
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Philippe Saas,
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Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint

inflammation and gradual tissue destruction. New research has shown how

important noncoding RNAs (ncRNAs) are for changing immune and

inflammatory pathways, such as the WNT signaling pathway, which is

important for activating synovial fibroblasts and osteoblasts to work. This

article examines the current understanding of several ncRNAs, such as

miRNAs, lncRNAs, and circRNAs, that influence NF-kB signaling in the

pathogenesis of RA. We investigate how these ncRNAs impact NF-kB signaling

components, altering cell proliferation, differentiation, and death in joint tissues.

The paper also looks at how ncRNAs can be used as potential early detection

markers and therapeutic targets in RA because they can change important

pathogenic pathways. This study highlights the therapeutic potential of

targeting ncRNAs in RA therapy techniques, with the goal of reducing

inflammation and stopping disease progression. This thorough analysis opens

up new possibilities for understanding the molecular foundations of RA and

designing novel ncRNA-based treatments.
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Background

Rheumatoid arthritis (RA) is a chronic autoimmune disease

characterized by inflammation that progresses. Permanent synovitis

triggers the disease, resulting in irreversible joint damage.

Individuals with RA frequently suffer bilateral joint soreness,

edema, and stiffness. Damage to extra-articular organs and

systems may occur as RA worsens. The risk of incidence of

cardiovascular illness, a significant and potentially deadly

comorbidity, closely correlates with RA disease activity (1). A

worldwide health concern, RA affects around 240 out of every

100,000 people. Moreover, the prevalence of RA is rising globally in

line with the fast-growing aging population (2). The

pathophysiology and etiology of RA are extremely complex and

unknown. They involve inheritance, triggers from the environment,

and epigenetic alterations (3). The four main characteristics of RA

pathology are usually acknowledged to be synovial hyperplasia,

ongoing inflammation, articular cartilage deterioration, and bone

erosion (4). Recent developments in RA pathophysiology have

produced novel biologic and small-molecule inhibitors over the

last 20 years. However, due to inadequate therapy, many RA

patients continue to suffer from severe disability and a lower

quality of life. Thus, to enhance therapeutic results, more

understanding of the cellular and molecular pathways behind

tissue damage, persistent inflammation, and synovial hyperplasia

is required (5).

Non-coding RNAs (ncRNAs) are essential for controlling gene

expression and biological processes, as demonstrated by recent

developments in molecular biology (6). While not encoding

proteins like coding RNAs, non-coding RNAs (ncRNAs) are

nonetheless active in several aspects of gene expression during

and after transcription (7). NcRNAs are classified into three

groups, each having its own mechanism, including microRNAs

(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs

(circRNAs) (8, 9).

MicroRNAs are short RNA molecules , measuring

approximately 22 nucleotides in length. When miRNAs bind to

the 3’ untranslated regions (UTRs) of target mRNAs, they stop

translation or destroy the mRNA (Fabian, Sonenberg et al., 2010).

Phenotypic scaffolds, guides, or decoys, long non-coding RNAs

(>200 nucleotides), influence the dynamics of chromatin and the

expression of genes (10). Circular RNAs function as miRNA

sponges, trapping miRNAs and avoiding them from attaching to

target mRNAs due to their covalently closed loop topologies (11).

Extensive research has demonstrated how important

dysregulated NF-kB activation is for the emergence of several

autoimmune disorders, such as RA (12, 13). The NF-kB family of

inducible transcription factors regulates several genes involved in

immunological and inflammatory responses (14). Abnormalities

caused by aberrant NF-kB activation in RA lead to long-term

inflammation and joint destruction (14).

The aim of this study is to recognize and characterize ncRNAs

associated with the NF-kB signaling pathway in RA. Finding out

how different ncRNAs, like miRNAs, lncRNAs, and circRNAs,

control this pathway is important because NF-kB is a key player
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in the progress of RA. By investigating these ncRNAs, we hope to

gain insights into their specific contributions and interactions

within the NF-kB signaling network. This study aims to reveal

novel molecular targets for developing more effective RA therapies.
The complex pathogenesis of
rheumatoid arthritis

The presence or absence of anti-citrullinated protein antibodies

(ACPAs) divides RA into twomain subgroups: ACPA-positive RA and

ACPA-negative RA (15). Generally, ACPA-positive rheumatoid

arthritis is associated with a more severe disease trajectory, elevated

rates of joint erosion, and greater disability compared to ACPA-

negative rheumatoid arthritis (16). The two subtypes also differ in

terms of their fundamental genetic risk factors and environmental

impacts. Environmental variables, including smoking, predispose a

genotype to ACPA-positive rheumatoid arthritis (17). Peptidyl

arginine deiminases (PADs) mediate a process known as

citrullination, which facilitates the transformation of the amino acid

arginine into citrulline (18). Certain bacterial pathogens, such as

Porphyromonas gingivalis (associated with periodontal disease) and

Aggregatibacter actinomycetemcomitans, can also induce this

alteration and contribute to the exacerbation of rheumatoid arthritis

progression (19). Citrullinated proteins transform into neoantigens

upon formation and present themselves to CD4+ T lymphocytes

through major histocompatibility complex (MHC) class II molecules,

particularly HLA-DRB1 alleles, which significantly correlate with

rheumatoid arthritis susceptibility (Figure 1A) (20, 21). When T cells

are activated and present these modified peptides, they trigger B cells to

produce autoantibodies such as ACPAs and RF (Figure 1B) (22). These

autoantibodies can be identified years before the onset of clinical

symptoms, signifying an initial phase of immunological activation.

In the early stages of ACPA-positive rheumatoid arthritis, a lot

of CD4+ T cells and macrophages enter the synovium (23). This

causes the production of pro-inflammatory cytokines like TNF-a,
IL-1, and IL-6. This leads to the activation of synovial fibroblast-like

synoviocytes (FLS) and an increased production of matrix

metalloproteinases (MMPs), which decompose the extracellular

matrix (Figure 1C) (24). The paracrine and autocrine functions of

cytokines, along with ongoing adaptive immune responses,

contribute to disease progression by promoting FLS to adopt an

invasive phenotype, which facilitates cartilage degradation and bone

erosion (Figure 1D). These altered FLS can also move between

joints, sustaining inflammation in several joint regions (25).

Even though ACPA-negative rheumatoid arthritis is similar to

other types in terms of joint involvement and inflammation, it has its

own immune system and molecular features. In contrast to ACPA-

positive RA, ACPA-negative RA does not depend on citrullination or

the existence of anti-citrullinated antibodies for its pathogenesis. The

pathogenesis is instead governed by stromal cells, particularly

fibroblast-like synoviocytes, which are crucial in mediating

inflammation and advancing disease progression. In healthy

synovial tissue, FLS play a crucial role in sustaining the synovial

lining and synthesizing proteins essential for joint lubrication (26).
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On the other hand, in RA, they transform into aggressive pathogenic

cells. They learn to express Toll-like receptors (TLRs) and work as

antigen-presenting cells (APCs) (27, 28). These stromal cells express

antigens via histocompatibility complex (MHC) II receptors and

release cytokines and chemokines. Thus, these stromal cells are part

of the innate immune system (29). In ACPA-negative RA, cytokines

activate endothelial cells, resulting in the recruitment of more

immune cells, including Th17 cells and macrophages, into the

synovial compartment, thereby intensifying the inflammatory

response. Furthermore, infiltrating cells, including fibroblasts,

macrophages, T cells, B cells, and plasma cells, stimulated by

blood-activated fibroblasts and macrophages, contribute to the

pathophysiology of ACPA-negative rheumatoid arthritis (30).

These cells create a proinflammatory milieu within the synovium,

wherein stromal cells, especially FLS, are crucial in maintaining

inflammation and facilitating disease advancement. Activated cells

release proinflammatory cytokines, including IL-1, IL-6, IL-17, TNF-

a, and MMPs, resulting in the eventual degradation of cartilage and

bone (31, 32). Furthermore, activated B cells, with the aid of antigen-

presenting cells and Th cells, ultimately undergo differentiation into

plasma cells for the purpose of synthesizing and producing diverse

immunoglobulins. There is evidence that the release of Th1 cytokines

in RA leads to more Th17 cells entering the synovial tissues and the

production of IL-17 (33, 34).

As the disease progresses, activated fibroblast-like synoviocytes

form direct interactions with dendritic cells, macrophages, and pre-
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osteoclasts. RANK-RANKL signaling facilitates interactions that

enhance osteoclast development and bone resorption, leading to

bone erosion in regions where the synovium, bone, and cartilage

converge (35). Furthermore, innate immune cells play a significant

role in ACPA-negative rheumatoid arthritis, since stromal cells and

macrophages collaborate to promote osteoclast development via the

RANKL/RANK pathway (36). This connection facilitates bone

erosion at the junction of the synovium and periosteal membrane,

leading to joint destruction that differs from the antibody-mediated

mechanisms observed in ACPA-positive rheumatoid arthritis (37).

Cytokine and chemokine signaling pathways are essential for

sustaining the inflammatory milieu in the synovium. Depending

on the cytokine environment, activated T cells divide into different

subsets, such as Th1, Th17, and regulatory T cells (Treg) (38). The

immune cells, in conjunction with FLS, perpetuate chronic synovial

inflammation and exacerbate the damaging characteristics of

ACPA-negative RA (Figure 2).
An overview of NF-kB signaling
pathway in RA

Researchers have linked NF-kB to the development of numerous

inflammatory disorders, including RA (39, 40). Two distinct pathways

can trigger this mechanism: the classical or canonical pathway and the

alternative or non-canonical pathway (41). NF-kB subunits first bind
FIGURE 1

Mechanisms leading to ACPA-positive RA progression. (A) Neo-epitopes form in mucosa through post-translational modifications. (B) APCs present
these peptides, triggering autoantibody production. (C) Stromal cells, APCs, and macrophages produce inflammatory factors, driving synovial
inflammation. (D) Cytokines and immune responses contribute to cartilage and bone destruction.
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to p100 or p105 precursors in the noncanonical pathway. The process

then converts these precursors into p50 and p52 subunits,

respectively (42). The C-terminal regions of these precursors contain

IB-like domains, which impede nuclear localization until they undergo

cleavage. The IKK complex activates NF-kB-inducing kinase (NIK),

regulating its processing (43). The NF-kB pathway is stimulated in a

different way by signals from TNFR superfamily members like BAFFR,

CD40, and lymphotoxin receptors (44, 45). There is a key regulatory

mechanism that frees NF-kB dimers from IkB. It is made up of IKKa,
IKKb, and the scaffold protein IKKg/Nemo (46, 47). Subsequently, the

liberated IkBmolecules undergo degradation by proteasomes (48). The

NF-kB dimers move into the nucleus and attach to kB sites on certain

genes (43). This alters the expression of those genes and initiates the

transcription of genes implicated in immune and inflammatory

responses (Figure 3A) (48).

The noncanonical pathway primarily involves the IkB family

members p100 and p105. When receptors like CD40 and

lymphotoxin receptor (LTR) are activated, NIK phosphorylates

p100 (49). This causes p100 to go through ubiquitination, which

creates p52. Once paired, p52 and RelB move to the nucleus,

attaching to B sites to control the expression of genes they are

interested in (Figure 3B) (50).

NF-kB initiates the production of pro-inflammatory cytokines,

including IL-1, TNF-a, and IL-6, in monocytes and macrophages

(51). Cytokines have the ability to stimulate NF-kB in both the

innate immune system and fibroblast cells. This activation leads to

the production of additional cytokines and chemokines, which in

turn promote inflammation (51). These compounds then attract

other inflammatory cells, contributing to inflammation’s

propagation. In RA, the two different canonical and noncanonical
Frontiers in Immunology 04
NF-kB pathways promote the conversion of monocytes and

macrophages into osteoclasts, resulting in bone resorption and

inflammatory bone loss (52). NF-kB indirectly enhances Th17

cell formation by inducing IL-1, IL-6, and IL-23 secretion in cells

involved in innate immunity. It directly regulates Th17 lineage

transcription factor activity in T cells (53, 54). NF-kB activation that

isn’t working right also makes it easier for B cells to attack the

body’s own tissues and for antibodies to be made that attack the

body itself. Both of these things play a part in the development of

RA (55, 56). Studies show that people with RA who have high levels

of a B-cell activating factor from the TNF family have abnormal,

noncanonical NF-kB activation (43, 45, 57, 58). Therefore, NF-kB
has an important function in the development of rheumatoid

arthritis by influencing multiple cell types (57).
Non-coding RNAs in rheumatoid
arthritis: modulating NF-kB signaling

The expression patterns of ncRNAs vary greatly between

immune-mediated diseases and across different cell types and

organs. Furthermore, specific ncRNAs frequently exhibit

abnormal regulation in various inflammatory and autoimmune

disorders (59). Research has consistently shown that certain types

of non-coding RNAs, like miRNAs, lncRNAs, and circRNAs, are

dysregulated in people with RA (60–62). Additionally, a growing

body of evidence has revealed a unique profile of non-coding RNAs

that exhibit differential expression in RA, underscoring their

potential as dependable biomarkers for diagnosis and therapeutic
FIGURE 2

Inflammatory cells in ACPA-negative RA. Fibroblasts, macrophages, T cells, B cells, and plasma cells create a proinflammatory environment, with FLS
being crucial. Activated cells release cytokines (IL-1, IL-6, IL-17, TNF-a) and MMPs, leading to cartilage and bone degradation.
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approaches (59). However, we still don’t fully understand the

precise roles and molecular mechanisms of these ncRNAs in the

development of RA.

In this summary, we focus on the roles of ncRNAs in RA, with a

particular emphasis on miRNAs, lncRNAs, and circRNAs, as

documented in the available research. It is very important to

understand how these dysregulated ncRNAs affect inflammation

and autoimmunity in order to figure out how RA starts. It is crucial

to discover the specific genes that are affected by these abnormally

produced non-coding RNAs in RA in order to develop reliable

indicators and efficient therapies.
MicroRNAs in rheumatoid arthritis:
influencing the NF-kB pathway

MicroRNAs are short RNA molecules, usually 18 to 25

nucleotides long, that regulate gene expression after transcription.

miRNAs either accelerate the breakdown of mRNA or inhibit its

translation into proteins to achieve this regulation (63). Multiple

studies have emphasized the crucial significance of miRNAs in

several autoimmune disorders, such as rheumatoid arthritis,

systemic lupus erythematosus (SLE), and Sjögren’s syndrome.

Nevertheless, the levels of expression and function of miRNAs

may vary among distinct disorders (63, 64). miRNAs have a crucial

role in a wide range of important biological functions and disease

processes. These include controlling the cell cycle, sustaining stem

cell populations, facilitating organ development, stimulating

angiogenesis, and impacting carcinogenesis (65).
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Dysregulation of inflammatory pathways is a key driver of RA,

which is defined by chronic inflammation and joint deterioration.

In particular, NF-kB signaling stimulation is a key mechanism by

which many miRNAs promote these inflammatory processes

(promoting inflammation) (Table 1) (66). MiR-203 significantly

enhances synovial inflammation by boosting the release of pro-

inflammatory cytokines such as IL-6 and MMP-1 (67). miR-128-3p

enhances NF-kB signaling, which in turn causes heightened

inflammatory responses, by downregulating TNFAIP3, a crucial

inhibitor of NF-kB (68). Likewise, miR-19b amplifies inflammation

in the synovium by increasing NF-kB activity through blocking its

negative regulators (69). miR-221-3p increases the production of

IL-6 and IL-8 by telling macrophages to change into the pro-

inflammatory M1 type (70). In addition, miR-138 enhances the

release of pro-inflammatory cytokines via stimulating NF-kB (71).

Importantly, miR-16 plays a role in promoting methotrexate

resistance in RA by enhancing cell survival and reducing

apoptosis, leading to decreased drug sensitivity. This miRNA

contributes to the persistence of inflammation and limits the

effectiveness of methotrexate, thus promoting disease progression

in RA (72). Research indicates that mesenchymal stem cells (MSCs)

can mitigate rheumatoid arthritis by lowering miR-548e levels and

suppressing IkB translation, which in turn diminishes NF-kB
signaling activity and alleviates inflammation (73).

In RA, osteoclastogenesis is a crucial mechanism facilitating

bone resorption and joint deterioration. Multiple miRNAs facilitate

this process by enhancing the formation and function of osteoclasts,

the cells responsible for bone resorption. These miRNAs frequently

function by activating inflammatory pathways such as NF-kB or by
FIGURE 3

The NF-kB signaling pathway. (A) The IKK complex activates the canonical pathway by phosphorylating and degrading IkB, which results in the
activation of NF-kB. (B) Activation of a Not canonical Pathway: The NF-kB-inducing kinase (NIK) initiates the activation of IKKa, which in turn
generates and transports p52 and phosphorylates p100.
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TABLE 1 MicroRNAs implicated in the pathogenesis of RA and their association with the NF-kB signaling pathway.

Main Classification miRNA Target Genes Effect References

Promoting Inflammation miR-203 IL-6, MMP-1 Enhances synovial inflammation by promoting pro-
inflammatory cytokine release

(67)

miR-128-3p TNFAIP3 Activates NF-kB, leading to heightened
inflammatory responses

(68)

miR-19b – Amplifies inflammation in the synovium by
increasing NF-kB activity

(69)

miR-221-3p IL-6, IL-8 Induces macrophage polarization to pro-
inflammatory M1 type

(70)

miR-138 Pro-inflammatory cytokines Enhances the release of pro-inflammatory cytokines
via stimulating NF-kB

(71)

miR-16 Methotrexate resistance pathways Promotes cell survival and reduces apoptosis,
leading to decreased drug sensitivity

(72)

miR-548e IkB Lowered by MSCs, suppresses IkB translation,
diminishing NF-kB signaling and
alleviating inflammation

(73)

miR-212/132
miR-99b/let-7e/125a

TNFAIP3, IL15, IGF1R Promotes bone resorption by enhancing
osteoclast formation

(74)

miR-145-5p RANKL, MMPs Enhances osteoclast activity, worsening
inflammation and cartilage destruction

(75, 76)

miR-17-92 and
miR-18a

Matrix-degrading enzymes and Pro-
inflammatory cytokines

Accelerates joint breakdown and inflammation (77)

miR-34a Th17 cells Encourages Th17 differentiation, contributing to
bone degradation

(78)

miR-143
and
miR-145

IGFBP5, SEMA3A Enhances FLS survival and motility, leading to
increased IL-6 production

(79)

miR-515-5p TLR4/JNK pathway, WISP1 Modulates FLS by enhancing cell proliferation and
reducing apoptosis

(80)

Anti-inflammatory Roles miR-23a TNF-a pathway Reduces production of pro-inflammatory cytokines
and downregulates NF-kB activity

(81, 82)

miR-23b IKK-a, TAB2, TAB3 Inhibits NF-kB activation and suppresses synthesis
of inflammatory mediators

(83)

miR-22 IL6R Suppresses rheumatoid arthritis by potentially
inhibiting the NF-kB pathway

(84)

miR-27b IL-1b Inhibits cell growth and induces apoptosis by
blocking NF-kB signaling

(85)

miR-17 TNF-a, IL-6, IL-8, MMP-1, MMP-13 Inhibits inflammation by decreasing TNF-a
signaling and NF-kB activation

(86)

miR-496 MMP10 Slows the growth of FLS and accelerates apoptosis
by targeting the NF-kB pathway

(87)

miR-124a PIK3/NF-kB pathway Inhibits FLS proliferation and inflammation,
promoting apoptosis

(88)

miR-10a NF-kB activation Inhibits inflammation by suppressing NF-
kB activation

(89)

miR-205-5p MDM2 Suppresses NF-kB, reducing inflammation and
promoting tissue repair

(90)

miR-410-3p TNF-a, IL-1b, IL-6, MMP-9 Reduces inflammation by inhibiting NF-kB pathway (91)

miR-23 TNF-a, IL-1b, IL-8 Decreases inflammation by targeting CXCL12
mRNA and inhibiting NF-kB signaling pathway.

(92)

(Continued)
F
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enhancing the production of molecules that facilitate

bone disintegration.

The microRNAs miR-212/132 and miR-99b/let-7e/125a

promote bone resorption by increasing osteoclast development

and targeting important regulators such as TNFAIP3, IL15, and

IGF1R, which are crucial for regulating inflammation and

metabolism in bones (74). This is analogous to the function of

miR-145-5p, which enhances osteoclast activity and bone

degradation. miR-145-5p increases RANKL and MMP levels

through NF-kB activation. Its upregulation worsens inflammation

and cartilage destruction, making it a potential target for RA

treatment (75, 76). By raising the levels of matrix-degrading

enzymes and pro-inflammatory cytokines, the miR-17-92 cluster,

and miR-18a in particular, makes joints break down faster and

cause more inflammation (77). Moreover, miR-34a encourages

Th17 cell differentiation, which indirectly causes bone

degradation and osteoclast development (78).

In addition, elevated inflammation in RA results in

hyperactivation of FLS, which are the main contributors to

synovial inflammation and joint deterioration. These cells

undergo excessive proliferation due to persistent inflammation,

leading to synovial hyperplasia and joint deterioration.

Numerous miRNAs modulate the proliferation, survival, and

apoptosis of FLS, thereby affecting the degree of inflammation. Key

microRNAs such as miR-143 and miR-145 are upregulated in

rheumatoid arthritis fibroblast-like synoviocytes, targeting

IGFBP5 and SEMA3A, resulting in elevated IL-6 production, NF-

kB activation, and improved fibroblast-like synoviocyte survival

and motility (79). miR-515-5p modulates fibroblast-like
Frontiers in Immunology 07
synoviocytes in rheumatoid arthritis by enhancing cell

proliferation and diminishing apoptosis via the TLR4/JNK

pathway and the WISP1 gene. The inhibition of miR-515-5p

mitigates these effects, indicating its involvement in regulating

inflammation and fibroblast-like synoviocyte activity in

rheumatoid arthritis (80).

While certain microRNAs have negative impacts on RA, others

act as protective agents by lowering cytokine production and

downregulating inflammatory pathways, especially NF-kB (anti-

inflammatory roles) (Table 1). MiR-23a exhibits anti-inflammatory

properties in RA by inhibiting TNF-a signaling and reducing the

production of pro-inflammatory cytokines, such as IL-6 and IL-8.

By targeting the NF-kB pathway (81, 82). Similarly, miR-23b

inhibits NF-kB activation and suppresses the synthesis of

inflammatory mediators via inhibiting IKK-a, TAB2, and TAB3

(83). Moreover, miR-22 suppresses rheumatoid arthritis by

targeting IL6R and potentially inhibiting the NF-kB pathway (84).

Furthermore, overexpression of miR-27b stopped cells from

growing, sped up cell death, and blocked the NF-kB signaling

pathway by focusing on IL-1b (85).

In addition, miR-17 stops inflammation by decreasing TNF-a
signaling. This lowers the activation of NF-kB, STAT3, and c-Jun,

which in turn lowers the production of pro-inflammatory cytokines

like IL-6, IL-8, MMP-1, and MMP-13 (86). Importantly, miR-496

slowed the growth of rheumatoid arthritis fibroblast-like

synoviocytes and sped up apoptosis by targeting MMP10 and

changing the NF-kB pathway (87). MiR-124a inhibits FLS

proliferation and inflammation in RA by targeting the PIK3/NF-

kB pathway, reducing cytokine levels, and promoting FLS
TABLE 1 Continued

Main Classification miRNA Target Genes Effect References

miR-31 TLR4 Regulates inflammation by targeting TLR4 and
reducing pro-inflammatory markers

(93)

miR-7-5p p65 Inhibits TNF-a/NF-kB signaling, reducing
inflammatory cytokine production and
arthritis severity

(94)

miR-142-3p MCP-1, TNF-a, IL-6 Enhances cell survival and reduces pro-
inflammatory cytokine synthesis via NF-kB and
JNK pathways

(95)

miR-548a-3p TLR4/NF-kB pathway Modulates inflammation in RA and shows negative
correlation with inflammatory markers

(96)

miR-766-3p NF-kB signaling Stops NF-kB signaling, lowering
inflammatory responses

(97)

miR-20a RANKL, TLR4/p38 pathway Reduces osteoclastogenesis and inhibits
bone degradation

(98)

miR-9 NF-kB1-RANKL pathway Decreases arthritic damage by suppressing cell
proliferation and inflammation

(99)

miR-146a-5p – Reduces osteoclast development and
bone degradation

(100–102)

miR-125a-3p MAST3, Wnt/b-catenin pathway Reduces inflammation and limits FLS proliferation (103)

miR-27a FSTL1, TLR4/NF-kB pathway Inhibits migration and infiltration of FLS, resulting
in decreased matrix metalloproteinases
and inflammation

(104)
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apoptosis, making it a potential therapeutic target (88). Similarly,

miR-10a regulates inflammation by inhibiting NF-kB activation; its

suppression leads to increased FLS proliferation and cytokine

production, suggesting its role as a target for RA management (89).

Exosome-delivered miR-205-5p targets MDM2 and suppresses

NF-kB, which in turn reduces inflammation in the joints and

promotes tissue repair (90). Likewise, miR-410-3p reduces

inflammation in RA by inhibiting the NF-kB pathway, leading to

decreased levels of pro-inflammatory cytokines like TNF-a, IL-1b,
IL-6, and MMP-9 (91). Overexpression of miR-23 also decreased

inflammation by lowering levels of TNF-a, IL-1b, and IL-8. This

was done by targeting CXCL12 mRNA and stopping the NF-kB
signaling pathway (92). Interestingly, miR-31 regulates

inflammation in RA by targeting TLR4 and reducing pro-

inflammatory markers like TNF-a and IL-1, while promoting

apoptosis in synovial cells, positioning it as a potential

therapeutic target for RA (93). Moreover, miR-7-5p inhibits the

TNF-a/NF-kB signaling pathway by binding to the 3’-UTR of p65,

resulting in diminished production of inflammatory cytokines and

alleviating arthritis severity (94).

miR-142-3p enhances cell survival and diminishes the synthesis

of pro-inflammatory cytokines (MCP-1, TNF-a, IL-6) via the NF-
kB and JNK pathways. Inhibition of miR-142-3p negates these

protective effects (95). In addition, miR-548a-3p is markedly

downregulated in rheumatoid arthritis patients and modulates

inflammation through the TLR4/NF-kB signaling pathway (96). It

exhibits a negative correlation with inflammation markers (CRP,

RF, ESR) and contributes to the attenuation of cellular activity and

immunological responses. miR-766-3p stops NF-kB signaling,

which lowers inflammatory responses in RA (97).

Specific miRNAs reduce inflammation and bone degradation

associated with RA by blocking critical inflammatory pathways,

therefore safeguarding joint tissues and averting bone loss. These

miRNAs function by inhibiting osteoclastogenesis, diminishing the

synthesis of pro-inflammatory cytokines, and facilitating the

resolution of inflammation. miR-20a reduces osteoclastogenesis

and inhibits bone degradation by modulating RANKL via the

TLR4/p38 signaling pathway. The injection of agomiR-20a

suppresses osteoclast growth and bone erosion, underscoring its

potential as a therapeutic target for rheumatoid arthritis to avert

bone loss (98). Lee et al. discovered that miR-9 decreases arthritic

damage by suppressing the NF-kB1-RANKL pathway, hence

decreasing cell proliferation and inflammation (99). Bogunia-

Kubik et al. found that the NFkB1 ins/ins genotype is linked to a

lower response to TNF-a inhibitor therapy in people with

rheumatoid arthritis, as shown by lower levels of miR-146a-5p

before treatment. Following therapy, the protective rs2910164-C

allele was correlated with elevated miR-146a-5p levels.

Furthermore, miR-146a administration to Ly6Chigh monocytes

reduced osteoclast development and bone degradation, indicating

its potential as a therapeutic target in arthritis (100–102).

Certain microRNAs in RA are essential for modulating

inflammation and proliferation of fibroblast-like synovial cells,

which are significant contributors to joint destruction in RA.

miR-125a-3p reduces inflammation and restricts the proliferation

of fibroblast-like synovial cells in rheumatoid arthritis by targeting
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MAST3 and regulating the Wnt/b-catenin and NF-kB signaling

pathways (103). miR-27a, which is downregulated in individuals

with rheumatoid arthritis, inhibits the migration and infiltration of

FLS via targeting follistatin-like protein 1 (FSTL1). This action

results in diminished amounts of matrix metalloproteinases and

Rho family proteins, while also inhibiting the TLR4/NF-kB
pathway (104).
Long non-coding RNAs in
rheumatoid arthritis: key
players in NF-kB signaling

LncRNAs are a recently discovered group of non-coding RNAs

that are widely expressed in different human organs and typically

consist of more than 200 nucleotides (105). LncRNAs can be

categorized into five distinct categories according to their

structure and function: sense, antisense, bidirectional, intronic,

and intergenic (106). Within the field of oncology, specific

lncRNAs exhibit oncogenic characteristics, while others impede

the growth and advancement of tumors. These lncRNAs display

varied expression patterns and exert distinct biological effects

within tumor cells (107). Recent studies have shown that different

lncRNAs are expressed at different levels in immune cells in diverse

autoimmune illnesses, such as rheumatoid arthritis (63, 108, 109).

These results show that distinct lncRNA expression profiles, which

may also manifest uniquely in different cells and tissues, distinguish

various autoimmune diseases.

Peripheral blood mononuclear cells (PBMCs) of RA patients

upregulated the long non-coding RNA (lncRNA) HIX003209,

which was associated with TLR2 and TLR4. HIX003209 promotes

inflammation by sponging miR-6089, thus enhancing TLR4/NF-kB
signaling in macrophages. This lncRNA increased macrophage

proliferation and activation, contributing to RA pathogenesis.

Therefore, targeting lncRNA HIX003209 could be a potential

therapeutic strategy for reducing inflammation in RA (110).

Furthermore, RA patients significantly increased LINC00305

expression, which correlates with disease activity markers such as

DAS28, C-reactive protein, erythrocyte sedimentation rate,

rheumatoid factor, and anti-cyclic citrullinated peptide antibody.

The rs2850711 polymorphism in LINC00305 was associated with

higher RA susceptibility, especially in individuals with AT and TT

genotypes. High levels of LINC00305, NF-kB, and MMP-3 were

found in these genotypes. This suggested that LINC00305 and its

genetic variant played important roles in diagnosing RA, managing

it, and making it worse (111).

Yang et al. discovered that the long non-coding RNA (lncRNA)

H19 makes the inflammatory damage caused by TNF-a worse in

MH7A cells, which are used to study RA. The levels of H19 went up

because of TNF-a. This made TAK1 phosphorylated, which turned

on the NF-kB and JNK/p38 MAPK pathways. Silencing H19

reduced inflammatory cytokines (IL-8, IL-1b, and IL-6), while

H19 overexpression reversed this effect, indicating that H19

enhances inflammation through the TAK1 pathway in RA (112).

Moreover, overexpression of LINC01197 in a mouse RA model
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reduced disease severity, inhibited fibroblast-like synoviocyte (RA-

FLS) proliferation and inflammation, and promoted apoptosis. By

sponging miR-150, LINC01197 functioned by increasing THBS2

expression and inactivating the TLR4/NF-kB signaling pathway,

thereby reducing inflammation and suggesting LINC01197 as a

potential therapeutic target for RA (113). Overexpressing OIP5-AS1

also decreased the severity of RA symptoms and levels of

inflammatory factors (IL-1b, IL-10, IL-6, and TNF-a) in a rat

model. OIP5-AS1 connects to miR-448 and raises the expression of

paraoxonase 1 (PON1). This stops the growth and inflammation of

fibroblast-like synoviocytes (RA-FLS). Activation of TLR3

promoted RA progression, while OIP5-AS1 inactivated the TLR3-

NF-kB signaling pathway. Therefore, OIP5-AS1 mitigates RA

progression through the miR-448-PON1 axis and the TLR3-NF-

kB pathway, offering potential for molecularly based RA

treatments (114).

Tang et al. found that RA-affected synovial tissues increase the

expression of long non-coding RNA (lncRNA) PVT1, while miR-

145-5p expression decreases. PVT1 interacts with miR-145-5p and

exerts a negative regulatory effect. More PVT1 and less miR-145-5p

were found in fibroblast-like synoviocytes from people with

rheumatoid arthritis (RA-FLSs) when TNF-a was present. It was

possible to silence PVT1 by targeting the NF-kB pathway through

miR-145-5p. This decreased TNF-a-induced cell proliferation,

increased apoptosis, and decreased the production of

inflammatory cytokines (IL-1b and IL-6). These findings indicate

that PVT1 has a significant impact on rheumatoid arthritis by

regulating cell growth and inflammation via miR-145-5p (115).

Furthermore, the delivery of LncRNA-GAS5 siRNA caused a

decrease in joint swelling and a reduction in the quantity of

arthritis-related biochemicals, oxidative stress markers, and

cytokines in the serum of RA patients. Some other things that

were lowered were miR-103, MMP-13, Akt, NF-kB, FGF21, PI3K,
and p38 in cartilage. Histopathological analysis showed that

LncRNA-GAS5 siRNA ameliorated cartilage pathological changes,

suggesting that it prevents cartilage destruction through decreasing

miR-103 expression and associated inflammatory pathways (116).

Xiao et al. investigated the function of NEAT1 in RA and

discovered its upregulation in RA-FLSs. NEAT1 promotes RA-FLS

proliferation and inflammatory cytokine production, while

inhibiting apoptosis through miR-204-5p targeting by the NF-kB
pathway. Silencing NEAT1 reduced cellular proliferation and

inflammation while increasing apoptosis in TNF-a-treated RA-

FLSs. These findings suggest that NEAT1 could be a possible

therapeutic target for RA by modulating miR-204-5p and the NF-

kB pathway (117).

In a different study, it was shown that the exosomal

lncRNAHAND2-AS1 stops the activation of RA-FLS. By blocking

miR-143-3p and raising TNFAIP3 expression, HAND2-AS1 lowers

RA-FLS growth, migration, and inflammation and speeds up cell

death through the NF-kB pathway. This suggests that MSC-derived

exosomal HAND2-AS1 could be a potential therapeutic approach

for RA (118). Furthermore, linc00152 was upregulated in RA-FLS

and stimulated by TNF-a/IL-1b through the NF-kB pathway.

Linc00152 caused inflammation by blocking miR-103a, which

increased TAK1 expression and turned on the NF-kB pathway
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that is controlled by TAK1. Additionally, NF-kB enhanced

linc00152 expression via the transcription factor YY1. This

l inc00152/NF-kB feedback loop exacerbated RA-FLS

inflammation, suggesting that linc00152 could be a potential

diagnostic and therapeutic target for RA (119).

Liu et al. investigated the role of lncRNA XIST in RA and found it

to be significantly upregulated in RA synovial tissues and cells. By

sponging miR-126-3p, XIST promotes cell proliferation and inhibits

apoptosis in RA-FLS. Lowering XIST levels raised miR-126-3p levels,

which blocked the NF-kB pathway by lowering p-p65 and p-IkBa
expression. This caused RA-FLS cells to multiply less and die more.

This study suggests that targeting the XIST/miR-126-3p/NF-kB axis

could be a potential therapeutic approach for RA (120).

Another study showed that linc00324 increased the number of

CD4+ T cells and the release of MIP-1a by turning on the NF-kB
pathway. This was achieved by targeting and sponging miR-10a-5p,

which normally inhibits CD4+ T cell proliferation and NF-kB
activation. It’s possible that linc00324 makes RA inflammation

worse through the miR-10a-5p/NF-kB axis because overexpressing

miR-10a-5p reversed its pro-inflammatory effects. This identified

LINC00324 as a potential therapeutic target for RA (121). However,

RA-FLSs and peripheral blood mononuclear cells (PBMCs) from RA

patients downregulate the lncRNA MAPKAPK5-AS1 (MK5-AS1).

By connecting to miR-146a-3p and controlling SIRT1 expression,

MK5-AS1 overexpression in RA-FLSs reduced inflammation and

boosted apoptosis. This was done by affecting the NF-kB pathway.

These effects were reversed by SIRT1 knockdown or miR-146a-3p

overexpression. The study also revealed that WTAP downregulation

promoted MK5-AS1 RNA stability. This research suggests that MK5-

AS1, via the miR-146a-3p/SIRT1/NF-kB axis, could be a potential

therapeutic target for RA (122).

Sun et al. discovered that the long non-coding RNA

AL928768.3 encourages the growth, invasion, and inflammation

of RA-FLS and stops cell death by turning on the LTB-mediated

NF-kB pathway. Overexpression of AL928768.3 increased IL-1b,
IL-6, IL-8, and LTB levels, as well as NF-kB signaling proteins, while

knockdown had the opposite effect, which could be reversed by LTB

overexpression. This highlights AL928768.3 as a potential

therapeutic target for RA (Table 2) (123).
Circular RNAs in rheumatoid arthritis:
controlling NF-kB signaling

The unique covalently closed loop structure of circRNA makes

it stand out from other non-coding RNAs. It doesn’t have any 5′
end caps or 3′ polyadenylate tails (124). Circular RNA molecules

often possess a circular structure, which provides them with

stability and often results in a half-time of more than 48 hours

(125). CircRNAs are categorized into three primary types: exonic

circRNAs (ecircRNAs), circular intronic RNAs (ciRNAs), and

exon-intron circRNAs (EIciRNAs) (126). Their synthesis in cells

usually occurs due to exon skipping and subsequent circularization,

which can be assisted by intron pairing or the activity of RNA-

binding proteins (126). C CircRNAs have been detected not just in
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mammals but also in fungi, plants, and protists. These molecules are

predominantly expressed in a tissue-specific way and can be

identified in peripheral blood, exosomes, and different organs

(Figure 4) (127, 128).

CircRNAs have the ability to behave as miRNA decoys,

sequestering miRNAs and inhibiting their interaction with their

endogenous mRNA targets, similar to lncRNAs (129). The

interaction mainly takes place in the cytoplasm, where ecircRNAs

might have important functions in several pathological and

physiological processes through the competitive endogenous RNA

(ceRNA) mechanism (130). In contrast, ciRNAs and EIciRNAs

primarily influence gene expression within the nucleus. CircRNAs

have a role in regulating the expression of target messenger RNAs

(mRNAs) by absorbing miRNAs. This contact, known as ceRNA

interaction, has an impact on several processes such as autoimmune

and inflammation (126, 129). Nevertheless, the intricate

mechanisms underlying the ceRNA actions of circRNA in RA

have not been well investigated.

Circular RNAs play a role in the control of several immune-

related illnesses by acting as miRNA sponges or reservoirs (126).
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Studies have emphasized the substantial impact of circRNAs in a

wide range of diseases, such as cancer, disorders of the nervous

system, and cardiovascular diseases (131, 132). Their crucial role in

antiviral immunity has been firmly established, offering possible

therapeutic possibilities by focusing on circRNAs for immunologic

treatments (133, 134).

Yang et al. discovered a notable increase in the expression of

circRNA_09505 in the peripheral blood mononuclear cells of

individuals with RA. This circular RNA enhances macrophage

growth and secretion of cytokines (TNF-a, IL-6, and IL-12) by

acting as a miR-6089 inhibitor, resulting in the stimulation of the

AKT1/NF-kB signaling pathway. In mice with collagen-induced

arthritis (CIA), CircRNA_09505 knockdown reduced arthritic

symptoms and inflammation, indicating its contribution to the

worsening of rheumatoid arthritis (135).

Furthermore, overexpressing circ-Sirt1 inhibited proliferation

and induced apoptosis in RA-FLS. This circRNA lowered the

amounts of inflammatory cytokines (IL-6, IL-1b, and TNF-a)
and matrix metalloproteinases (MMP1 and 3) while raising the

levels of Sirt1 and Nrf2. This decreased oxidative stress and
TABLE 2 A brief summary of the main discoveries associated with long noncoding RNAs in RA.

lncRNA Role in RA Regulation Status Target/Pathway Ref.

HIX003209 Promotes inflammation by sponging miR-6089, enhancing
TLR4/NF-kB signaling in macrophages

Upregulated in PBMCs of RA patients TLR4/NF-kB pathway (110)

LINC00305 Correlates with disease activity markers and
RA susceptibility

Upregulated in RA patients NF-kB pathway (111)

H19 Exacerbates TNF-a-induced inflammatory injury, promotes
TAK1 phosphorylation, activating NF-kB and JNK/p38
MAPK pathways

Upregulated in TNF-a treated cells TAK1/NF-kB and JNK/p38
MAPK pathways

(112)

LINC01197 Reduces disease severity, inhibits RA-FLS proliferation and
inflammation, promotes apoptosis

Overexpressed in a mouse RA model miR-150/THBS2/TLR4/NF-
kB pathway

(113)

OIP5-AS1 Reduces symptom severity and inflammatory factor levels,
inhibits RA-FLS growth and inflammation

Overexpressed in a rat RA model miR-448/PON1/TLR3-NF-kB pathway (114)

PVT1 Upregulated in RA synovial tissues, binds and negatively
regulates miR-145-5p

Upregulated in RA synovial tissues miR-145-5p/NF-kB pathway (115)

GAS5 Reduces joint swelling, serum levels of arthritis-related
biochemicals, cytokines, and oxidative stress markers

Reduced in RA cartilage miR-103/NF-kB pathway (116)

NEAT1 Promotes RA-FLS proliferation and inflammatory cytokine
production, inhibits apoptosis

Upregulated in RA synovial tissues
and cells

miR-204-5p/NF-kB pathway (117)

HAND2-AS1 Inhibits RA-FLS activation by sponging miR-143-3p and
increasing TNFAIP3 expression

Upregulated in MSC-
derived exosomes

miR-143-3p/NF-kB pathway (118)

linc00152 Promotes inflammation by inhibiting miR-103a, leading to
increased TAK1 expression and activation of the TAK1-
mediated NF-kB pathway

Upregulated in RA-FLS miR-103a/TAK1/NF-kB pathway (119)

XIST Promotes cell proliferation and inhibits apoptosis in RA-FLS
by sponging miR-126-3p

Upregulated in RA synovial tissues
and cells

miR-126-3p/NF-kB pathway (120)

linc00324 Promotes CD4+ T cell proliferation and MIP-1a secretion
by targeting and sponging miR-10a-5p

Upregulated in RA CD4+ T cells miR-10a-5p/NF-kB pathway (121)

MK5-AS1 Inhibits inflammation and promotes apoptosis in RA-FLS by
binding to miR-146a-3p and regulating SIRT1 expression

Downregulated in RA-FLS
and PBMCs

miR-146a-3p/SIRT1/NF-kB pathway (122)

AL928768.3 Promotes proliferation, invasion, and inflammation in RA-
FLS, inhibits apoptosis

Upregulated in RA-FLS LTB/NF-kB pathway (123)
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inflammation. The protective effects were mediated through miR-

132, which enhanced the Sirt1 pathway, highlighting Circ-Sirt1’s

potential therapeutic role in RA (136).

Furthermore, it has been demonstrated that circ_0088036 is

elevated in both the sera and RA-FLS cells of individuals with

rheumatoid arthritis. This upregulation of circ_0088036 contributes

to the stimulation of cell proliferation, advancement of the cell

cycle, and activation of inflammatory responses by acting as a

sponge for miR-1263. This interaction resulted in the

overexpression of REL, a constituent of the NF-kB pathway,

hence augmenting NF-kB signaling. The specific suppression of

circ_0088036 hindered the growth of RA-FLS cells and triggered

programmed cell death, indicating its involvement in the

development of rheumatoid arthritis through the miR-1263/REL/

NF-kB pathway (137).

A separate investigation revealed that circ_0004712 exhibited

increased expression in both RA synovial tissues and RA-FLS.

Researchers found that the upregulation of circ_0004712

stimulates cell proliferation, migration, and inflammation while

simultaneously suppressing apoptosis. This circular RNA acts as a

sponge for miR-633, resulting in an increase in TRAF6 expression,

which in turn activates the NF-kB signaling pathway. Knocking

down circ_0004712 led to a decrease in aggressive behaviors in RA-

FLS, suggesting its involvement in RA progression through the

miR-633/TRAF6/NF-kB pathway (Figure 5) (138).
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NcRNA-based therapies for RA: new
biomarkers and treatment approaches

In recent years, there has been a significant rise in the

investigation of the potential of ncRNAs as biomarkers in RA

(139). Nevertheless, the development of ncRNA-based therapeutics

for RA is still in the beginning stages. miRNA-based therapies, which

include antagonists that lower miRNA expression, promote RA, and

mimics that restore the activity of miRNAs that suppress RA, are

some of the most promising approaches (140). For instance, studies

have shown that methotrexate increases the levels of miR-877-3p,

leading to a decrease in GM-CSF and CCL3, thereby restricting the

growth and migration of synoviocytes (141). Similarly, Resolvin D1

raises CTGF by increasing miR-146a-5p‐85, and berberine, a

chemical found in plants, stops FLS growth and bone loss by

targeting Wnt/b-catenin and RANKL-mediated pathways (142).

Another strategy is to modify miRNAs’ upstream regulators in

the ceRNA network. In this complex structure, circRNAs and

lncRNAs function as molecular sponges. By manipulating these

substrates, it is possible to alter the activity of miRNAs and the

results of RA (140). As an example, astragaloside lowers the lncRNA

LOC100912373, which then activates miR-17-5p’s blocking of

PDK1 and limits the growth of FLS (143). Paeoniflorin regulates

the circ-FAM120A/miR-671-5p axis, inhibiting inflammation, cell

cycle progression, and synoviocyte proliferation (144).
FIGURE 4

The process of circular RNA formation. There are three methods that give rise to circular RNAs: lariat-driven, intron-pairing-driven, and RBP-
mediated circularization. Endogenous inverted repeat-derived circular RNAs (EIciRNAs) are composed of conserved exons and introns. Splicing
generates circular intronic RNAs (ciRNAs) that possess a 7-nucleotide GU-rich region adjacent to the 5′ splice site and an 11-nucleotide C-rich motif
at the branch point.
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The ceRNA network is also a mechanism through which certain

miRNA antagonists’ function. As an example, the triptolide-

controlled hsa-circ-0003353/miR-31-5p/CDK1 axis and

tocilizumab’s impact on lncRNA MIR31HG/miR-214/PTEN/AKT

improve miRNA sponges, which leads to less inflammation, cell

cycle arrest, and cellular proliferation (145, 146). Recognized

mechanisms enhance the respective miRNA sponges and alleviate

the suppression of miRNAs on their target genes. This leads to

diminished cell cycle arrest, cellular proliferation, and reduced

production of inflammatory mediators.

Furthermore, using plant-derived miRNAs as dietary

interventions is a promising approach to RA therapy (147).

Despite the potential for safety and convenience, this method

faces obstacles in terms of the optimal plant miRNA types, their

stability in the body, and the interval of treatment (147).

Advances in miRNA delivery through tissue engineering

technologies have made new therapeutic options possible.

Exosomes are particularly promising due to their biocompatibility

and targeted delivery capabilities, while synthetic nanoparticles and

cationic liposomes are extensively utilized to improve miRNA

uptake and stability (148). Exosomes encapsulate miRNAs,

protecting them from degradation in the extracellular

environment. A thorough screening of plasma exosomes from RA

patients discovered 14 dysregulated miRNAs. Among them, miR-

204-5p was significantly downregulated and inversely linked with

important clinical markers like ESR, RF, and CRP. FLS proliferation

is inhibited by exosomes derived from T cells that contain miR-204-

5p, suggesting a potential therapeutic function (148).
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Exosomes derived from MSCs also exhibit substantial

therapeutic potential. For example, bone marrow MSC exosomes

(BM-MSC-EVs) containing miR-34a activate the p53 signaling

pathway, thereby inducing apoptosis and suppressing FLS

proliferation (149). In the same vein, BM-MSC-EVs deliver miR-

223 to the NLRP3 inflammasome, thereby reducing inflammation.

The therapeutic strategy is attractive due to the reduced risk of

rejection associated with the use of autologous MSC-derived

exosomes (150).

Furthermore, miRNA profiling has the potential to revolutionize

RA treatment through precisionmedicine, providing new opportunities

for personalized therapies and enhanced patient outcomes. This is

particularly true for drug validation and early diagnosis. Continued

research intomiRNA-based therapeutics will provide innovative, highly

targeted treatment options in the future, revolutionizing RA

management (151).

Understanding the hub’s function in normal regulation is just as

important as identifying it to target critical pathways in the miRNA

network for treatment. For instance, both miR-20a and miR-26b

can target the NF-kB signaling pathway (152). Nevertheless, NF-kB
also serves physiological purposes by facilitating the typical immune

response (153). Normal immune response will be compromised if

the inflammatory process and immune cells are completely

inhibited. Consequently, it is imperative to resolve the critical

issue of achieving equilibrium or shifting the balance in favor of

RA treatment. Furthermore, studies have shown that the genes

targeted by miR-223 have opposing effects on FLS cells. Some of its

effects include reducing inflammation and inducing apoptosis in
FIGURE 5

RA-associated circRNAs influence the NF-kB signaling pathway.
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FLS cells by targeting NLRP3 (154), and increasing FLS

proliferation and arthritis by targeting FOXO1 (155). It is

possible that the non-standardization of research circumstances

and baseline variables is responsible for these contradictory results.

The miRNA panel may help shed light on the molecular processes

of RA in different cell types and make RA diagnoses easier. Through

the use of miRNAs in cancer to trigger cell death and prevent blood

vessel formation, or FLS hyperplasia, it may also provide new

information and ideas for future studies. As our comprehension

of the subject expands, conducting a more thorough investigation of

the miRNAs in RA patients may provide additional insights into

diagnosis and treatment (140). Furthermore, miRNA profiling has

the potential to transform RA treatment through precision

medicine, thereby enabling the development of personalized

therapies and improved patient outcomes. This is especially true

in the context of drug validation and early diagnosis. In the future,

innovative, highly targeted treatment options will be provided by

ongoing research into miRNA-based therapeutics, which will

revolutionize RA management (156).
Conclusions

Non-coding RNAs play a key role in controlling the NF-kB
signaling pathway, and this study looked into how they affect the

progression of rheumatoid arthritis. Non-coding RNAs, such as

microRNAs, long non-coding RNAs, and circular RNAs,

profoundly affect inflammatory and immunological responses

essential for the therapy of RA. Our work has contributed to the

comprehension of the functional dynamics of these ncRNAs,

emphasizing their potential as biomarkers and therapeutic targets.

NcRNAs’ complex control of the NF-kB pathway facilitates novel

therapeutic techniques that may improve RA treatment’s precision

and efficacy. The increasing interest in ncRNA-based therapies

presents opportunities for novel treatment approaches. However,
Frontiers in Immunology 13
we must resolve obstacles related to efficient gene regulation and

delivery to fully realize their therapeutic advantages.
Author contributions

ZR: Conceptualization, Project administration, Supervision,

Visualization, Writing – original draft, Writing – review &

editing. DS: Conceptualization, Writing – original draft. NE: Data

curation, Writing – original draft. MH: Validation, Writing –

original draft. YM: Investigation, Writing – review & editing. FS:

Project administration, Visualization, Writing – original draft.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Crowson CS, Rollefstad S, Ikdahl E, Kitas GD, Van Riel PL, Gabriel SE, et al. Impact
of risk factors associated with cardiovascular outcomes in patients with rheumatoid
arthritis. Ann rheumatic Dis. (2018) 77:48–54. doi: 10.1136/annrheumdis-2017-211735

2. Safiri S, Kolahi AA, Hoy D, Smith E, Bettampadi D, Mansournia MA, et al. Global,
regional and national burden of rheumatoid arthritis 1990–2017: a systematic analysis
of the Global Burden of Disease study 2017. Ann rheumatic Dis. (2019) 78:1463–71.
doi: 10.1136/annrheumdis-2019-215920

3. Fu J, Nogueira SV, Drongelen VV, Coit P, Ling S, Rosloniec EF, et al. Shared
epitope–aryl hydrocarbon receptor crosstalk underlies the mechanism of gene–
environment interaction in autoimmune arthritis. Proc Natl Acad Sci. (2018)
115:4755–60. doi: 10.1073/pnas.1722124115

4. McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. New Engl J Med.
(2011) 365:2205–19. doi: 10.1056/NEJMra1004965

5. McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid
arthritis. Lancet. (2017) 389:2328–37. doi: 10.1016/S0140-6736(17)31472-1

6. Fu X-D. Non-coding RNA: a new frontier in regulatory biology. Natl Sci Rev.
(2014) 1:190–204. doi: 10.1093/nsr/nwu008
7. Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation
by long non-coding RNA. Genomics Proteomics Bioinf. (2017) 15:177–86. doi: 10.1016/
j.gpb.2016.12.005

8. Rezaei Z, Sadri F. MicroRNAs involved in inflammatory breast cancer: oncogene
and tumor suppressors with possible targets. DNA Cell Biol. (2021) 40:499–512.
doi: 10.1089/dna.2020.6320

9. Chamani E, Sargolzaei J, Tavakoli T, Rezaei Z. microRNAs: novel markers in
diagnostics and therapeutics of celiac disease. DNA Cell Biol. (2019) 38:708–17.
doi: 10.1089/dna.2018.4561

10. Mishra K, Kanduri C. Understanding long noncoding RNA and chromatin
interactions: what we know so far. Non-coding RNA. (2019) 5:54. doi: 10.3390/
ncrna5040054

11. He AT, Liu J, Li F, Yang BB. Targeting circular RNAs as a therapeutic approach:
current strategies and challenges. Signal transduction targeted Ther. (2021) 6:185.
doi: 10.1038/s41392-021-00569-5

12. Bhatt D, Ghosh S. Regulation of the NF-kB-mediated transcription of
inflammatory genes. Front Immunol. (2014) 5:82482. doi: 10.3389/fimmu.2014.00071
frontiersin.org

https://doi.org/10.1136/annrheumdis-2017-211735
https://doi.org/10.1136/annrheumdis-2019-215920
https://doi.org/10.1073/pnas.1722124115
https://doi.org/10.1056/NEJMra1004965
https://doi.org/10.1016/S0140-6736(17)31472-1
https://doi.org/10.1093/nsr/nwu008
https://doi.org/10.1016/j.gpb.2016.12.005
https://doi.org/10.1016/j.gpb.2016.12.005
https://doi.org/10.1089/dna.2020.6320
https://doi.org/10.1089/dna.2018.4561
https://doi.org/10.3390/ncrna5040054
https://doi.org/10.3390/ncrna5040054
https://doi.org/10.1038/s41392-021-00569-5
https://doi.org/10.3389/fimmu.2014.00071
https://doi.org/10.3389/fimmu.2024.1486476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Seyedi et al. 10.3389/fimmu.2024.1486476
13. Makarov SS. NF-kappa B in rheumatoid arthritis: a pivotal regulator of
inflammation, hyperplasia, and tissue destruction. Arthritis Res. (2001) 3:200–6.
doi: 10.1186/ar300

14. Peng X, Wang Q, Li W, Ge G, Peng J, Xu Y, et al. Comprehensive overview of
microRNA function in rheumatoid arthritis. Bone Res. (2023) 11:8. doi: 10.1038/
s41413-023-00244-1

15. Seegobin SD, Ma MH, Dahanayake C, Cope AP, Scott DL, Lewis CM, et al.
ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements
for combination DMARDs and corticosteroids: secondary analysis of a randomized
controlled trial. Arthritis Res Ther. (2014) 16:R13. doi: 10.1186/ar4439

16. Grosse J, Allado E, Roux C, Pierreisnard A, Couderc M, Clerc-Urmes I, et al.
ACPA-positive versus ACPA-negative rheumatoid arthritis: two distinct erosive
disease entities on radiography and ultrasonography. Rheumatol Int. (2020) 40:615–
24. doi: 10.1007/s00296-019-04492-5

17. Meng W, Zhu Z, Jiang X, Too CL, Uebe S, Jagodic M, et al. DNA methylation
mediates genotype and smoking interaction in the development of anti-citrullinated
peptide antibody-positive rheumatoid arthritis. Arthritis Res Ther. (2017) 19:71.
doi: 10.1186/s13075-017-1276-2

18. Dreyton CJ, Knuckley B, Jones JE, Lewallen DM, Thompson PR. Mechanistic
studies of protein arginine deiminase 2: evidence for a substrate-assisted mechanism.
Biochemistry. (2014) 53:4426–33. doi: 10.1021/bi500554b

19. Cheng Z, Meade J, Mankia K, Emery P, Devine DA. Periodontal disease and
periodontal bacteria as triggers for rheumatoid arthritis. Best Pract Res Clin Rheumatol.
(2017) 31:19–30. doi: 10.1016/j.berh.2017.08.001

20. Symonds P, Marcu A, Cook KW, Metheringham RL, Durrant LG, Brentville VA.
Citrullinated epitopes identified on tumour MHC class II by peptide elution stimulate
both regulatory and Th1 responses and require careful selection for optimal anti-
tumour responses. Front Immunol. (2021) 12:764462. doi: 10.3389/fimmu.2021.764462

21. Hill JA, Bell DA, Brintnell W, Yue D, Wehrli B, Jevnikar AM, et al. Arthritis
induced by posttranslationally modified (citrullinated) fibrinogen in DR4-IE transgenic
mice. J Exp Med. (2008) 205:967–79. doi: 10.1084/jem.20072051

22. Krishnamurthy A, Joshua V, Haj Hensvold A, Jin T, Sun M, Vivar N, et al.
Identification of a novel chemokine-dependent molecular mechanism underlying
rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann Rheum Dis.
(2016) 75:721–9. doi: 10.1136/annrheumdis-2015-208093

23. Tuncel J, Holmberg J, Haag S, Hopkins MH, Wester-Rosenlöf L, Carlsen S, et al.
Self-reactive T cells induce and perpetuate chronic relapsing arthritis. Arthritis Res
Ther. (2020) 22:95. doi: 10.1186/s13075-020-2104-7

24. Mousavi MJ, Karami J, Aslani S, Tahmasebi MN, Vaziri AS, Jamshidi A, et al.
Transformation of fibroblast-like synoviocytes in rheumatoid arthritis; from a friend to
foe. Autoimmun Highlights. (2021) 12:3. doi: 10.1186/s13317-020-00145-x

25. Zou Y, Zeng S, Huang M, Qiu Q, Xiao Y, Shi M, et al. Inhibition of 6-
phosphofructo-2-kinase suppresses fibroblast-like synoviocytes-mediated synovial
inflammation and joint destruction in rheumatoid arthritis. Br J Pharmacol. (2017)
174:893–908. doi: 10.1111/bph.v174.9

26. Mor A, Abramson SB, Pillinger MH. The fibroblast-like synovial cell in
rheumatoid arthritis: a key player in inflammation and joint destruction. Clin
Immunol. (2005) 115:118–28. doi: 10.1016/j.clim.2004.12.009

27. Crowley T. Innate immune memory in fibroblasts. Birmingham, UK: University
of Birmingham (2018).

28. Kim KW, Cho ML, Lee SH, Oh HJ, Kang CM, Ju JH, et al. Human rheumatoid
synovial fibroblasts promote osteoclastogenic activity by activating RANKL via TLR-2
and TLR-4 activation. Immunol Lett . (2007) 110:54–64. doi: 10.1016/
j.imlet.2007.03.004

29. Ospelt C, Brentano F, Rengel Y, Stanczyk J, Kolling C, Tak PP, et al.
Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with
early rheumatoid arthritis: toll-like receptor expression in early and longstanding
arthritis. Arthritis Rheumatism: Off J Am Coll Rheumatol. (2008) 58:3684–92.
doi: 10.1002/art.v58:12

30. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G. Tumor microenvironments
direct the recruitment and expansion of human Th17 cells. J Immunol. (2009)
184:1630–41. doi: 10.4049/jimmunol.0902813

31. Pandolfi F, Franza L, Carusi V, Altamura S, Andriollo G, Nucera E. Interleukin-6
in rheumatoid arthritis. Int J Mol Sci. (2020) 21:5238. doi: 10.3390/ijms21155238

32. Xu Y, Hunt NH, Bao S. The role of granulocyte macrophage-colony-stimulating
factor in acute intestinal inflammation. Cell Res. (2008) 18:1220–9. doi: 10.1038/
cr.2008.310
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