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Background: The heterogeneity of cancer makes it challenging to predict its

response to immunotherapy, highlighting the need to find reliable biomarkers for

assessment. The sophisticated role of cancer stemness in mediating resistance to

immune checkpoint inhibitors (ICIs) is still inadequately comprehended.

Methods: Genome-scale CRISPR screening of RNA sequencing data from

Project Achilles was utilized to pinpoint crucial genes unique to Ovarian

Cancer (OV). Thirteen publicly accessible OV transcriptomic datasets, seven

pan-cancer ICI transcriptomic cohorts, and one single-cell RNA dataset from

melanoma patients treated with PD-1 were utilized to scale a novel cancer

stemness index (CSI). An OV single-cell RNA dataset was amassed and

scrutinized to uncover the role of Small Nuclear Ribonucleoprotein

Polypeptide E (SNRPE) in the tumor microenvironment (TME). Vitro

experiments were performed to validate the function of SNRPE in promoting

proliferation and migration of ovarian cancer.

Results: Through the analysis of extensive datasets on ovarian cancer, a specific

gene set that impacts the stemness characteristics of tumors has been identified

and we unveiled a negative correlation between cancer stemness, and benefits of

ICI treatment in single cell ICI cohorts. This identified gene set underpinned the

development of the CSI, a groundbreaking tool leveraging advanced machine

learning to predict prognosis and immunotherapy responses in ovarian cancer

patients. The accuracy of the CSI was further confirmed by applying PD1/PD-L1 ICI

transcriptomic cohorts, with a mean AUC exceeding 0.8 for predicting tumor

progression and immunotherapy benefits. Remarkably, when compared to existing
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1486652/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1486652&domain=pdf&date_stamp=2024-12-11
mailto:xiuwenwang12@sdu.edu.cn
mailto:ningfangling@126.com
https://doi.org/10.3389/fimmu.2024.1486652
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1486652
https://www.frontiersin.org/journals/immunology


Liu et al. 10.3389/fimmu.2024.1486652

Frontiers in Immunology
immunotherapy and prognosis markers, CSI exhibited superior predictive

capabilities across various datasets. Interestingly, our research unveiled that the

amplification of SNRPE contribute to remodeling the TME and promoting the

evasion of malignant cells from immune system recognition and SNRPE can server

as a novel biomarker for predicting immunotherapy response.

Conclusions: A strong relationship between cancer stemness and the response

to immunotherapy has been identified in our study. This finding provides valuable

insights for devising efficient strategies to address immune evasion by targeting

the regulation of genes associated with cellular stemness.
KEYWORDS
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Introduction

Continuous progress in immuno-oncology, including the

creation of checkpoint inhibitors and CAR-T cell therapy, provide

hopeful approaches for fighting tumors through the stimulation of

the body’s natural defense system (1). However, a significant

number of patients do not experience the expected benefits from

immunotherapy, highlighting the urgent need to identify the the

population eligible for immunotherapy at this stage.

The efficacy of immunotherapy relies on a complex network

involving multiple modulators, including the tumor immune

microenvironment and genetic heterogeneity. Previous research

has primarily focused on analyzing these factors through RNA

sequencing of intact tumor tissue (2, 3). However, the variability in

the tumor immune microenvironment across different cancer types

and individuals, as well as the genetic heterogeneity of tumors,

present challenges in accurately predicting patient responses to

immunotherapy (4). While certain biomarkers like tumor mutation

burden (TMB) have been linked to immunotherapy responses,

they may not always accurately predict the effectiveness of

specific immunotherapy treatments (5). This underscores the

importance of developing robust markers and optimizing

combinations of biomarkers to better stratify patients for optimal

therapeutic outcomes.

Cancer stem cells contribute to the initiation, progression, and

spread of tumors (6). Recently, research has shown a strong link

between stem cell characteristics and the ability of cancer cells to

evade the immune system and resist treatment (7). Previous study

demonstrated a negative correlation between cancer stemness and

immune cell infiltration in 21 solid cancers and indicated that high

level of stemness have a negative impact on the effectiveness of ICI

treatment across various cancer types (8–11). Nevertheless, the

connection between tumor stemness and ICI response in ovarian

cancer has been disregarded.
02
This study utilized integrative analyses of transcriptome and

CRISPR cell line datasets to identify specific cancer stemness-

related mRNAs of ovarian cancer. We also found a negative

relationship between cancer-intrinsic variability, cancer stemness,

and outcomes of ICI treatment in single-cell SKCM ICI cohorts

(12). Subsequently, a CSI was developed by analyzing 13 ovarian

cancer cohorts with 2407 patients. The accuracy of CSI in predicting

immunotherapy response was assessed using 7 independent anti-

PD-1/PD-L1 ICI cohorts with 929 patients and the submap

algorithm. We observed a significant inverse correlation between

CSI and intrinsic variations, including TMB, mutations, copy

number variations, and Homologous Recombination Defects

(HRD). Furthermore, combining CSI with TMB was found to

improve the predictive accuracy of immunotherapeutic efficacy.

Of note, a pivotal gene, SNRPE, was identified as having a

promoting effect on tumor growth. This finding suggests that

SNRPE could be a potential novel target for immunotherapy in

the future. Collectively, our detailed analysis offers valuable insights

into the role of cancer stemness in immunotherapy for

ovarian cancer.
Methods

Acquisition and preprocessing of extensive
ovarian cancer datasets

The Cancer Genome Atlas (TCGA) dataset on ovarian cancer

RNA sequencing and survival data was retrieved from the UCSC

Xena database (13). Additionally, 12 GEO cohorts focusing on

ovarian cancer (GSE13876, GSE138866, GSE140082, GSE14764,

GSE17260, GSE18520, GSE19829, GSE26712, GSE31245,

GSE49997, GSE63885, GSE9891) were acquired, each containing

detailed survival information.
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Collection of immunotherapy-
associated datasets

The research gathered various sets of data from groups of patients

treated with anti-PD-L1/PD-1 medications to investigate the

correlation between cancer stem cell characteristics and the

effectiveness of immunotherapy. The cohorts included the following:

Rose TL cohort (14) (GSE176307: ICB treated metastatic urothelial

cancer), Jung H cohort (15) (GSE135222: anti-PD-1/PD-L1 treated

non-small cell lung carcinoma), Riaz N cohort (16) (GSE91061: anti-

CTLA4 and PD-1 treated melanoma), Liu/VanAllen cohort

(phs000452.v3: anti-PD1/CTLA4-treated metastatic melanoma)

from the dbGaP database, Necchi cohort (17) (IMvigor210:

Atezolizumab treated advanced or metastatic urothelial carcinoma)

obtained using the “IMvigor210CoreBiologies” R package, Wang GY

cohort (anti-PD-1/PD-L1 treated melanoma), and Braun DA cohort

(anti-PD-1 treated advanced clear cell renal cell carcinoma). Gene

expression and clinical data were also gathered for these

immunotherapy-treated datasets. The details of all cohorts used in

this study can be found in Supplementary Table S1.
Collection of single cell datasets for OV
and ICI-treated SKCM

Gene expression profiles of single cell OV dataset were

preprocessed and retrieved from the GEO database with accession

number GSE184880 (18). The dataset consisted of five non-

malignant tissues and seven high-grade serous ovarian cancer

tissues. Moreover, an examination was conducted on a melanoma

cohort to explore the correlation between cancer cell stemness and

the efficacy of immunotherapy. This cohort comprised data on both

ICI response and single-cell RNA sequencing, sourced from GEO

under accession number GSE115978 (12).
Identifying essential genes for OV

The CRISPR screening of OV cells at a genome-wide level was

acquired through the DepMap portal (https://depmap.org/portal/

download). Utilizing the CERES algorithm, dependency scores were

computed for about 17,000 potential genes (19). Genes deemed

essential demonstrated a CERES score below -1 in 75% of the OV

cell lines (n = 73).
Development and validation of CSC
prediction model

An innovative pipeline was developed to construct a predictive

model for Cancer stem cells (CSC), illustrated in Figure 1A. Initially,

by utilizing the CERES algorithm with cell line data, we pinpointed

687 mRNAs that displayed an association with the survival and

progression of ovarian cancer cells. Subsequently, we computed

mRNA stemness indices (10) across 12 GEO datasets, the TCGA-

OV dataset and evaluated the relationship between total mRNA and
Frontiers in Immunology 03
mRNA expression-based stemness index (mRNAsi). We then

identified the mRNAs showing significantly positive correlations in

at least half of the cohorts (7 out of 13) as mRNAsi-associated

mRNAs (Cor>0.2 and P<0.01), resulting in the discovery of 60

mRNAsi-associated mRNAs (Supplementary Tables S2, S3).

Finally, 8 ovarian cancer (OV) cohorts were used in the creation

of a predictive model for CSCs. To accomplish this, a variety of

machine learning techniques were employed, including random

forest (RSF), elastic net (Enet), gradient boosting (GBM), ridge

regression, Stepcox, plsRcox, CoxBoost, and SuperPC.
Prediction of immunotherapy outcomes
using TIDE webserver

To evaluate the effectiveness of PD-1/CTLA4 immunotherapy,

our first step involved the calculation of scores for tumor immune

dysfunction and exclusion (TIDE). This analysis was performed

using the adjusted expression data collected from patients with

ovarian cancer. The resultant matrix of expression profiles

was then submitted to the TIDE database website (http://

tide.dfci.harvard.edu/) to assess the response of the patients (20).

Next, we employed the submap algorithm available on the

GenePattern website to determine the differences in response

likelihood between the low- and high-CSI groups.
Identification of optimal therapeutics for
low and high CSI groups and drug
sensitivity analysis

By analyzing gene expression profiles, drug sensitivity

prediction in cell lines was achieved using the ‘oncoPredict’ R

package and the calcPhenotype method. To estimate drug IC50, a

ridge regression model was developed utilizing gene expression

profiles of cell lines acquired from GDSC through the pRRophetic

algorithm (21).
Cell lines

Human ovarian cancer cell lines, specifically OVCAR-3, A2780,

and SK-OV-3, were supplied by the Cell Bank of the Committee for

Conservation of Typical Cultures, which is part of the Chinese

Academy of Sciences. These cell lines were cultured using

Dulbecco’s Modified Eagle Medium (DMEM) from Gibco (New

York, USA) and enriched with 10% fetal bovine serum.

Furthermore, the culture medium was supplemented with 100

IU/mL penicillin and streptomycin, both of which were also

procured from Gibco (New York, USA).
IHC

Following the removal of paraffin, the sections embedded in

paraffin were subjected to a treatment with 3% hydrogen peroxide at
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26°C for 10 minutes to suppress the activity of endogenous

peroxidase. Next, the sections were blocked using 10% goat serum

to avoid non-specific binding. Afterward, the sections were

incubated overnight at 4°C with primary antibodies .

Subsequently, rabbit secondary antibodies were applied to the

sections, which were then stained using DAB.
Frontiers in Immunology 04
Knockout and overexpression in ATC
cell lines

Lentiviral vectors designed for the overexpression of SNRPE were

sourced from Genechem in Shanghai, China. Stable transfection of

cells with these SNRPE-overexpressing lentiviruses, along with the
FIGURE 1

Exploration and validation of an inverse relationship between ovarian cancer stemness and ICI response. (A) Schematic representation of the process
for identifying mRNA markers associated with cancer’s intrinsic heterogeneity and stemness, and the development of predictive models using
various machine learning techniques. (B–D) Visualization of t-Distributed Stochastic Neighbor Embedding (tSNE) plots for malignant cells in the
SKCM dataset. (B) Malignant cells categorized by response phenotype in the tSNE plot. (C) tSNE plot depicting the AUCell scores of cancer stem cell
(CSC)-related gene sets in malignant cells, with red indicating higher scores (indicative of high stemness) and blue representing lower scores
(indicative of low stemness). (D) Box plot illustrating the distribution of AUCell scores across response phenotypes (non-responders vs. treatment-
naïve patients) in the SKCM cohort. The median values are marked at the center of the box plot, with the box boundaries representing the 25% and
75% quantiles (Wilcoxon test; *** P < 0.001). Abbreviations: NR, non-responders; TN, treatment-naïve patients. (E) KEGG enrichment of cancer
stemness associated mRNAs.
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corresponding control plasmids, was performed to induce puromycin

resistance. Following the instructions provided by the manufacturer,

selection of stable transfectants was carried out using 2 mg/mL

puromycin over a period of 7 days to establish stable SNRPE-

overexpressing cell lines. Biotend Co., Ltd. synthesized the siRNA

targeting SNRPE. The siRNA, at a concentration of 50 nM, was

transfected into cells using the Lipofectamine 3000 transfection kit

provided by Thermo Fisher Scientific in Waltham, Massachusetts,

USA, with a 24-hour incubation period.
Western blotting

To conduct western blot analysis, cells in culture were washed

with ice-cold PBS before extracting total cell protein lysates at 4°C

with RIPA lysis buffer (Beyotime, Shanghai, China) supplemented

with 1% protease inhibitor cocktail (MedChemExpress, New Jersey,

USA). Following centrifugation at 12,000 g for 20 minutes at 4°C,

the supernatant containing proteins was gathered and mixed with

loading buffer. The samples were then subjected to separation by

10% SDS-PAGE and transfer onto a PVDF membrane. The

membrane was then blocked for 2 hours at room temperature

with 5% skim milk before incubating overnight at 4°C with primary

antibodies. After rinsing with Tris Buffered Saline, the membrane

was exposed to secondary antibodies for detection of protein bands

using enhanced chemiluminescence reagents (Beyotime, Shanghai,

China). Antibodies used in the analysis included SNRPE (20407-1-

AP, Proteintech, Wuhan, China) and GAPDH (60004-1-Ig,

Proteintech, Wuhan, China).
Assessment of cell proliferation, colony
formation, and migration abilities

To evaluate cell proliferation, 2×10^3 cells were introduced into

each well of a 96-well plate and maintained for the required period.

Afterward, each well was treated with 10 ml of CCK-8 reagent

(Dojindo Molecular Technologies, Kumamoto, Japan) and left to

incubate for one hour. The absorbance was then recorded at a

wavelength of 450 nm (OD450) for further analysis.

To assess the ability of colonies to form, a range of 500 to 2000

cells were placed in each well of a 6-well plate and left to incubate

for around one week. Upon detection of colonies with over 50 cells,

they were treated with 0.2% crystal violet for a duration of 30

minutes. Following three rounds of washing with PBS, the colonies

were both captured in pictures and tallied for measurement.

To evaluate the migratory potential of cells, a total of 40,000

cells were suspended in 200 mL of culture medium and placed in the

upper compartment of Transwell plates from BD Biosciences. At

the same time, 600 mL of culture medium with 10% FBS was

introduced into the lower compartment. After an overnight

incubation at 37°C, the cells located beyond the Transwell

membrane were fixed using 4% paraformaldehyde for half an

hour and subsequently stained with 0.25% crystal violet for an

additional 30-minute period. Following the removal of cells from
Frontiers in Immunology 05
the interior of the chamber, the migrated cells outside the

membrane were visualized and quantified.
Statistical analysis

We utilized the Wilcoxon test to assess various attributes of the

high- SNRPE and low- SNRPE groups. The Chisq test was employed

to scrutinize the variability in immunotherapy response among the

high-CSI and low-CSI groups. The correlation between mRNA and

mRNAsi was investigated through the calculation of Pearson’s

correlation coefficient. Kaplan-Meier survival analysis was

performed to explore the connection between CSI, SNRPE, and

survival, utilizing the log-rank test to determine the significance of

observed distinctions. To assess the prognostic and immunotherapy

advantages of CSI, time-dependent receiver operating characteristic

(ROC) curves were generated with the assistance of the ‘pROC’ R

package (22) being utilized. Key factors influencing immunotherapy

efficacy were identified using xGboost, a scalable tree boosting system.

Patients were grouped based on the optimal threshold established by

the ‘survminer’ R package. Statistical significance was defined by a

significance level of P or adjP < 0.05.
Results

Revelation of the link between cancer
stemness and immunotherapy resistance
through scRNA ICI cohort

Considering the potential influence of cancer stemness on the

resistance to ICIs, a comprehensive analysis was conducted on 13

transcriptome datasets related to OV obtained from the GEO and

TCGA databases. The mRNAsi was calculated for each patient (10).

By utilizing the Pearson correlation coefficient, mRNAs that exhibited

a significant relationship with mRNAsi across multiple samples

(Cor>0.2 & P<0.01) were identified. Subsequently, 253 mRNAs that

detected in more than 50% of the datasets (7 out of 13) were

considered as tumor stemness-associated mRNAs. Moreover, to

pinpoint crucial candidate genes involved in OV malignancy, an

in-depth examination of CRISPR-based loss-of-function screens was

undertaken on a global scale based on DepMap database. As a result,

a total of 687 genes essential for the survival of 73 OV cell lines (CERE

score < -1 in 75% OV malignant cells) were identified. Of these, 60

mRNAs were selected through the overlap of OVmRNAsi-associated

mRNAs with the mRNAs highlighted by CRISP (Supplementary

Table S3). All these genes associated with cancer stemness were

chosen for further study. To validate the influence of cancer stemness

associated genes on immunotherapy effectiveness, a previously

published scRNA-seq dataset of PD1 ICI-treated patients with

melanoma (SKCM) was initially employed to investigate the

correlation between cancer stemness and ICI responses. After

excluding individuals lacking data on malignant cells, a total of 23

patients from this cohort were included, comprising 10 non-

responders (NR) and 13 treatment-naïve (TN) patients. Ideally, a
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comparison of cancer stemness between responders (R) and NR to

ICI treatment would have been preferred. However, the dataset

available did not contain specific data on responders. Given that

treatment-naïve patients may consist of both potential responders

and non-responders, our next step was to compare the stemness

levels between the NR group and the TN group, as previously

described. As depicted in Figures 1B, C, the NR subcategory

displayed a higher frequency of cancer cells with increased

stemness rankings. Further investigation revealed that individuals

from the NR subgroup had significantly higher levels of stemness (P <

0.001, Figure 1D), indicating an inverse relationship between cancer

intrinsic driver and stemness with immune checkpoint inhibitor

outcomes. Furthermore, we also found that these cancer stemness

related genes significantly enriched Cell proliferation-related

pathways, including Cell cycle and DNA replication (Figure 1E),

indicating that tumor stemness-related genes may stimulate tumor

cell proliferation.
Establishing the cancer stemness index
through machine learning methodologies

To further develop a prediction model for CSI, nine machine

learning algorithms were used with a combination of six GEO OV

datasets and the OV TCGA dataset. Subsequently, we calculated the
Frontiers in Immunology 06
risk score for each sample in the eight cohorts, which included

survival data, using these predictors. The performance was

evaluated by determining the average C-index for each algorithm.

Interestingly, most of these predictors showed a considerably high

average C-index (Figure 2A). This finding can be partly attributed

to the exceptional quality of our cancer stemness markers. Among

all the models, random forest (RSF) demonstrated the highest level

of precision (average C-index = 0.922, Figure 2A) and was chosen as

the definitive CSI. Additionally, through univariate cox analysis, a

significant correlation between high CSI in the seven cohorts and

poor survival outcomes was established (P<0.05, Figure 2B).

The progress in next-generation sequencing and large-scale

data mining technologies has facilitated the thorough

investigation and advancement of gene expression-derived

markers that are able to forecast prognosis results. To thoroughly

assess the effectiveness of the CSI in comparison to alternative

markers, we methodically compiled previously published markers

from the past decade. A total of 79 markers were analyzed in this

research (Supplementary Table S4). Notably, the reliability of the

CSI in predicting survival outcomes exceeded that of all other

models across eight different OV cohorts, achieving an average

AUC > 0.9 in the mentioned cohorts (Figure 2C).

Given the importance of cancer stemness mRNAs in predicting

the success of tumor immunotherapy, we utilized the submap

algorithm available on GenePattern website to predict the
FIGURE 2

Development of a cancer stemness index utilizing extensive scRNA-seq and bulk RNA-seq datasets. (A) C-index of eight algorithms across eight
validation cohorts. (B) Univariate Cox regression analysis of the RSF score in eight OV cohorts. (C) Estimated response rates to immune checkpoint
inhibitors (PD-1/PD-L1) across different CSI groups (R: Response, NR: No Response). (D) ROC values comparing the predictive accuracy of the CSI
and 79 other models for clinical status in eight OV cohorts.
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probability of immune therapy response based on high- and low-

CSI groups. A noteworthy finding was revealed when individuals

from the low CSI group exhibited a significant reaction to PD-1

immunotherapy (P = 0.007, Bonferroni corrected P < 0.001,

Figure 2D), demonstrating the remarkable predictive power of the

CSI model in the context of PD-1 immunotherapy efficacy.

Collectively, these results suggest that CSI could function as

predictive markers for the prognosis of ovarian cancer, with higher

robust than other models. In addition, CSI can also be used as a

prognostic indicator of PD1 immunotherapy response.
Cancer stemness index demonstrates
predictive capabilities for
immunotherapy outcomes

To further verify the predictive performance of CSI on the

therapeutic effect of PD-1 ICIs, we collected different datasets

associated with PD-1/PD-L1 immune checkpoint inhibitors. Our

results consistently indicated that patients diagnosed with specific

cancers (such as SKCM, UC, KIRC, or metastatic urothelial

carcinoma) who had lower CSI scores experienced notably

enhanced overall survival (OS) or progression-free survival (PFS)

following immunotherapy compared to those with higher CSI

scores (Figures 3A, B). This suggests that higher CSI scores may

impede the benefits of PD-1 immunotherapy. Furthermore, the

response to PD-1/PD-L1 ICI therapy varied between patients with

high and low CSI scores. Individuals with higher CSI scores

exhibited suboptimal response to the treatment, whereas over half

of those with lower CSI scores responded positively (Figure 3C).

More specifically, the group with higher CSI scores predominantly

displayed no response (progressive disease or stable disease),

whereas the group with lower CSI scores mainly demonstrated a

response (complete response or partial response). Significantly, our

analysis indicated that CSI serves as a reliable predictor of PD-1/

PD-L1 ICI immunotherapy response, as demonstrated by the area

under the curve (AUC) values. The AUC curve portrayed

outstanding predictive performance, with an average AUC > 0.8

across the six cohorts examined (Figure 3D). Additionally, we

performed further analysis using the IMvigor210 dataset and

observed that even upon excluding samples with incomplete

clinical data, CSI remained a robust predictor of immunotherapy

outcomes. Intriguingly, it held greater significance compared to

parameters such as PD-L1 expression in tumor cells (TC), immune

phenotype, ECOG score, Stage, or tumor mutation burden (TMB),

as indicated by a multivariate Cox regression analysis (refer to

Figure 3E). To extend the clinical utility of our model, we explored

the potential benefits of combining CSI with other commonly

utilized markers of immunotherapy response. Specifically, we

investigated the synergistic effects of CSI and TMB, a well-known

indicator of immunotherapy effectiveness. Our findings revealed

that patients exhibiting low CSI scores and high TMB levels

experienced the most favorable outcomes with immunotherapy

treatment, whereas those with elevated CSI scores demonstrated

the least benefits from such therapies (Figure 3F). Additionally, we

conducted a comparative analysis of CSI with established signatures
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for predicting immunotherapy response. Notably, CSI

outperformed various signatures, including IFNG.Sig (23),

Immune.Sig (23), ImmuneCells.Sig (16), PDL1.Sig (24),

LRRC15.CAF.Sig (25), NLRP3.Sig (26), Stem.Sig (11), and

CYT.Sig (27) in six PD1/PD-L1 immunotherapy cohorts, while

the majority of these signatures exhibited optimal performance in

only one or two cohorts (Figure 3G).

In conclusion, our research offers important insights into the

predictive significance of CSI on immunotherapy results. Elevated

CSI levels could potentially hinder the advantages of

immunotherapy, whereas lower CSI levels have been linked to

better survival rates and treatment responses. Integrating CSI

with TMB could potentially improve the classification of patients

for immunotherapy.
Intrinsic somatic mutations and copy
number variation patterns of different CSI
group patients

Examining somatic mutations and copy number variations

(CNVs) as factors influencing both antitumor immunity and

tumor advancement (28), we analyzed the most commonly

mutated genes in various CSI categories (see Supplementary

Figure S1A). Among OV patients, TP53 exhibits the greatest

mutation rate, trailed by TTN and CSMD3. TMB stands for the

tally of somatic non-synonymous mutations in a specific genetic

area, usually expressed as mutations per megabase (mut/Mb). Prior

research has demonstrated a negative correlation between TMB and

the efficacy of immunotherapy (29). Notably, our investigation

revealed that the TMB levels were greater in patients from the

low-CSI category compared to those in the high-CSI group

(Supplementary Figure S1B, P<0.05). Consistent with this, the

SNV neoantigens and rate of nonsilent mutations were notably

elevated in the low-CSI group compared to the high-CSI cohort.

(Supplementary Figures S1C, D, P<0.05). In addition, Homologous

Recombination Repair (HRR), a key mechanism for repairing DNA

double strand breaks in cells, plays a critical role in maintaining the

stability and integrity of the genome. HRD refers to conditions that

occur when this repair mechanism is impaired, which may be due to

genetic mutations in key repair proteins (such as BRCA1 and

BRCA2) or dysfunction of other regulators. Prior research has

indicated that targeting HRD defects can be an effective strategy

for combating cancer. This includes not only conventional

treatments like chemotherapy and radiotherapy, which cause

DNA damage, but also newer approaches such as targeted

therapies and immunotherapies (30, 31). Consistently, our

research revealed that the Homologous Recombination Defects

rating was notably elevated in the low CSI group compared to the

high CSI group (Supplementary Figure S1E, P <0.001).

Furthermore, to assess the prevalence of CNV across various CSI

groups, we subsequently utilized the Genomic Identification of

Significant Targets in Cancer (GISTIC) algorithm. Notably, we

observed that the amplification GISTIC score was greater in

patients from the low CSI group than in those from the high CSI

group (Supplementary Figure S1F).
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FIGURE 3

Evaluating the cancer stemness index as a potent prognostic tool for immunotherapy outcomes across various cancer types. (A) Kaplan-Meier
survival curves depicting overall survival of patients undergoing immunotherapy in bladder cancer (UC, GSE176307), metastatic urothelial carcinoma
(IMvigor210), kidney renal clear cell carcinoma (KIRC, David (A) Braun et al., (26)), and melanoma (SKCM, GSE91061 and phs000452.v3.p1).
(B) Kaplan-Meier curves for progression-free survival of patients receiving immunotherapy in bladder cancer (UC, GSE176307), non-small cell lung
cancer (NSCLC, GSE135222), KIRC (David (A) Braun et al.), and melanoma (SKCM, Wang GY et al., 2022 and phs000452.v3.p1). (C) Immunotherapy
response rates in patients categorized by different CSI groups, with response defined as complete response (CR) or partial response (PR), and non-
response as progressive disease (PD) or stable disease (SD). (D) ROC curves of the CSI for predicting response status in various immune checkpoint
inhibitor (ICI) cohorts. (E) Multivariate Cox regression analysis of the CSI and clinical features in metastatic urothelial carcinoma (IMvigor210).
(F) Kaplan-Meier survival curves for overall survival in different patient groups within the IMvigor210, with log-rank P values comparing each pair of
groups displayed in the table. (G) Radar plot comparing the ROC values of eight ICI response prediction models and the CSI.
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Collectively, these findings further elucidate the rationale

behind the improved immunotherapeutic efficacy observed in

patients with lower tumor stemness and demonstrate that CSI

could serve as a prognostic indicator for predicting the

therapeutic benefits of ICIs in ovarian cancer.
The amplification of SNRPE promotes the
progress of ovarian cancer

To explore the clonal architecture and cell origins of ovarian

malignant cells, we initially obtained a single-cell RNA profile from

ovarian carcinoma. After filtering cells with a minimum expression

of 200 genes and excluded those with over 20% expression of
Frontiers in Immunology 09
mitochondrial genes, we grouped the residual cells into eight major

cell types based on traditional biomarkers. As described in

Figures 4A, B all cells divided into diverse cell populations

including B cells (MS4A1, and CD79A), Endothelial cells

(PLVAP, and VWF), Epithelial cells (KRT18, and EPCAM),

Fibroblasts (COL1A1, and ACTA2), Myeloid cells (LYZ, and

CD14), NK cells (KLRD1, and TRDC), Plasmablast cells

(JCHAIN, and MZB1), as well as T cells (CD3D, and IL7R).

Subsequently, the inferCNV algorithm was utilized to assess

copy number variations (CNV) and clonality in ovarian malignant

cells derived from epithelial cells (ECs). Among the 2807 ECs from

THCA tissues, 6230 displayed high CNV scores, indicating

malignancy (Figure 4C). Notably, amplifications in chromosomal

8q were identified as specific driving variations in ovarian cancer,
FIGURE 4

Single cell analysis uncovered the amplification of SNRPE promotes the progress of ovarian cancer. (A) UMAP plot showing the composition of 8 main
subtypes derived from OV malignant cells. (B) Heatmap showing expression of each cell markers in each cell type. (C) Heatmap showing copy number
variation of reference cells and epithelial cells. (D) Venn diagram showing the overlap between intratumoral heterogeneity (8q amplification) driven
genes, cancer cell develop associated genes and cancer stemness associated genes. (E) Kaplan-Meier curves for overall survival of ovarian patients
between SNRPE -high and -low groups (GSE31245 and GSE9891). (F) Box plots comparing SNRPE expression between early and advanced OV groups.
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with SNRPE amplification in chromosomal 8q being linked to

cancer stemness and essential for the survival of ovarian cell

(Figure 4D). Prior studies have indicated SNRPE’s role in

promoting cell growth and advancing high-grade prostate cancer

by controlling the expression of the androgen receptor [22740892].

Consistently, patients exhibiting high SNRPE expression

consistently demonstrated poorer prognoses compared to those

with low SNRPE expression (Figure 4E). Additionally, we observed

that elevated SNRPE expression was specifically linked to tumor

stage progression (Figure 4F).

Given that tumor heterogeneity and stemness play a crucial role

in immune evasion and response to immunotherapy, we analyzed

the TME among high and low SNRPE patients categorized based on

the optimal threshold established by the ‘survminer’ R package.

Tertiary lymphoid structures (TLS), which serve as germinal centers

for immune cells, were analyzed for the expression of various

interleukins associated with the formation of TLS and the

activation of immune responses. Our findings indicate that the

majority of these interleukins exhibited elevated expression levels in

the group with high SNRPE. Specifically, we found that patients

with low SNRPE expression showcased increased expression of

IL10RA, IL10RB, IL18, IL21R, IL2RA, IL2RB, IL2RG and IL9R

(Figure 5A). Additionally, numerous interferons along with their

receptors (for example, IFNE, IFNG, IFNAR2, IFNGR2) as well as

the majority of interleukins and their corresponding receptors were

linked to immune-activating transcripts. Our discovery revealed

that the levels of these interferons and receptors were elevated in the

low SNRPE group, a pattern that aligns with the inverse relationship

of interleukins within the tumor microenvironment (Figure 5B).

Furthermore, recognizing the importance of immune checkpoint

presence as a critical element in immunotherapy with ICIs, we

carried out an additional investigation into the levels of immune

checkpoints within two distinct groups. It is worth mentioning that

the expression levels of several checkpoints (such as HAVCR2/

TIM-3, ICOS, LAG3, LGALS9, PDCD1/PD-1, and PDCD1LG2/

PD-L2) were significantly higher in the low SNRPE group

compared to the high SNRPE group, indicating that higher

expression SNRPE patients may benefit from immunotherapy

benefit (Figure 5C). We also analyzed classical immune signatures

in each sample, and we found that the most immune signatures

were lower in high SNRPE group, suggesting that these immune cell

and immune function were suppressed (Figure 5D). These results

indicated that SNRPE might impact the effectiveness of

immunotherapy by regulating the expression of immune

checkpoints and immune microenvironment factors.

To further explore the mechanism of SNRPE on ovarian

malignant cells, we then divided malignant tumor cells into SNRPE

+ malignant cells and SNRPE- malignant cells according to whether

they expressed SNRPE. Through cell-cell interaction analysis, after

eliminating common cell communication pairs, we found that

SNRPE+ malignant cells had significantly higher specific cell

communication with endothelial cells and fibroblasts than SNRPE-

malignant cells (Figure 5E). Hence, we speculated that SNRPE+

malignant may promote tumor invasion and migration by

promoting endothelial mesenchymal transformation. Interestingly,
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we found that NOTCH signaling pathway (DLL1_NOTCH1,

JAG1_NOTCH2, NOTCH1_JAG1, and DLL4_NOTCH3), TGFb1
signaling pathway (TGFB1_TGFBR3, TGFB1_TGFbeta receptor1,

and TGFB2_TGFBR3) and VEGF signal ing pathway

(NRP1_VEGFA, and VEGFA_KDR) were significantly activated in

cell communication pairs between SNRPE+ malignant cells and

endothelial cells (Figure 5F). Then, we reclustered the tumor cells

and found high expression of SNRPE in the C3 and C4

subpopulations (Supplementary Figures S2A, B). Using the

HALLMARK pathway scoring, we identified that C3 can

be defined as the EMT subpopulation, characterized by high

activity in EMT signaling pathways. On the other hand, C4 can be

defined as the proliferative subpopulation, characterized by the

activation of proliferation-related pathways, including

E2F_TARGETS, G2M_CHECKPOINT, MYC_TARGETS_V1, and

MYC_TARGETS_V2 (Supplementary Figure S2C). Additionally,

through analysis of cell-cell communications, we further discovered

that the interaction intensity between SNRPE+ malignant cells and

endothelial cells was significantly higher than that between SNRPE-

malignant cells and endothelial cells (Supplementary Figure S2D).

These findings further demonstrate how SNRPE enhances tumor cell

proliferation and invasion. Furthermore, a univariate Cox regression

analysis of the pan-cancer cohorts revealed that SNRPE expression

was negatively correlated with prognosis across multiple cancer types,

including Adrenocortical Carcinoma (ACC), Head and Neck

squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH),

Kidney renal clear cell carcinoma (KIRC), liver hepatocellular

carcinoma (LIHC), Brain Lower Grade Glioma (LGG), Lung

adenocarcinoma (LUAD), and Pheochromocytoma and

Paraganglioma (PCPG) (Supplementary Figure S3A).

Immunohistochemistry analysis revealed a marked increase in

CSE1L expression in tumor tissues relative to the adjacent non-

cancerous tissues (Figure 6A). To further validate SNRPE’s

oncogenic role in ovarian cancer, SNRPE was knocked down in

OVCAR-3 and A2780 cell lines, effectiveness confirmed at the

protein-level through western blot analyses (Figure 6B).

Significantly, SNRPE knockdown markedly suppressed cell

proliferation in both OVCAR-3 and A2780 cell lines (Figure 6C),

underscoring SNRPE’s contribution to promoting ovarian cancer

cell growth. This was further supported by reduced clonogenic

capacity in SNRPE knockdown cells compared to controls

(Figure 6D), highlighting SNRPE’s involvement in fostering

growth in ovarian cancer cells. Notably, transwell migration

assays revealed decreased cell migration upon SNRPE depletion

in OVCAR-3 and A2780 cell lines (Figure 6E).

Concurrently, SNRPE overexpression in SK-OV-3 cells was

val idated through western blot analyses (Figure 6F),

demonstrating its significant enhancement of proliferation

(Figure 6G). Furthermore, SNRPE overexpression notably boosted

clonogenic potential and significantly increased migration

capability in SK-OV-3 cells (Figures 6H, I).

In summary, the amplification of SNRPE can drive the

progression of ovarian malignant cells and it may serve as an

efficient biomarker in foresee ing the prognos is and

immunotherapy response in ovarian cancer.
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Discussion

Tumor heterogeneity and stemness play key roles in influencing

tumor immune evasion and the efficacy of immunotherapy.

Numerous studies have explored the association between cancer

stemness and the ICI response against tumors (6, 7). However,

currently, there is no direct evidence linking tumor stemness to the

response to ICI in OV. Furthermore, previous research has failed to
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acknowledge the predictive ability of tumor stemness in

determining the response to ICI in OV (11).

In this research, we initially used a stemness index from a

previous publication to identify mRNAs linked to tumor stemness

by analyzing various omics data, such as transcriptome and CRISPR

cell line data (10). Subsequently, to investigate the correlation

between tumor stemness and immunotherapy, we examined a

single-cell dataset of PD1/PD-L1 ICI-treated cells (12). It should
FIGURE 5

Investigating immune landscapes related to SNRPE expression. (A, B) Box plots comparing expression of interleukins, interferons and their receptors
between low and high SNRPE groups. (C) Box plots for checkpoint expression comparison. (D) Normalized ssGSEA scores of classical immune
signatures in the two groups. (E) Bar plots showing cell communication numbers between SNRPE- or SNRPE+ malignant cells and other cell types.
(F) Dot plot depicting cell communication pairs of malignant cells (stratified by SNRPE status) with endothelial cells. Wilcoxon test; *P<0.05,
**P<0.01, ***P<0.001.
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be emphasized that we observed an inverse relationship between

cancer stemness and the responses to ICI. CSCs are specialized cells

that play a critical role in tumor initiation, progression, and

spreading (6). Additionally, our KEGG enrichment analysis of
Frontiers in Immunology 12
genes associated with cancer stemness showed a significant

enrichment in pathways such as Cell cycle, DNA replication,

Mismatch repair, Nucleotide excision repair, and Base excision

repair. A previous investigation highlighted that the abnormal
FIGURE 6

SNRPE promotes proliferation and migration of ovarian cancer in vitro. (A) Immunohistochemistry analysis revealed a marked increase in CSE1L
expression in tumor tissues relative to the adjacent non-cancerous tissues. (B) Knockout of SNRPE in OVCAR-3 and A2780 cell lines validated by
Western Blotting analysis. (C) The proliferative abilities of SNRPE knockout ovarian cancer cells detected with CCK8 assay. (D) The clone formation
abilities of SNRPE knockout OVCAR-3 and A2780 cell lines. (E) The migrating abilities of SNRPE knockout OVCAR-3 and A2780 cell lines evaluated
with transwell assay. Scale bar, 100 mm. (F) Overexpression of SNRPE validated by Western Blotting analysis in SK-OV-3 cells. (G) The proliferative
abilities of SNRPE overexpressing SK-OV-3 cells detected with CCK8 assay. (H) The clone formation abilities assessed in SK-OV-3 cells upon SNRPE
overexpression. (I) The migrating abilities of SK-OV-3 cells detected by transwell assay upon SNRPE overexpression. Scale bar, 100 mm. T test; **P <
0.01; ***P < 0.001.
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activation of the cell cycle pathway can lead to an increase in the

expression of transcription factors like CDK, MKI67, and p53,

which may support the occurrence and sustenance of tumor

stemness (32). Besides, improved DNA repair ability readied

cancerous cells for harsh surroundings (33). Our findings aligned

with prior research and proposed that the gene set linked with

cancer stemness which we revealed could strongly and uniquely

correspond with cancer stemness.

Then, to assess the impact of tumor stemness genes on the

prognosis of ovarian cancer patients, we employed various machine

learning techniques to create a predictive model for CSI. This

model’s performance was then validated in eight separate datasets

using a variety of assessment measures. Ultimately, the RSF model

was chosen as the optimal CSI due to its increased stability and

accuracy compared to the 79 previously established models.

Notably, our research highlighted the CSI’s effectiveness in

predicting the response to PD-1 immune checkpoint inhibitors in

ovarian cancer (11). Prior investigations have indicated a

correlation between tumor stem cells and immune checkpoint

inhibitor effectiveness. Building on these findings, we

hypothesized that the CSI could be widely applicable for

forecasting immunotherapy responses in various cancer types. As

a result, we conducted an extensive analysis to evaluate the CSI’s

precision in predicting immunotherapy responses in other cancer

types. Impressively, the CSI displayed exceptional accuracy in

predicting ICI responses across diverse datasets utilizing bulk

RNA-Seq data, with an average AUC exceeding 0.8. Additionally,

our CSI demonstrated superior predictive capabilities compared to

eight existing ICI response prognostic models. Notably, leveraging

the IMvigor 210 dataset, we found that the CSI had better

prognostic accuracy for post-immunotherapy patients compared

to TMB. Our analysis also identified significantly different survival

rates between low and high TMB patients. These results highlight

the CSI’s impressive predictive ability for both prognosis and

immunotherapy outcomes in cases of ovarian cancer.

The quantity of neoantigens on tumor cells is determined by

intrinsic variations within the tumor, which in turn impacts the

immune system’s ability to recognize and combat the tumor (34, 35).

TMB serves as a crucial biomarker for predicting the effectiveness of

immune checkpoint inhibitors. Clinical research has consistently

shown that patients with high TMB tumors have a higher rate of

clinical benefit when treated with these inhibitors (34, 36). Our

research revealed a significant negative correlation between TMB

levels, SNV neoantigens, nonsilent mutation rates, and CSI. Previous

studies have indicated that HRD defects can be targeted by various

anti-cancer treatments, including chemotherapy, radiotherapy,

targeted therapies, and immunotherapies (30, 31). Notably, the

level of HRD was found to be higher in the low CSI group as

opposed to the high CSI group. Additionally, the GISTIC score was

also observed to be higher in patients from the low CSI group

compared to those in the high CSI group. Overall, CSI may

provide valuable insights into the immune resistance mechanisms

of high TMB tumors, underscoring its significance as a predictive

biomarker for immune checkpoint inhibitors.

The tumor microenvironment has been established as a vital

factor in the progression of various types of tumors. Tumor
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immune cell subpopulations vary among different tumor types

and even among patients with the same pathological type (37).

Through our selection process, we identified that SNRPE, correlated

with the amplification of the long arm of chromosome 8, is linked to

tumor stemness and encourages tumor cell proliferation. Previous

research has demonstrated that SNRPE facilitates HCC

tumorigenesis by regulating FGFR4 expression via alternative

splicing mechanisms (38). In addition, we observed that patients

with high SNRPE levels exhibited suppressed APC co-stimulation,

Cytolytic activity, and HLA signatures, indicating that SNRPE can

impede the activation and cytotoxic function of immune cells.

Tertiary lymphoid structures function as germinal centers for

immune cells within the tumor microenvironment. In our study, we

evaluated the expression levels of various interferons, interleukins,

and their corresponding receptors that play roles in the formation

of TLS (39). Our analysis demonstrated a considerable negative

correlation between SNRPE expression and the levels of

interleukins and interferons. Immune checkpoint inhibitors have

emerged as a promising treatment strategy for advanced cancer.

Higher levels of immune checkpoints facilitate tumor immune

evasion and indicate a greater likelihood of response to these

inhibitors. Additionally, we identified that several key immune

checkpoints, such as TIM-3/HAVCR2, LAG3, PD-1/PDCD1, and

PD-L2/PDCD1LG2, were significantly upregulated in the low

SNRPE group. High expression of PD-L1 on tumor cells can bind

to PD-L1 receptors on immune cells, initiating negative regulatory

signals that impair T cell recognition of cancer cells, thereby

allowing the tumor cells to evade the immune response (40).

These results imply that patients with low SNRPE expression

show an enhanced response to ICIs, likely due to the inhibition of

TME components that support tumor progression, including the

NOTCH1 signaling cascade, tumor necrosis factor (TGFB), and

VEGF pathways. Furthermore, our findings confirmed that the

overexpression of SNRPE notably boosted the proliferation and

invasion abilities of ovarian cancer cells, indicating its potential as a

therapeutic target for this type of cancer. In summary, these results

suggest that SNRPE could affect the efficacy of immunotherapy by

modifying the composition of the tumor microenvironment and

influencing the recruitment of immune cells through its effects on

chemokines and immune checkpoints.

While it is important to highlight the impressive accuracy of the

CSI in predicting the success of immunotherapy, it is essential to

acknowledge certain limitations in this study. The ability of the OV

model to forecast outcomes of immunotherapy for ovarian cancer is

based on projections generated by the submap algorithm, and the

reliability of the CSI requires validation using real OV ovarian

cancer immunotherapy groups.
Conclusion

In summary, we have developed a reliable and consistent

signature of CSCs by conducting an integrated analysis of

CRISPR OV cell lines, large-scale OV tissues, and single-cell

cohorts. This signature allows for the classification of OV patients

and the prediction of outcomes for immunotherapy. Our research
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represents a groundbreaking exploration into the association

between cancer stemness and immunotherapy in OV. It

establishes a solid framework for understanding the importance

of cancer stemness in immuno-oncology, clinical benefits, and

practical implications. Based on our discoveries, this study

enhances our comprehension of the link between cancer stemness

and immunotherapy in OV, presenting new possibilities for

treatment strategies.
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SUPPLEMENTARY FIGURE 1

Analysis of intrinsic somatic mutations and copy number variation patterns in

ovarian cancer (OV) patients with differing CSI levels. (A) Waterfall plot
depicting the mutation frequency of the top 15 genes in OV. (B-E) Box

plots comparing tumor mutation burden, single nucleotide variant
neoantigens, nonsilent mutation rate, and homologous recombination

defects between low- and high-CSI groups. (F) GISTIC scores for low- and
high-CSI groups in OV patients. (Wilcoxon test; * P < 0.05; ** P < 0.01; *** P

< 0.001).

SUPPLEMENTARY FIGURE 2

SNRPE is highly expressed in EMT and proliferative tumor cells. (A) TSNE plot
showing the composition of 5 main subtypes derived from OV malignant

cells. (B)Dotplot showing the expression of SNRPE inmalignant cell subtypes.
(C) Dotplot showing the score of HALLMARK pathways in malignant cell

subtypes. (D) There is a significant difference in cell-cell communication

strength between SNRPE+ malignant and SNRPE- malignant cells with
endothelial cells.

SUPPLEMENTARY FIGURE 3

Pan-cancer validation of the association between SNRPE and prognosis. (A)
Univariate Cox regression analysis reveals a significant association between

SNRPE and poor prognosis in various cancers.
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