RT-qPCR validation of six
hub genes in HUVECs exposed to high glucose conditions compared to controls. (D) The protein levels of CD36, FASN, and PLSCR3 in HUVECs
were evaluated by western blot after exposure to high glucose conditions compared to controls. (E) Validation using public dataset GSE60436. (ns
indicates no significance, *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.0001).
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priority for future research. Addressing these limitations will be

crucial for advancing our understanding and treatment of

this condition.
5 Conclusion

In this study, we identified six pivotal hub genes (BEX2, CASP2,

CD36, FASN, OSMR, and PLSCR3) associated with DR using

advanced machine learning techniques. These genes were

validated through multiple methods, including RT-qPCR, IHC,

and Western blotting analyses, and further supported by

bioinformatic validation. Our analyses, including GSVA and

immune cell infiltration studies, highlighted the involvement of

these genes in key signaling pathways and immune responses,

particularly their roles in PANoptosis. Our findings suggest these
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genes hold promise as biomarkers and therapeutic targets, offering

new insights into the molecular mechanisms of DR.
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