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Autophagy is a highly conserved cellular self-digestive process that underlies the

maintenance of cellular homeostasis. Autophagy is classified into three types:

macrophage, chaperone-mediated autophagy (CMA) and microphagy, which

maintain cellular homeostasis through different mechanisms. Altered autophagy

regulation affects the progression of various skin diseases, including psoriasis

(PA), systemic lupus erythematosus (SLE), vitiligo, atopic dermatitis (AD), alopecia

areata (AA) and systemic sclerosis (SSc). In this review, we review the existing

literature focusing on three mechanisms of autophagy, namely macrophage,

chaperone-mediated autophagy and microphagy, as well as the roles of

autophagy in the above six dermatological disorders in order to aid in further

studies in the future.
KEYWORDS

autophagy, psoriasis, systemic lupus erythematosus, vitiligo, atopic dermatitis,
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1 Introduction

Autophagy is an intracellular self-digestive process by which a cell breaks down and

recycles damaged organelles, aberrant protein aggregates and other molecules from its

interior to maintain normal cellular function and survival. Thus autophagy is considered

to be fundamental to the maintenance of cellular homeostasis (1). Paradoxically, however,

autophagy can also damage cells. For example, increased autophagy or defects in autophagy

lead to an accumulation of autophagosomes, which can impair cellular function. Autophagy

can also induce neuronal cell death in aggregated proteins, leading to neurodegenerative

changes (2). Thus, dysregulation of autophagy causes disturbances in cellular homeostasis.

The skin is the largest organ of the body and is the first line of defense against many

different environmental insults, including Ultraviolet (UV) radiation, pathogens,

mechanical stresses and toxic chemicals. In addition, the skin contains a complex
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network of immune cells that reside in the tissues and are essential

for host defense and tissue homeostasis (3). A large number

of existing studies have shown that autophagy is activated and

plays a role in maintaining skin homeostasis in skin cells, including

keratinocytes, skin fibroblasts, melanocytes and immune cells

(4). Thus, dysregulation of autophagy causes disturbances in

skin homeostasis and also affects the development of various

skin diseases.

In this review, we aim to describe the mechanisms of autophagy,

the role of autophagy in skin cells, and the role of autophagy in

skin diseases.
2 Molecular mechanisms
of autophagy

Based on the mode of cargo transport, autophagy can be

classified into three types, i.e. macrophage, CMA and microphage

(5). Macrophages degrade cargo mainly through three steps:

phagocyte nucleation, membrane expansion and autophagosome

maturation (6). CMA degrades cargoes primarily through a

chaperone-mediated process. During CMA, the chaperone heat

shock homolog 70 (Hsc70) binds to substrate proteins to form a

complex, which binds to lysosomal associated membrane protein 2

(LAMP2A) on the lysosomal membrane and enters the lysosomal

lumen, and finally the substrate proteins are rapidly degraded by

lysosomal proteases (7). In microphagy, it is mainly the lysosomes

that take up the cytoplasmic component through membrane

protrusion and invagination, leading to the degradation of that

cytoplasmic component in the lysosomal lumen. However,

microphagy of different cytoplasmic components has different

molecular mechanisms (8).

Autophagy can also be divided into selective and non-selective

autophagy. Both selective and non-selective autophagy proceed

through a common overall mechanism that is mainly guided by a

core autophagy mechanism consisting of autophagy-related

proteins. Non-selective autophagy is usually induced by nutrient

starvation (6). Selective autophagy is induced mainly by damaged

organelles (mitochondria, lysosomes, endoplasmic reticulum,

ribosomes), aggregation proteins and invading bacteria (9).
2.1 Molecular mechanisms of macrophagy

The process of macrophage mainly involves: phagocyte nucleation,

membrane expansion and autophagosome maturation (6) (Figure 1).

Phagocyte nucleation occurs through three processes: stress signals

acting on the target UNC51-like kinase-1 (ULK1) complex,

phosphorylation of the phosphoinositide 3-kinase 3 (PI3K3)

complex, and activation of the phosphatidylinositol-3-phosphate

(PI3P). Through these three processes, phagocytes nucleate and

generate membrane structural domains called ‘‘omegasomes’’ (6).

Stress signals include starvation, hypoxia, oxidative stress,

protein aggregation, and endoplasmic reticulum stress. These

stress signals act on the common target UNC-51-like kinase 1
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(ULK1) complex (10). The ULK1 complex consists of ULK1 (yeast

cells are autophagy-related gene 1 (ATG1)), ATG13, family of

adhesion plaque kinase-interacting proteins (FIP200) and

ATG101. In response to stress signaling, the ULK1 complex is

called to the phagocytic assembly site (PAS) on the endoplasmic

reticulum (ER) and activated by inhibiting mTOR (11, 12).

MTOR is present in two different protein complexes,

mammalian target of rapamycin (mTORC1) and mTORC2, but

only mTORC1 has a role in regulating autophagy (13). Activated

ULK1 complex phosphorylates the PI3K3 complex. The PI3K3

complex consists of class III PI3K, type III phosphatidylinositol

kinase (VPS34), B-cell lymphoma-2 protein interaction center

coiled-coil protein 1 (Beclin-1), ATG14, autophagy and Beclin-1

regulator 1 (AMBRA1), and p115. ULK1 complex phosphorylated

AMBRA1 is released from microtubules, binds to Beclin-1 and

subsequently activates PI3KC3-C1 (14).

Activated PI3KC3-C1 is targeted to PAS by ATG14 through the

interaction of ULK1 phosphorylation with ATG13 (15, 16).

PI3KC3-C1 produces phosphatidylinositol-3-phosphate (PI3P) at

PAS-activated endoplasmic reticulum characteristic structures (w

vesicles). PI3P recruits the PI3P effector protein WD repeat

structural domain phosphoinositide-interacting protein (WIPI2)

and zinc-finger FYVE-containing structural domain protein 1

(DFCP1), which phagocytose cells to nucleate and generate

membrane structural domains called omegasomes (6).

Most significantly associated with phagosomal membrane

expansion is the Atg8 family (17). Atg8 has two domains. One

domain is the C-terminal tail, which is covalently linked to the

membrane. The other domain is globular, with a b-grasp fold,

mediating a large number of protein-protein interactions. The

function of Atg8 is to bind proteins regulated by autophagy and

to localize them to sites of action on the membrane to promote

membrane expansion (18).

Proteins are usually recruited to the phagosome via unique Atg8

interacting motifs (19). In addition to recruiting autophagy-related

proteins to the phagosome, the Atg8 interaction motif also recruits

autophagy-related regulators to the phagocyte, including Atg1

(ULK1), Atg13, and Atg4 and Atg7, which regulate the coupling

and uncoupling of Atg8 with phosphatidylethanolamine (PE) (20).

Inmammals, Atg8 is processed as microtubule-associated protein

light chain 3 (LC3) at the C-terminus by Atg4 to generate LC3-I,

which is subsequently activated by Atg7, which is then actively

coupled to Atg3, and finally binds to PE to generate LC3-II, which

promotes membrane expansion (21). In addition, Atg12 couples Atg5

as the E3 ligase of Atg8 via Atg10, which enhances the ability of Atg8

to attach to PE and promotes membrane expansion (11, 22). Atg5 is

often present in non-covalent complexes with Atg16, which can

immobilize Atg8-PE and Atg12-Atg5 couplers (23). Atg12 also calls

Atg3 and promotes the coupling of Atg3 to Atg8 (24).

As phagocytosis expands and closes, the outer membrane of the

nascent autophagosome gradually clears Atgs from the outer

membrane and summons a mechanism for delivering lysosomes

(6). Delivery of lysosomes includes kinesin motor-driven retrograde

transport and microtubule kinesin dynamin-driven retrograde

transport (25, 26). Paracrine transport is mediated by the BORC

complex, which recruits the small GTPase ADP-ribosylation factor
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like protein 8 (ARL8) to facilitate ARL8-dependent coupling of the

kinase motor (27).

It has been found that the RAB7 effector FYCO can also mediate

cis transport by binding to LC3 and PtdIns3P (28). Retrograde

transport is mediated by RAB7 and its effectors Rab interacting

lysosomal protein (RILP) and ORP1L (27). Fusion of

autophagosomes with lysosomes is accomplished by the synergistic

action of RABs, tethers and soluble N-ethylmaleimide-sensitive factor

attachment protein receptor (SNARE) complexes (29).
2.2 Molecular mechanisms of chaperone-
mediated autophagy

The chaperone-mediated autophagy process consists of six

steps: Firstly, the formation of a complex between a 70 kDa heat

shock protein (hsc70) and a region of the chaperone (hip, hop,

hsp40, hsp90, and bag-1) recognizing the bound substrate protein

(mainly KFERQ-related peptides); Secondly, the complex binds to

lysosome-associated membrane protein 2A (LAMP 2A); Thirdly,

the substrate protein unfolds on the lysosomal membrane in

response to the hsc70-chaperone complex; Fourthly, the substrate

protein enters the lysosome with the help of hsc70 in the lysosomal
Frontiers in Immunology 03
lumen; Fifthly, the substrate protein is degraded by the lysosome;

Sixthly, the hsc70-chaperone complex is released from the

lysosomal membrane and binds to the next substrate protein for

recognition (30) (Figure 2).

For the time being, Hsc70 is the only chaperone that has been

shown to bind directly to the substrate protein KFERQ motifs (7).

Hsp40 increases the binding of hsc70 to substrate proteins by

promoting the ATPase activity of hsc70 (31). Hip promotes

binding of hsc70, hsp40 and substrate proteins (32). Hsp90

promotes folding of unfolded or misfolded proteins (33). Hop

acts as a linker protein for hsc70 and hsp90 and will connect

hsc70 to hsp90 (34). The isoforms regulating hsc70 consist of bag-1

(35). LAMP 2A is an isomer of LAMP 2. There are a total of three

isomers of LAMP 2 (the remaining two being LAMP 2B and LAMP

2C), but only LAMP 2A is involved in CMA (36).

LAMP-2A is required for docking of the hSC70-substrate complex

to the lysosome (37). Changes in LAMP-2A content in the lysosomal

membrane dynamically regulate the rate of CMA (7). The amount of

LAMP-2A on the lysosomal membrane is regulated in several ways:

one part of LAMP-2A resides on the lysosomal membrane and the

other part in the lysosomal lumen, and when the CMA is activated,

LAMP2A from the lysosomal lumen enters the lysosomal membrane,

causing an increase in the amount of LAMP-2A on the lysosomal
FIGURE 1

Molecular mechanisms of macrophagy. ATG13, autophagy-associated protein 13; AMBRA1, Autophagy and beclin 1 regulator 1 Gene; ARL8, ADP-
ribosylation factor like protein 8; Beclin1, B-cell lymphoma-2 protein interaction center coiled-coil protein 1; FIP200, family of adhesion plaque
kinase-interacting proteins; LC3, microtubule-associated protein light chain 3; mTORC1, mammalian target of rapamycin complex 1; PI3K,
phosphatidylinositol 3-kinase; PI3KC3-C1, Type III phosphatidylinositol 3-kinase; RILP, Rab interacting lysosomal protein; SNARE, Soluble N-Ethyl
cisbutylene diimide-sensitive fusion protein-linked protein receptor protein; ULK1, mammalian serine/threonine kinase; UVRAG, UV radiation
resistance-associated gene; VPS34, type III phosphatidylinositol kinase.
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membrane (38).When CMA is activated, LAMP-2A is stably degraded

by lysosomal tissue proteinase A, causing a decrease in the amount of

LAMP-2A in the lysosomal membrane (39).

LAMP-2A levels on lysosomal membranes are also negatively

regulated by nuclear retinoid receptor-alpha (RARa) (40). It has
been shown that the amount of LAMP-2A on lysosomal

membranes is reduced in senescent fibroblasts and in the livers of

aged rats, suggesting that ageing reduces the amount of LAMP-2A

on lysosomal membranes (41). High-fat diet alters lysosomal

membrane lipid composition, reduces LAMP-2A stability and

inhibits CMA rates (42). In T cells, reactive oxygen species (ROS)

production promotes increased LAMP-2A expression (43).

The Hsc70-chaperone complex is required for the unfolding of

substrate proteins on the lysosomal membrane, and the unfolding

process is mediated by glial fibrillary acidic protein (GFAP) (7, 44).

After the substrate protein unfolds, it enters the lysosomal lumen

from the lysosomal membrane and requires the translocation

assistance of lysosomal luminal hsc70. Luminal hsc70 is necessary

to complete the substrate protein translocation, and the lack of

luminal hsc70 does not allow for CMA (30).
2.3 Molecular mechanisms of microphagy

The process of microphagy mainly involves the uptake of a

cytoplasmic component by lysosomes through membrane

protrusion and invagination, leading to the degradation of that

cytoplasmic component in the lumen of the lysosome. However,
Frontiers in Immunology 04
microphagy of different cytoplasmic components has different

molecular mechanisms (8) (Figure 3).

Micromitophagy(mitochondrial microphagy) is an important

mitochondrial quality control mechanism to ensure mitochondrial

homeostasis. The process of micromitophagy mainly includes:

formation of mitochondria-derived vesicles (mdv), delivery of mdv

to lysosomes, fusion of mdv with lysosomes, degradation of (45). Mdv

was divided into mitochondrial outer membrane complex subunit 20

translocase (TOMM20)-positive mdv and pyruvate dehydrogenase

(PDH)-positive mdv (8). The process of TOMM20-positive mdv

formation consists of two parts: the microtubule-associated motor

proteins mitochondrial Rho GTPase 1 (MIRO1) and MIRO2 and their

binding partners emit mitochondrial protrusions, then, Dynamic

protein 1-like gene (DNM1L) is recruited to mitochondria and

catalyzes the breakage of mitochondrial protrusions (46).

TOMM20-positive mdv delivery to lysosomes is mediated by

parkin RBR E3 ubiquitin protein ligase (PRKN) and Toll-

interacting protein (TOLLIP) (47). PDH-positive mdv delivery to

lysosomes is mediated by PINK1 and PRKN1 (48). Fusion and

degradation of PDH-positive mdv with lysosomes is mediated by

the SNARE complex (49).

There are three pathways of microreticulophagy (endoplasmic

reticulum microphagy): ERES microautophagy, ER-to-lysosome-

associated degradation (ERLAD), and piecemeal microreticulophagy

(8). The ERES microautophagy pathway is dependent on the

formation of endoplasmic reticulum exit sites (ERES) (50). ERES

formation is dependent on LC3, solid solution 1 (SQSTM1) and

ubiquitin (Ub) (51).
FIGURE 2

Molecular mechanisms of chaperone-mediated autophagy. AKT1, protein kinase Ba; LAMP 2A, lysosome-associated membrane protein 2A; hsc70,
70 kDa heat shock protein; TORC2, TOR complex 2; Top right: activators and inhibitors of CMA; GFAP, glial fibrillary acidic protein; PHLPP1, PH
domain leucine-rich repeat-containing protein phosphatase 1; RAR, retinoic acid receptor; TORC2, TOR complex 2.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1486627
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xue et al. 10.3389/fimmu.2024.1486627
The ERLAD pathway consists of two components: formation

of endoplasmic reticulum-derived vesicles mediated by

reticulophagy regulator 1 (RETREG1) and LC3, and fusion

degradation of endoplasmic reticulum-derived vesicles with

endolysosomes mediated by SNARE complexes (52). Degradation

of endoplasmic reticulum-derived vesicles by fusion with

endolysosomes is mediated by the SNARE complex (52). The

piecemeal microreticulophagy pathway is a direct delivery of

endoplasmic reticulum into lysosomes, which is dependent on

LC3, SEC62 and ESCRTs (53).

Micronucleophagy occurs in yeast cells through the interaction of

Vac8 on the vesiclemembrane andNvj1 on the outer nuclearmembrane

(54). RNA/DNAmicrophagy is a specific type of micronucleophagy that

delivers RNA/DNA to lysosomes for degradation via lysosome-

associated membrane protein 2C (LAMP2C) and SID1

transmembrane family member 2 (SIDT2) (55, 56).

Microlysophagy has usually referred to macrophagy in past

studies, but a recent study has shown that there is a new type of

autophagy-lysosome-dependent lysosomal degradation in

mammalian cells that does not depend on autophagosomes and

belongs to the microphagy (57). The newmicrolysophagy is mediated

by LC3 lipidation or ESCRTs (58, 59). LC3 is lipidated in the same

manner as macrophage, and lysosomes promote the formation of
Frontiers in Immunology 05
lysosome-derived vesicles and fusion of vesicles with lysosomes by

lipidating LC3 to degrade lysosomal membrane proteins (58).

Most autophagy-lysosome-dependent lipid degradation is

accomplished by macrophages, but microlipophagy is also

suggested in yeast cells and mammals (60, 61). The process of

microlipophagy broadly involves three parts: Firstly, under

starvation, large lipid droplets are converted to small lipid

droplets by lipolysis of PNPLA2. Secondly, small lipid droplets

contact with the lysosomal membrane to form membrane contact

sites (MCSs). And last, small lipid droplets enter the lysosomal

lumen through MCSs and are degraded (8).

Endosomal microautophagy (EMI) is the process by which

cytoplasmic proteins carrying KFERQ-like motifs are delivered to

late nuclear endosomes for degradation (62). The process of EMI is

that hsc70 and its chaperones recognise and bind substrate proteins

with KFERQ-like motifs to form a complex, which is transported to

the late nuclear endosome for degradation (8).

Microproteophagy is the degradation of individual specific

proteins by lysosomes independent of the occurrence of

autophagosomes. Unlike EMI, microproteophagy does not

degrade proteins containing specific motifs, such as KFERQ-like

motifs. The exact mechanism of microproteophagy is not clear (63).

Micropexophagy refers to the lysosomal degradation of degradative
FIGURE 3

Molecular mechanisms of microphagy (Includes sections A–H). (A), Micromitophagy molecular mechanism; (B), Microreticulophagy molecular
mechanism; (C), Micronucleophagy molecular mechanism; (D), Microlysophagy molecular mechanism; (E), Microlipophagy molecular mechanism;
(F), Endosomal microautophagy (EMI) molecular mechanism; (G), Microproteophagy molecular mechanism; (H), Micropexophagy molecular
mechanism. eres, endoplasmic reticulum exit site; mdv, mitochondria-derived vesicle; retregg1, reticulophagy regulator 1; mcss, membrane contact
sites; mvb, multivesicular body; MIRO, Mitochondrial Rho GTPases; SQSTM1, Sequestosome 1; ub, ubiquitin.
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peroxidases that does not depend on the occurrence of

autophagosomes. In yeast cells, micropexophagy is mediated by

Atg8, Atg9 and Atg30 (64, 65).
3 The role of autophagy in skin cells

The skin is the largest organ in the human body and consists of

three main layers: epidermis, dermis and subcutaneous tissue, and

autophagy is the basis for the maintenance of homeostasis of skin

cells (66). Keratinocytes are the outermost cells of the skin,

accounting for 90% of the epidermal area, and become

keratinocytes when they complete the process of differentiation

and lose their nucleus, cytoplasm and organelles (67).

When the skin is damaged by environmental factors such as

ultraviolet light, oxidative damage is caused to keratinocytes, and

under oxidative stress, keratinocytes increase the expression of p62/

SQSTM1, which induces autophagy and maintains the homeostasis

of keratinocytes (68). When inflammation occurs in keratinocytes,

granulinogen (PGRN) inhibits keratinocyte inflammation through

the b-catenin signaling pathway. It has been shown that the

expression of LC3II and Atg7 is suppressed when PGRN is

specifically silenced, suggesting that autophagy is also involved in

the anti-inflammatory action of keratinocytes (69). Autophagy

plays an important role in keratinocyte differentiation, survival,

senescence and resistance (4).

Fibroblasts are located in the dermis and are the cells in the

dermis responsible for producing connective tissue and helping the

skin to recover from damage (70). It has been shown that in

senescent fibroblasts, the autophagic pathway is impaired, leading

to deterioration of dermal integrity and skin fragility (71). In

addition, fibroblasts can activate matrix metalloproteinase (MMP)

and TGF-b signaling through autophagy to promote collagen

production and alleviate skin ageing (72). Melanocytes are located

in the basal layer of the epidermis of the skin and produce melanin.

Melanin protects the subcutaneous tissue from ultraviolet radiation

(73). But too much melanin in turn leads to hyperpigmentation of

the skin. Autophagy is involved in the regulation of melanin

production and degradation (74).

Autophagy plays different roles in different skin immune cells.

Autophagy can help macrophages remove damaged proteins/organelles

(75). Autophagy is key to the release of cytoplasmic granules frommast

cells (76). Autophagy contributes to B cell differentiation and T cell

homeostasis (77, 78). Autophagy is an important regulator of neutrophil

function and neutrophil-mediated inflammation in vivo (79).

Autophagy enhances melanoma inhibition by NK cells (80).
4 The role of autophagy in
skin disorders

4.1 Psoriasis

Psoriasis is a common chronic papulosquamous skin disease

that is clinically characterized by chronic plaques that appear as

orange-red patches covered with silvery scales on white skin and
Frontiers in Immunology 06
grey patches on black skin (81). Psoriasis has an uneven global

geographic distribution, is more common in high-income countries

and areas with ageing populations, and affects the health of more

than 60 million people worldwide (82).

It has been shown that autophagy is involved in the

pathogenesis of psoriasis. Aryl hydrocarbon receptor (AhR)

regulates autophagy through the nuclear factor kappa-B (NF-kB)/
mitogen-activated protein kinase (MAPK) signaling pathway

leading to psoriasis, suggesting that AhR signaling and autophagy

are involved in the pathogenesis of psoriasis (83). Autophagy-

related genes BIRC5, NAMPT and BCL2 are potential biomarkers

for early diagnosis of psoriasis vulgaris and are involved in psoriasis

pathogenesis by regulating autophagy (84) (Figure 4).

Douroudis et al. performed a study of 241 unaffected controls

(mean age 35.01 ± 13.60 years, 131 females) without a personal or

family history of psoriasis and 299 patients with psoriasis (mean age

41.11 ± 13.87 years, age of onset 20.90 ± 8.16 years, 132 females)

through the genetic validation and found that mutations in the

autophagy regulatory gene ATG16L1 were associated with psoriasis

(85). Satveer et al. validated the autophagy-related gene AP1S3 as a

psoriasis gene through genetic screening of 85 patients recruited

with psoriasis, and then they further experimented and found that

AP1S3 contributes to psoriasis by disrupting autophagy in

keratinocytes and up-regulating the production of IL-36 (86).

Inhibition of autophagy promotes psoriasis development.

Aurora kinase A (AURKA) promotes psoriasis-associated

inflammation by blocking autophagy-mediated inhibition of

AIM2 inflammatory vesicles (87). TNF-a promotes psoriasis by

causing impaired autophagy and lysosomal function (88). TRIM22

enhances keratinocyte inflammation and inhibits autophagy

through activation of the PI3K/Akt/mTOR pathway, which in

turn promotes psoriasis (89). In addition to this, IL-17A can also

inhibit autophagy by activating the PI3K/Akt/mTOR pathway,

which in turn promotes psoriasis-associated inflammation (90).

IL-17A is a key pro-inflammatory cytokine in the pathogenesis of

psoriasis, and anti-IL-17A is an effective treatment for psoriasis.

Currently, some clinical first-line drugs are used to treat

psoriasis by activating autophagy through inhibition of the IL-

17A. Suginumab, a fully human monoclonal antibody that

selectively inhibits IL-17A, is approved for the treatment of

psoriasis. James et al. found that plaque histopathology was

reversed in the majority of patients with psoriasis after 12 weeks

of treatment with sukinumab, suggesting that the activation of

autophagy through inhibition of IL-17A facilitates plaque

regression in patients (91). In addition to sukinumab, ezekizumab

and brodalizumab are currently approved clinical first-line agents

for the treatment of moderate to severe plaque psoriasis, and they

also work by inhibiting IL-17A to activate autophagy (92). Of these,

the slight difference is that brodalizumab acts as an IL-17 receptor

(IL17R) inhibitor, while sukinumab and ezekizumab act as IL-17

inhibitors (93).

Celastrol, a natural compound extracted from the traditional

Chinese medicine Lei Gong Teng, possesses anti-IL-17A properties.

Celastrol inhibits the downstream signaling (NF-kB and MAPK

pathways) of IL-17A by binding to it. which in turn induces

autophagy to reduce psoriasis-associated inflammation (94).
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Fenofibrate is also an IL-17A inhibitor, similar to Celastrol,

blocking the NF-kB and MAPK signaling pathways of IL-17A.

Differently, fenofibrate also upregulates LC3 expression, inducing

and enhancing autophagy (95).Lacin also inhibits IL-17A, which

also directly inhibits the PI3K/Akt/mTOR pathway, thereby

promoting keratinocyte differentiation and autophagy (96).

Inhibition of the PI3K/Akt/mTOR pathway is a key pathway for

the activation of autophagy. In addition to laccasein, PSORI-CM02

(an herbal formula consisting of ginger rhizoma, paeonia lactiflora

eryngii, paeonia lactiflora, smooth rhizoma, and paeonia lactiflora),

LncRNA MEG3, YXJD (a herbal formula consisting of Salvia

miltiorrhiza, Angelica sinensis, Radix Rehmanniae Praeparata,

Japanese Snake Chicory, Scrophularia ningpoensis Hemsl,

Spatholobi caulis, Smilax glabra Roxb, Paris multifoliage,

Wrightia laevis, and Asian Plantain seeds) the mTOR inhibitors

rapamycin, bittersweet, and avitamin A all play a role in alleviating

psoriasis by activating autophagy through inhibition of the PI3K/

Akt/mTOR pathway (97–101).

In addition, it has been shown that granulinogen (PGRN)

induces autophagy through the b-catenin signaling pathway and

can reduce psoriasis-associated inflammation (69). In summary,

autophagy is involved in the pathogenesis of psoriasis, and

activating autophagy is an effective means of treating psoriasis.
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4.2 Systemic lupus erythematosus

SLE is a chronic multisystem autoimmune disease characterized

by the presence of autoantibodies against nuclear antigens, immune

complex deposition and chronic inflammation of target organs,

with clinical symptoms including fatigue, lupus-specific rashes,

mouth ulcers, alopecia, arthralgia and myalgia (102). SLE affects

more than 3.4 million people globally, primarily affecting women,

with a male-to-female patient ratio of approximately 1:9, and the

mortality rate from SLE is much higher in low- and middle-income

countries than in high-income countries (102).

It has been shown that autophagy is associated with the

pathogenesis of SLE. IL-6 is involved in the pathogenesis of SLE

by enhancing IL-6R-induced impairment of autophagic

degradation in human macrophages (103). LC3-associated

phagocytosis (LAP), an atypical defective form of autophagy, is

involved in the pathogenesis of SLE (104). Increased IFN-g T-cell
autophagy found in patients with SLE (105). Increased autophagy in

IFN-g T cells leads to elevated plasma levels of IFN-g, which in turn

enhances disease activity in SLE. The autophagy-related gene

leucine-rich repeat kinase 2 (LRRK2) is a susceptibility gene for

SLE, and autophagy has beneficial effects on the pathogenesis of

SLE (106).
FIGURE 4

The autophagy in skin diseases, such as psoriasis, SLE, vitiligo, AD, AA, and SSc.
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Studies focusing on genome-wide associations have identified

five autophagy-related genes associated with SLE susceptibility,

including ATG5, ATG16L2, CDKN1B, DRAM1, and CLEC16A

(107). In addition, Zhou et al. found that polymorphisms in the

Prdm1-ATG5 intergenic region were also associated with SLE

through a case-control association study of 1,745 individuals in

the Chinese population, genotyping and meta-analysis of nine single

nucleotide polymorphisms (108). Gao found that autophagy-related

genes S100A8, MyD88 and NCR3 were associated with the

pathogenesis of SLE by constructing a gene expression database

and screening pivotal genes (109).

Some degree of inhibition of autophagy helps in the treatment

of SLE. The escape and proliferation of autoreactive B cells is one of

the characteristics of SLE, and the survival of autoreactive B cells is

also dependent on autophagy; therefore, inhibition of autophagy

will improve SLE (110). Belimumab, a monoclonal antibody that

inhibits B lymphocyte-stimulating factor, is a first-line clinical

treatment for SLE that inhibits B cells by suppressing autophagy,

thereby reducing disease activity and severe flares in SLE (111).

Belimumab is also highly tolerable and effective, which allows

patients to reduce glucocorticoid use, thereby limiting the

accumulation of damage (112).

Epratuzumab is a humanized IgG1 monoclonal antibody targeting

CD22, which is used for the treatment of systemic lupus erythematosus

(SLE) by inhibiting autophagy to block activation signals of the B-cell

receptor and to promote the internalization of CD-22, thereby

suppressing active B cells (113). Rituximab is a monoclonal antibody

targeting CD20, which treats SLE by inhibiting immature, naïve and

memory B cells, as well as B cells within the germinal centers, primarily

through the inhibition of autophagy (114).

It has been shown that miR-125b inhibits autophagy by

targeting the ultraviolet radiation resistance-associated gene

(UVRAG), which in turn ameliorates SLE, suggesting that

UVRAG is a potential target for the treatment of SLE (115).

Autophagy causes an imbalance in Th17/Treg immunity in SLE,

but chloroquine inhibits autophagy, rebalances Th17/Treg

immunity, and improves SLE (116). P140 peptide significantly

ameliorates SLE, which exerts this effect by inhibiting autophagy

through binding to HSC70 protein (117).

Increased macrophage apoptosis in SLE patients (118).

Macrophages are important immune cells that remove necrotic

material, and increased macrophage apoptosis promotes the

development of SLE (119). It has been reported that the Notch1-

Hes-1 axis controls TLR7-induced macrophage autophagic death by

regulating P62 (120), Suggests that inhibiting Notch1-Hes-1 to

suppress macrophage autophagy is a potential target for the

treatment of SLE. Lupus nephritis (LN) is triggered by the

accumulation of SLE in the kidney, and vitamin D can treat LN

by reducing autophagy to protect podocytes (121).

However, some degree of induction of autophagy can also be

helpful in the treatment of SLE.SGLT2 inhibitors attenuate

podocyte damage in the LN by reducing inflammation and

enhancing autophagy, which in turn treats the LN (122).

Honokiol (HNK), a major anti-inflammatory bioactive compound

in Magnolia, reduce NF-kB/NLRP3 inflammatory vesicles by

activating the SIRT1 autophagy axis and negatively regulating T-
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cell function, which in turn treats LN (123). In summary, autophagy

is involved in the pathogenesis of SLE and autophagy is a potential

target for the treatment of SLE.
4.3 Vitiligo

Vitiligo is an acquired chronic skin pigmentation disorder

characterized by the destruction of functional melanocytes in the

epidermis, and is clinically characterized by the appearance of creamy-

white, non-scaly patches of skin with distinctive edges (124). Vitiligo is

the most common skin pigmentation disorder, with a prevalence of

0.06%-2.28% in the general population and 0%-2.16% in children, with

adults and children of both sexes equally affected (125).

Autophagy is involved in the pathogenesis of vitiligo. It has been

shown that lipopolysaccharide (LPS) can be involved in the

pathogenesis of vitiligo by inhibiting melanin formation in vitiligo

melanocytes through the activation of melanocyte autophagy and

down-regulation of melanin synthesis-related protein expression

(126). A new autophagy axis, the unfolded protein response (UPR)/

pre-melanosomal protein (PMEL)-transient receptor potential

(TRP) autophagy axis, is involved in the pathogenesis of vitiligo,

which involves activated UPR systems, impaired PMEL

accumulation, and autophagic imbalance between mitochondria

and lysosomes via TRP channels (127).

Rhododendrol (RD) is a naturally occurring phenolic compound

that induces albinism in mice by activating the tyrosinase autophagy

pathway (128), suggests that RD can participate in the pathogenesis

of vitiligo by modulating autophagy. Furthermore, Luo et al.

identified five mitochondrial autophagy-associated DEGs

(GABARAPL2, SP1, USP8, RELA, and TBC1D17) by hybridizing

vitiligo differentially expressed genes (DEGs) with mitochondrial

autophagy-associated genes, suggesting that mitochondrial

autophagy may promote vitiligo by activating immune infiltration

(129). However, it has been shown that capsaicin in combination

with mesenchymal stem cells (MSCs) can ameliorate mitochondrial

autophagy abnormalities through inhibition of the HSP70/TLR4/

mTOR/FAK signaling axis (130).

Zhao et al. verified potential genes associated with vitiligo

autophagy by bioinformatics analysis and experimental tests and

found that autophagy-related genes CCL2, RB1CC1, TP53 and

ATG9A would have an impact on vitiligo development (131).

Yang et al. identified differentially expressed autophagy-associated

genes (DEARGs) in vitiligo by RNA sequencing and found that 39

DEARGs were present in vitiligo lesions, suggesting that autophagy

is involved in vitiligo pathogenesis by participating in multiple

pathways and biological functions (132).

To some extent, induction of autophagy helps vitiligo

treatment. It has been shown that activation of the HSF1-ATG5/

12 autophagy axis protects melanocytes from surviving oxidative

stress, thereby improving vitiligo (133). Calcipotriol can protect

melanocytes from oxidative damage in vitiligo by activating

mitochondrial autophagy, thereby improving vitiligo (134).

Lycium barbarum polysaccharide (LBP) can activate autophagy

and promote melanocyte proliferation by activating the Nrf2/p62

signaling pathway, thus anti-vitiligo (135).
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In addition to this, it has been suggested that impairment of the

Nrf2-p62 signaling pathway leads to dysregulation of autophagy

and increased sensitivity of melanocytes to oxidative stress (136),

suggests that the Nrf2-p62 signaling pathway is a potential target for

the treatment of vitiligo. Under oxidative stress conditions, TRPM2

inhibits autophagy by suppressing the coupling of Atg12 and Atg5

and promotes the secretion of CXCL16, a chemokine with

melanocyte-killing effects. Therefore, inhibiting TRPM2 to induce

autophagy can improve vitiligo (137).

However, some degree of inhibition of autophagy can also treat

vitiligo. Janus kinase (JAK) inhibitors can suppress autophagy by

inhibiting the JAK-signal transducers and activators of

transcription (STAT) pathway (138). JAK inhibitors are now used

as first-line clinical agents for the treatment of many immune-

related diseases (139). Ruxolitinib cream is an inhibitor that

selectively targets JAK1 and JAK2 (140). In two phase 3 trials,

674 vitiligo patients from North America and Europe were

randomly assigned in a 2:1 ratio to apply 1.5% ruxolitinib cream

or vehicle control to all areas of vitiligo on the face and body twice a

day for 24 weeks, after which all patients were allowed to use 1.5%

ruxolitinib cream until week 52. At week 52, application of

ruxolitinib cream resulted in greater repigmentation of vitiligo

lesions than vehicle control, suggesting that Ruxolitinib cream, as

a first-line clinical agent, has a significant effect on the treatment of

vitiligo (141).

Tofacitinib, a selective JAK1 and JAK3 inhibitor, is effective

against vitiligo when administered orally or topically (142).

Brepocitinib is an oral JAK1 inhibitor for the treatment of

moderate to severe plaque psoriasis (143). Ritlecitinib is an oral

JAK3 and tyrosine kinase inhibitor which is used in the treatment of

active non-segmental vitiligo (144). In summary, autophagy is

involved in the pathogenesis of vitiligo, and autophagy is a

potential target for the treatment of vitiligo.
4.4 Atopic dermatitis

AD is a generalized inflammatory skin disease, usually

beginning in childhood, characterized by impaired epidermal

barrier function and an over-activated immune system, with

clinical features including recurrent, itchy, limited eczema, often

with seasonal fluctuations. The prevalence of AD is approximately

10 per cent in adults and 15-20 per cent in children, with prevalence

rates varying according to gender and ethnicity (145).

Autophagy is involved in the process of AD and stimulation of

autophagy is a therapeutic option for AD. Stefan et al. analyzed the

whole transcriptome of the skin of AD patients and healthy

individuals by applying RNA sequencing and found that the

expression of autophagy-related genes ULK1, ATG4, and

ATG16L2 was increased in AD patients (146). Kim et al. found

elevated levels of genes expressing the autophagy-related proteins

ATG5, ATG7, LC3B, and p62 in the epithelium of patients with AD

by examining the levels of key ATG proteins in human skin

specimens as well as in primary human epidermal keratinocytes

exposed to inflammatory stimuli in vitro (147). This is consistent
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with the findings of Ge et al. who observed reduced LC3 levels and

elevated p62 levels in the epithelium of AD patients and AD mouse

models (148).

IL-4 and IL-13 mediate epidermal dysfunction in AD, and it has

been shown that human b-defensin-3 (hBD-3) attenuates the

impaired epidermal function caused by IL-4 and IL-13 through

activation of the autophagy and aryl hydrocarbon receptor (AhR)

signaling pathways, thereby treating AD (148). Cortex Dictamni is a

traditional Chinese medicine widely used in the treatment of

dermatitis, and Dictamnine is one of its main ingredients, and it

has been suggested that Dictamnine can improve AD by inhibiting

M1 macrophage polarization and promoting autophagy (149).

Moisturizing agents with autophagy-stimulating effects help

skin barrier restoration and inflammation control for the

treatment of AD (150). The scaffolding protein p62/SQSTM1 is

an autophagy receptor (151), WLJP-025p is a polysaccharide

extracted from the traditional Chinese medicine Honeysuckle,

and it has been shown that WLJP-025p can stimulate autophagy

by up-regulating the expression of p62, and promote the

ubiquitination and degradation of NLRP3, thereby improving AD

(152). Prolonged exposure to TNF-a impairs autophagy and

lysosomal function in keratinocytes and can promote chronicity

of AD (88), However, IL-37b can inhibit TNF-a to improve

autophagy and thus improve AD (153). IL-37b also improves AD

by modulating the AMPK-mTOR autophagy signaling pathway and

gut bacteria (153).

However, some recent studies suggest that some degree of

autophagy inhibition may also have a helpful effect in the

treatment of AD. JAK inhibitors can treat AD by inhibiting

autophagy (154). Delgocitinib is a JAK1, JAK2, JAK3, and Tyk2

(pan-JAK) inhibitor, and 0.5% Delgocitinib Ointment is used to

treat AD in adults and 0.25% Delgocitinib Ointment is used to treat

AD in children (154). Tofacitinib 5 mg orally twice daily in adults

can be used to treat moderate to severe AD (155). In addition,

topical Tofacitinib can be used to treat mild to moderate AD (156).

Although no studies have shown that oral Ruxolitinib can be

used to treat AD, topical Ruxolitinib formulations can be used to

treat mild to moderate AD In a phase II trial, 307 adult AD patients

were randomly assigned to receive an average of 8 weeks of

Ruxolitinib ointment treatment (1.5% twice daily [BID], 1.5%

daily once daily [QD], 0.5% QD, and 0.15% QD), and at week 8,

results showed that 1.5% BID provided the greatest improvement in

AD, suggesting that Ruxolitinib ointment provides rapid and

sustained improvement in AD (157). Baricitinib, an oral selective

inhibitor of JAK1 and JAK2, is used to treat moderate to severe AD

in adults at a dose of 2 mg QD (158). Abrocitinib, an oral JAK1

selective inhibitor, can be used to treat moderate to severe AD in

adults at a dose of 100 mg QD (159).

Lack of macrophage autophagy leads to accumulation of the

transcription factor CCAAT/enhancer binding protein beta

(CEBPB), accumulation of CEBPB upregulates the expression of

SOCS1 and SOCS3, and increased expression of SOCS1 and SOCS3

ameliorates AD by inhibiting M2 macrophage polarization (160).

Taken together, autophagy is a potential target for the treatment

of AD.
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4.5 Alopecia areata

AA is a common, inflammatory, non-scarring form of alopecia

areata whose common clinical manifestation is the presence of well-

defined inflammatory, non-scarring plaques on the scalp,

characterized by exclamation point hairs, dystrophic hairs and

yellow spots (161). The prevalence of AA is 0.1-0.2 per cent, with

the majority of patients younger than 30 years of age, and AA affects

both sexes equally (162).

Autophagy has been shown to be involved in the regulation of

AA. Genome-wide association studies of AA have shown that

susceptibility to AA is not only associated with two autophagy-

related pathways, PARK2 and PFKFB3, but also with two

autophagy-related genes, TX17 and BCL2L1 (163). In addition to

this, copy number variation in the autophagy-related gene ATG4B

was present in patients with AA (164). Regina et al. identified the

autophagy-related genes STX17 and CLEC16A as susceptibility loci

for AA in a meta-analysis of 3,253 cases and 7,543 controls by

combining data from two genome-wide association studies

(GWAS) (165).

It was shown that impaired autophagy exacerbated AA in the

C3H/HeJ mouse model, whereas pharmacological induction of

autophagy restored autophagic activity and reduced associated

inflammation in AA skin, suggesting that autophagy is implicated

in the pathogenesis of AA (166). Under conditions of oxidative

stress, autophagy-associated factors ATG5 and LC3B are reduced in

the hair matrix, suggesting that autophagy in the hair follicle is

reduced during the development of AA (167).

However, cysteine (an amino acid essential for hair growth) can

protect hair follicles from oxidative stress damage by regulating

autophagy, thereby improving AA (168). In addition to this, PTEN-

induced kinase 1 (PINK1)-mediated mitochondrial autophagy can

ameliorate AA by inhibiting NLRP3 inflammatory vesicles,

suggesting that mitochondrial autophagy may be a potential

target for the treatment of AA (169).

JAK inhibitors can treat AA by inhibiting autophagy (170).

Baricitinib is a JAK inhibitor for the treatment of adult patients with

severe AA. In two phase 3 trials, 654 patients with AA and 546

patients with AA were randomized in a 3:2:2 ratio to receive once-

daily doses of 4 mg of baricitinib, 2 mg of baricitinib or placebo for

36 weeks. At week 36, hair regrowth was superior in patients with

barectinib at a dose of 4 mg to those with barectinib at a dose of 2

mg to those with placebo (171). Ritlecitinib is a JAK inhibitor

approved for the treatment of patients aged 12 years and older with

severe AA (172). Ritlecitinib may be the most appropriate treatment

option for patients with AA who are candidates for systemic

therapy (173). Baricitinib and ritlecitinib are both oral JAK

inhibitors, and topical JAK inhibitors (ruxolitinib cream,

delgocitinib ointment, and tofacitinib ointment) are ineffective in

moderate to severe AA (170).

Some degree of induction of autophagy also helps in the

treatment of AA. Min et al. found that the metabolites a-
ketoglutarate (a-KG) and a-ketobutyric acid (a-KB), as well as

the prescription drugs rapamycin and metformin, which affect

mTOR and AMPK signaling, promote hair growth in resting
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follicles through activation of autophagy to treat AA (174). This

is consistent with the findings of Chiara et al. who found that

inhibition of autophagy leads to apoptosis-driven degeneration of

hair follicle isolates (175). Furthermore, Cai et al. found that

activation of autophagy promotes differentiation of hair follicle

stem cells (176).

Quercetin, an ingredient of traditional Chinese medicine, is a

bioflavonoid with anti-inflammatory properties. Tongyu et al.

found that quercetin could activate autophagy by activating the

NF-kB signaling pathway, thereby reducing the production of pro-

inflammatory cytokines, through subcutaneous injection of

quercetin into mice suffering from spontaneous AA, suggesting

that quercetin could alleviate AA by activating autophagy (177).

Ginger is the fresh rhizome of ginger, an herb in the ginger family.

Abbas found that ginger can act to alleviate AA by activating

autophagy to inhibit impaired oxidative homeostasis in AA

patients (178).

Some studies have shown that adequate dietary protein and

eating breakfast early can prevent autophagy dysregulation in hair

follicles, thus preventing AA (179). In summary, autophagy is

involved in the pathogenesis of AA and autophagy is a potential

target for the treatment of AA.
4.6 Systemic sclerosis

SSc is an immune-mediated disease characterized by fibrosis of

the skin and internal organs as well as vasculopathy, with a wide

variety of clinical manifestations, notably Raynaud’s phenomenon,

gastro-esophageal reflux, skin tightness and pruritus (180). The

prevalence of SSc ranges from 7.2 to 44.3 cases per 100,000 adults,

with females being 3.8 to 15 times more likely than males, and the

mortality rate for SSc is one of the highest of all connective tissue

diseases (181).

Autophagy has been shown to be involved in the pathogenesis of

SSc.PGC-1a promotes TGFb-induced fibroblast activation and tissue
fibrosis by facilitating autophagy, thus participating in the

pathogenesis of SSc (182). It has been found that blood levels of

HMGB1 are elevated in patients with SSc and that HMGB1maintains

autophagy-associated activation of neutrophils, suggesting that

neutrophil autophagy is involved in vasculopathy in SSc (183).

Higher LC3 expression and increased autophagy were found in

skin specimens from SSc patients compared to healthy controls

(184), This finding is consistent with the findings of Tatsuhiko Mori

et al., who found a significant increase in the number of positive

points for LC3 in bleomycin-induced scleroderma skin of mice,

suggesting that autophagy activation contributes to the

pathogenesis of SSc (185). Mori et al. also found that autophagy

activation was also present in lung fibroblasts from SSc patients by

looking at human samples (185). Zehender et al. found that

autophagy was upregulated in the fibrotic skin of SSc patients,

with increased expression levels of the autophagy-related genes

LC3, Beclin1, and ATG7, and decreased expression levels of p62

(186). Notably, Zhou et al. found the involvement of autophagy in

the pathogenesis of SSc by genomics and epigenomics (187).
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In addition to this, Veronica et al. also found an increase in

autophagic flux in SSc dermal fibroblasts (188), Liu Chen et al. also

found higher expression levels of autophagy-related genes CD93

and SFRP4 in patients with SSc (189), These studies have shown a

close link between autophagy activation and the pathogenesis

of SSc.

Remedios et al. studied SSc characteristics in foveal protein-1-

deficient mice and found that inhibition of autophagy prevented

fibrosis in SSc patients, leading to the treatment of SSc (190), This

finding is consistent with the findings of Zhu Ke et al. and Liu

Chaofan et al. Zhu Ke et al. found that 2-methoxyestradiol (2-ME)

could prevent fibroblast collagen synthesis and endosomal

transformation in SSc by inhibiting autophagy, thereby improving

SSc (191), Chaofan Liu et al. found that exosomal miR-126-3p can

inhibit autophagy by regulating the SLC7A5/mTOR signaling

pathway in human umbilical vein endothelial cells (HUVECs),

thereby preventing SSc vascular injury (192). Zehender et al.

found that inhibition of autophagy makes human fibroblasts less

sensitive to the pro-fibrotic effects of TGF-b, thereby inhibiting

TGFb-induced fibroblast activation and ameliorating dermal

fibrosis (186).

JAK inhibitors can block the TGF-b-mediated STAT protein

activation pathway by inhibiting autophagy, thereby inhibiting

fibrosis in the skin of SSc patients and achieving the treatment of

SSc (193). Nintedanib is a JAK inhibitor used to treat SSc. In a

double-blind trial, 576 patients were randomly assigned in a 1:1

ratio to receive either 150 mg of Nintedanib (taken orally twice a

day) or placebo for 52 weeks, and at week 52, patients taking oral

Nintedanib had less fibrosis and inflammation than those taking

oral placebo (194). Tofacitinib is currently the most commonly used

JAK inhibitor for the treatment of SSc patients. In one of the earliest

cases of SSc treatment with tofacitinib, the patient was a young

patient who had failed mycophenolate mofetil therapy, and the

patient experienced significant improvement in systemic symptoms

by taking tofacitinib 5 mg twice daily for several months (195).

Dang Gui Xie Blood Tablet (DHP) is a traditional Chinese

herbal formula used for the treatment of SSc. DHP inhibits

autophagy by inhibiting the TGF-b1 signaling pathway, thereby

improving SSc skin inflammation, fibrosis and vascular lesions

(196). A Chinese herbal formula called “Yiqi and Blood Formula”

may also inhibit autophagy by inhibiting the TGF-b1 signaling

pathway, thus exerting an anti SSc fibrosis effect (197). Comfreyin,

extracted from the rhizome of the traditional Chinese herb comfrey,

can inhibit autophagy by inhibiting the NF-kB signaling pathway,

thereby attenuating the inflammatory response in SSc (198).

Some studies have shown that some induction of autophagy can

also be helpful in the treatment of SSc. Zhou et al. found that

activation of autophagy by inhibiting the PI3K/Akt/mTOR

signaling pathway reduced the production of the fibrotic

cytokines connective tissue growth factor (CTGF) and collagen I

in SSc fibroblasts (199). This is consistent with the findings of Liang

et al., who found that activation of autophagy through inhibition of

the PI3K/Akt/mTOR signaling pathway could produce excellent

inhibition of fibrosis in the skin in the SSc mouse model (200). In

summary, autophagy is involved in the pathogenesis of SSc, and

autophagy is a potential target for the treatment of SSc.
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5 Targeting autophagy-related
proteins or pathways for therapy

Autophagy is involved in and regulates the pathogenesis of

psoriasis, SLE, vitiligo, AD, AA, and SSc, and targeting autophagy-

associated proteins or pathways can treat these diseases (Table 1).

Some studies found that the expression of LC3, an autophagy-

related protein, decreased or even disappeared in psoriasis lesional

epidermis, suggesting that autophagy is impaired in psoriasis,

suggesting that targeting to increase the expression of LC3 could

be a therapeutic option for psoriasis (201). However, several other

studies have shown that the expression of LC3 and other

autophagy-related proteins (Beclin1, ATG5 and ATG7) is also

elevated in psoriasis, which is hypothesized to be a possible

compensatory mechanism for impaired autophagy (147, 202–204).

Accumulation of the autophagy-associated protein p62 has also

been found in psoriasis, which can lead to keratotic insufficiency in

psoriasis, suggesting that targeting and reducing p62 expression is

an effective means of treating psoriasis (205). Cimicifugae Rhizoma

- Smilax glabra Roxb (CS), the main ingredient of the traditional

Chinese medicine formula Shengma Xieyu Tang, which can

alleviate inflammation in psoriasis by targeting and inhibiting the

MAPK autophagy-related signaling pathway (206). Salvia

miltiorrhiza, a traditional Chinese medicine, is the dried root and

rhizome of Salvia miltiorrhiza, family Labiatae, which can alleviate

the symptoms of psoriasis by targeting and inhibiting MAPK and

NF-kB autophagy-related pathways, thus achieving the treatment of

psoriasis (207). Paeoniflorin, the main active ingredient of the

Chinese medicine Paeonia lactiflora, can exert anti-psoriasis

effects by targeting and inhibiting the phosphorylation of the

MAPK autophagy-related pathway (208).

One study found that increased expression of autophagy-related

proteins ATG5 and ATG16L2 promotes the development of

SLE, suggesting that targeting and reducing the expression of

ATG5 and ATG16L2 can treat SLE (107). Dihydromyricetin is a

dihydroflavonol flavonoid compound extracted from the traditional

Chinese medicine Ampelopsis megalophyllaDiels et Gilg, which

alleviates the symptoms of SLE by targeting inhibition of the mTOR

autophagy-related signaling pathway and promoting the expression

of LC3-II and Beclin-1 autophagy-related genes, thereby treating

SLE (209).

Ranunculin is an epoxy diterpene lactone compound extracted

from the roots, leaves, flowers, and fruits of Ranunculus officinalis,

which reduces inflammation and ameliorates SLE symptoms by

targeting and inhibiting the expression of autophagy-associated

proteins LC3II/I and P62 (209). Artemisinin, an active ingredient

extracted from the traditional Chinese medicine Artemisia annua, is

a sesquiterpene lactone, which exerts anti-SLE inflammatory effects

by targeting and up-regulating the expression levels of LC3-II and

ATG5 autophagy-related proteins (210).

Vitiligo is characterized by a reduction in melanin due to

destruction of melanocytes, and the autophagy-related proteins

ATG7, ATG4, LC3 and Beclin1 contribute to melanin production

(211). Increased expression of LC3 enhances melanin synthesis

(212), Increased expression of ATG7 protects melanocytes from

oxidative stress damage (213), ATG4 was previously mentioned as
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TABLE 1 Promoting/inhibiting autophagy for the treatment of skin diseases.

Skin
diseases

Treatment Study subject Mechanism
References

Psoriasis Celastrol HEK-Blue cell
Female C57BL/6 mice

Anti-IL-17.
(94)

Fenofibrate Female C57BL/6 mice
HaCaT cell

Anti-IL-17.
(95)

Fexofenone Psoriasis patients
Female C57BL/6 mice Female BALB/c mice

Anti-IL-17.
(96)

PGRN Psoriasis patients Inhibited the activity of the b-Catenin
signaling pathway.

(69)

LC3 Psoriasis patients Promotion of LC3 protein. (201)

HMGB1 C57BL/6 mice Basic crosstalk between HMGB1-
associated autocrine and gdT cells.

(203)

Matrine Female BALB/c mice
HaCaT cell

Inhibition of the PI3K/Akt/mTOR
signalling pathway.

(97)

LncRNA MEG3 HaCaT cell
Female BALB/c mice

Inhibition of the PI3K/Akt/mTOR
signalling pathway.

(98)

PSORI-CM02 Male BALB/c mice
HaCaT cell

Inhibition of the PI3K/Akt/mTOR
signalling pathway.

(99)

YXJD Male BALB/c mice
HaCaT cell

Inhibition of the PI3K/Akt/mTOR
signalling pathway.

(100)

Rapamycin Female C57BL/6 mice Inhibition of the PI3K/Akt/mTOR
signalling pathway.

(101)

SLE MiR-125b SLE patients Increased UVRAG expression and
autophagy activity.

(115)

Chloroquine Female MRL/MpJ-Faslpr/J mice, SLE patients Autophagy inhibition balances Th17/Treg-
mediated immune

(116)

P140 MRL/lpr and CBA/J mice Altered autophagy processes in MRL/lpr B cells. (117)

Vitamin D HPC
LN patients

Reducing abnormal autophagy to protect podocytes
from damage.

(121)

Inhibition of Notch-
Hes-1

Female MRL/lpr mice
Female C57BL/6 mice

Inhibition of macrophage autophagic death.
(120)

SGLT2 inhibitors MRL/lpr mice Reduced inflammation and enhanced autophagy. (122)

HNK Female NZB/W F1 mice Regulation of sirtuin 1 autophagy axis. (123)

Vitiligo Calcipotriol Melanocyte Protects melanocytes from oxidative damage
in vitiligo.

(134)

Anti-TRPM2 Keratinocyte Promoting the coupling of Atg12 and Atg5. (137)

ATG7 Melanocyte Protection of melanocytes against oxidative stress-
induced apoptosis.

(213)

LC3 MNT-1 cell Promotion of tyrosinase expression. (212)

LBP Melanocyte Activation of the Nrf2/p62 signalling pathway. (135)

HSF1-ATG5/12 Melanocyte
Vitiligo patients

Autophagy activation aids melanocyte survival
under oxidative stress.

(133)

AD CEBPB Atg5WT mice
Atg7WT mice
SQSTM1WT mice
Lyz2-cre mice
MRP8-cre mice

Upregulation of SOCS1 and SOCS3 expression.

(160)

WLJP-025p SPF female BALB/c mice Up-regulation of p62 activates Nrf2 and promotes
ubiquitination and degradation of NLRP3.

(152)

(Continued)
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an autophagy-associated protein that promotes LC3 expression.

These studies suggest that targeting increased expression of ATG7,

ATG4, LC3, and Beclin1 can treat vitiligo.

San Bai Tang is a traditional Chinese herbal formula whose

main ingredients include Atractylodes macrocephala, Paeonia

lactiflora, and Poria, among other herbs, and which can treat

vitiligo by targeting inhibition of the MAPK autophagy-related

pathway (214). MA 128 is an herbal formula developed by a

Korean team and consists of a number of traditional anti-allergy

and anti-inflammatory herbs. It treats vitiligo by targeting and

inhibiting the MAPK autophagy-related pathway to relieve the

symptoms of vitiligo (215). The traditional Chinese medicine

tonic acid is derived from the fruit of the leguminous plant tonic

acid, which can treat vitiligo by targeting and inhibiting MAPK and

NF-kB autophagy-related pathways (216).

Myricetin, a flavonol compound, is an active ingredient extracted

from the stem and leaves of Garcinia Cambogia or from the bark and

leaves of the Yangmei tree, which can exert anti-AD effects by

targeting inhibition of the NF-kB autophagy-related signaling

pathway (217). Compound traditional Chinese medicine dermatitis

ointment (CTCMDO) consists of an oil extract of five herbals

(Rhizoma Coptidis, Phellodendron Bark, Angelica Sinensis, Radix et

Rhizoma Dioscoreae and Curcuma longa). CTCMDO can effectively

improve AD by targeting and inhibiting theMAPK autophagy-related

signaling pathway (218). Ren et al. found that a combination of

traditional Chinese herbs, Saposhnikoviae radix, astragali radix and

xidiummonnieri, could treat AD by targeting inhibition of theMAPK

and JAK autophagy-related signaling pathways (219).
Frontiers in Immunology 13
Reduced expression of autophagy-related proteins ATG5 and

LC3B in the hair matrix was found in patients with AA, suggesting

that autophagy is impaired in AA, suggesting that targeting to

increase the expression of ATG5 and LC3B could be helpful in the

treatment of AA (167). However, it has been shown that ATG5 and

LC3B expression is also elevated in AA patients, presumably as a

compensatory mechanism for impaired autophagy (220).

Astragaloside IV is a saponin analogue from the traditional Chinese

medicine Astragalus membranaceus, which can treat AA by targeting

and inhibiting the MAPK autophagy-related signaling pathway (221).

The Chinese medicine crataegus pinnatifida is derived from the dried

mature fruit of Crataegus pinnatifida, family Rosaceae, which can

alleviate AA symptoms by targeting the activation of MAPK and Akt

autophagy-related signaling pathways, thus achieving the purpose of

treating AA (222). Icariin is the main active ingredient of the Chinese

medicine Epimedium, which can treat AA by targeting the activation of

the PI3K/Akt autophagy-related signaling pathway (223).

Salvianolic acid B (SAB) is a bioactive ingredient extracted from

Salvia miltiorrhiza, which can be used to treat SSc by attenuating

dermal fibrosis by targeting inhibition of the MAPK autophagy-

related signaling pathway (224). Icariin (ICA), a flavonoid glycoside

extracted from the traditional Chinese medicine Epimedium, can

play a therapeutic role in the treatment of SSc by alleviating the

symptoms of SSc through the targeted inhibition of the JNK/NF-kB
autophagy-related signaling pathway (225). Lignans (an herbal

ingredient) are natural flavonoids that treat SSc by targeting and

inhibiting the NF-kB autophagy-related signaling pathway to

reduce the inflammatory response in SSc (226).
TABLE 1 Continued

Skin
diseases

Treatment Study subject Mechanism
References

IL-37b C57BL/6 mice Regulates the AMPK-mTOR signalling pathway. (153)

Moisturizer AD patients Stimulate autophagy. (150)

Dictamnine Male BABL/c mice Increased LC3 expression in macrophages. (149)

b-Defensin-3 C57BL/6 mice Promotion of LC3 expression and inhibition of
p62 expression.

(148)

AA PINK1 ORS cell Mitochondrial autophagy factors that inhibit
inflammatory vesicle activation.

(169)

Dietary protein AA patients Prevention of autophagy disorders. (179)

SSc 2-ME SSc patients
Fibroblast cell

Reduction of CTGF and collagen I production
through PI3K/Akt/mTOR/HIF-1a
signalling pathway.

(199)

miR-126-3p HUVEC
C57BL/6 mice

Regulates the SLC7A5/mTOR signalling pathway.
(192)

Anti-TGFb SSc patients
Fibroblast cell

Upregulates MYST1 expression.
(186)
AA, Alopecia areata; AD, Atopic dermatitis; Akt, Protein kinase B; ATG7, Autophagy-related proteins; CEBPB, CCAAT/enhancer binding protein beta; HMGB1, High mobility group box-1
protein; HNK, Honokiol; HUVEC, Human umbilical vein endothelial cells; LC3, Microtubule-associated protein 1 light chain 3; LBP, Lipopolysaccharide-binding protein; MEG3, Maternally
expressed gene 3; MIR-126, MicroRNAs-126; PIK3, Phosphatidylinositol-3-kinase; PINK1, PTEN-induced putative kinase 1; SLE, Systemic lupus erythematosus; SSc, Systemic sclerosis; SOCS,
Suppressor of cytokine signaling; TRPM2, Transient receptor potential M2 channels; TGFb, Transforming growth factor beta; UVRAG, UV radiation resistance associated gene; YXJD, Yangxue
Jiedu Fang; 2-ME, 2-Methoxyestradiol.
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6 Conclusion

Autophagy is an intracellular self-digestive process by which

cells can break down and recycle damaged organelles, abnormal

protein aggregates, and other molecules within them to maintain

normal cellular function and survival. There are three types of

autophagy: macrophage, chaperone-mediated autophagy, and

microphagy, each with a different molecular mechanism.

Autophagy plays different roles in different skin cells, but all serve

to maintain skin cell homeostasis. Dysregulation of autophagy leads

to various skin diseases such as psoriasis, SLE, vitiligo, AD, AA and

SSc, but autophagy is also a potential target for the treatment of

these diseases.

Notably, PSORI-CM02, YXJD, Picrasidine, HNK, Azadirachtin,

LBP, Cortex Dictamni, and WLJP-025p, which are the herbal

formulations or herbal ingredients mentioned in the above article,

can be used to treat the corresponding diseases by modulating

autophagy, suggesting that there exists a large number of potential

herbal-autophagy-targeted therapeutic approaches that are worth

exploring in the future.
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