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The thymus is a central organ that controls T cell development. Thymic epithelial

cells (TECs) create a unique microenvironment essential for the differentiation of

major histocompatibility complex (MHC)-restricted and self-tolerant T cells.

TECs present a complex of self-peptides and MHC molecules (self-pMHCs) to

immature T cells and regulate their survival and differentiation based on their

affinity for self-pMHCs. The processing of self-peptides in TECs depends on bulk

protein degradation systems, specifically autophagy and proteasomes. Studies

using autophagy- and proteasome-deficient mouse models have demonstrated

that these degradation systems in TECs are indispensable for maintaining

immune homeostasis. Although autophagy and proteasomes are ubiquitous in

nearly all eukaryotic cells, TECs exhibit unique characteristics in their autophagy

and proteasome functions. Autophagy in TECs is constitutively active and

independent of stress responses, while TEC proteasomes contain specialized

catalytic subunits. This review summarizes the distinctive characteristics of

autophagy and proteasomes in TECs and their roles in immune

system regulation.
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1 Introduction

The thymus is the central organ responsible for producing immunocompetent T cells.

Within the thymus, thymic epithelial cells (TECs) create a specialized microenvironment for

the generation of T cells that express major histocompatibility complex (MHC)-restricted and

self-tolerant T-cell receptors (TCRs) (1, 2). TECs are categorized into two major subtypes

based on their localization: cortical thymic epithelial cells (cTECs) and medullary thymic

epithelial cells (mTECs) (3–5). Bone marrow-derived T cell progenitors enter the thymus
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1488020/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1488020/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1488020/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1488020/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1488020/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1488020&domain=pdf&date_stamp=2024-10-25
mailto:yamaguchinoritaka@chiba-u.jp
mailto:taishin.akiyama@riken.jp
https://doi.org/10.3389/fimmu.2024.1488020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1488020
https://www.frontiersin.org/journals/immunology


Yamaguchi et al. 10.3389/fimmu.2024.1488020
through blood vessels at the corticomedullary junction of the thymic

lobules. The CD4–CD8– double-negative (DN) immature

thymocytes then migrate to the outer cortex, where they interact

with cTECs and differentiate into CD4+CD8+ double-positive (DP)

T cells that express a diverse repertoire of TCRs. These DP cells

undergo positive selection through interactions with cTECs

displaying self-peptide–MHC complexes (self-pMHCs) (6–8).

During this process, cTECs present self-pMHCs to DP cells and

facilitate their survival and differentiation into CD4 or CD8 single-

positive T cells (CD4 or CD8 T cells) that express TCRs with

moderate affinity for self-pMHCs. MHC class I (MHC-I) and

MHC class II (MHC-II) molecules present self-peptides to CD8

and CD4 T cells, respectively. Positively selected T cells migrate

into the medulla and interact with mTECs. mTECs express a wide

variety of peripheral tissue-specific antigens, in part through the

function of the transcriptional regulator Aire (9), and also by

replicating peripheral tissue-specific gene expression programs, a

function carried out by the recently identified subset of mimetic

TECs (10). T cells bearing a TCR with a high affinity for self-pMHC

on mTECs undergo apoptosis during negative selection (7, 9).

Alternatively, strong TCR signaling facilitates translocation of self-

reactive CD8 T cells from thymus to the periphery and their

development into mature and self-tolerant clones (11). Interactions

between T cells and mTECs also promote the differentiation of

immunosuppressive regulatory T cells (Tregs) in the thymus (12, 13).

The generation of self-peptides in TECs depends on bulk

protein degradation systems, such as autophagy and proteasomes,

which are ubiquitously present in eukaryotic cells and regulate

various biological processes, including cell survival, proliferation,

differentiation, and death (14). Compared with dendritic cells,

which rely on the capture of exogenous proteins by endocytosis

for processing of peptides for MHC-II, TECs are less active in

endocytosis to present exogenous peptides (15, 16). Therefore, it is

reasonable that TECs utilize cytoplasmic protein degradation

systems, i.e. autophagy and proteasomes, for processing of self-

peptides from endogenous self-antigens. Interestingly, autophagy

and proteasomes in TECs exhibit unique characteristics compared

with those in other cell types. While autophagy activation in most

cells depends on cellular stress, autophagy in TECs is constitutively

active and appears to be independent of stress responses (17, 18).

Additionally, proteasomes in TECs contain unique catalytic

subunits (19, 20). These distinctive characteristics are crucial for

the processing of self-peptides and the selection of T cells (14). This

review focuses on the molecular processes and functions of

autophagy and proteasomes in TECs.
1.1 General Mechanisms of Autophagy

Autophagy, originally identified as a process to accelerate

material and energy recycling, involves the digestion of proteins

and organelles via autophagy-specific double-membrane vesicles

that fuse with lysosomes, forming autophagosomes. This non-

selective bulk autophagy is known as macroautophagy (21–23).

Under non-starvation conditions, the mechanistic/mammalian

target of rapamycin (mTOR) complex (mTORC1) suppresses
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autophagy by inactivating Unc51-like kinase 1 (ULK1), a protein

kinase implicated in autophagy initiation. Starvation reduces

mTOR activity, leading to the activation of ULK1 (24, 25).

Activated ULK1 then phosphorylates proteins involved in

autophagy initiation, including beclin-1, a key protein that

activates vacuolar protein sorting 34 (VPS34) (26). VPS34, a

catalytic subunit of class III phosphatidylinositol 3-kinase (PI3K),

plays a role in endocytosis, intracellular vesicular trafficking, and

autophagosome formation (27).

Autophagy is not limited to starvation; it is also activated by

various forms of cellular stress, such as mitochondrial damage,

oxidative stress, and hypoxia. The selective autophagy of

mitochondria, known as mitophagy, has gained considerable

attention (22, 28). Mitochondrial damage, primarily caused by

reactive oxygen species (ROS), causes mitophagy via phosphatase

and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)

and the E3 ubiquitin ligase, Parkin (29, 30).
1.2 Role of autophagy in TECs in T cell
selection and development

Autophagy in TECs has been primarily observed in autophagy

reporter transgenic mice that ubiquitously express a green

fluorescent protein (GFP)-fused form of microtubule-associated

protein light chain 3 (LC3), which is crucial for autophagosome

formation. In TECs, constitutive activation of autophagy occurs

even in the absence of starvation or infection, indicating that

autophagy is triggered by stress-independent mechanisms (17).

As TECs are less active in endocytosis to present exogenous

peptides, autophagy is likely to highly active to process

endogenously expressed self-peptides in TECs (15, 16). Studies of

purified thymic stromal cells revealed that cTECs exhibited higher

autophagic activity than mTECs. The role of autophagy in TECs

was initially investigated using autophagy-deficient mice with a

targeted disruption of Atg5, a gene essential for autophagosome

formation (18). Transplantation of an Atg5-deficient thymus into

athymic nude mice showed that autophagy deficiency did not affect

overall T cell development. However, it impaired the shaping of the

T cell repertoire and led to severe colitis and multi-organ

inflammation in the recipient nude mice, indicating that

autophagy in TECs is required for the selection of the T cell

repertoire and the establishment of tolerance (18). While this

study could not determine whether self-tolerance induction was

ascribed to autophagy in mTECs or cTECs, subsequent studies

suggested that autophagy supports the loading of antigens

expressed by Aire+ mTECs onto MHC-II for the negative

selection of CD4 T cells (31).

The role of autophagy in MHC class II-mediated CD4 T cell

development has also been explored in mice lacking genes crucial

for lysosomal-autophagosomal proteolysis and autophagosome

formation. The lysosomal endopeptidase cathepsin L is highly

expressed in cTECs and regulates the processing of MHC-II

invariant chain (Ii) and generation of self-peptides for MHC-II-

mediated CD4 T cell development (32, 33). Endosomal and

lysosomal thymus-specific serine protease (TSSP) contributes to
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the diversification of the functional CD4 T cell repertoire in the

thymus (34, 35). Lysosomal-associated membrane protein 2

(LAMP2) is a lysosomal protein that promotes the fusion of

autophagic vacuoles with lysosomes during macroautophagy (36,

37). LAMP2 is highly expressed in cTECs. Although deletion of

Lamp2 in thymic stromal cells did not affect the overall

differentiation of cTECs and mTECs, it specifically impaired CD4

T cell development without affecting the CD8 lineage.

Mechanistically, inactivation of autophagy in Lamp2-deficient

cTECs caused defects in MHC-II processing, leading to a marked

reduction in CD4 TCR repertoire diversity (38).

The role of VPS34, a catalytic subunit of class III PI3K, in TECs

was elucidated by the TEC-specific disruption of Vps34 in mice.

Loss of VPS34 in TECs resulted in almost complete inactivation of

autophagy in both cTECs and mTECs and abolished the positive

selection of CD4 T cells without affecting CD8 T cells. TCR

sequencing revealed that deletion of Vps34 in TECs altered T cell

repertoire properties and reduced clonal sharing. cTECs lacking

Vps34 exhibited an increased abundance of invariant chain

intermediates bound to surface MHC class II molecules,

indicating altered antigen processing (39). Collectively, autophagy

deficiency due to the deletion of Lamp2 or Vps34 in TECs

demonstrates that autophagy is indispensable for the processing

of self-pMHC class II complexes in TECs and the generation of a

broad CD4 TCR repertoire (Figure 1).
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1.3 Molecular mechanisms of autophagy
in TECs

While the importance of autophagy in TECs for T cell selection

and development has been established in autophagy-deficient

mouse models, the molecular mechanisms underlying autophagy

in TECs remain unclear. Autophagy in TECs is constitutively active

and should be dependent on specific mechanisms that may differ

from those of typical autophagy (17, 18).

C-type lectin domain family 16A (CLEC16A) is a membrane-

associated endosomal protein that functions as an E3 ubiquitin ligase

and is implicated in various autoimmune disorders, such as multiple

sclerosis, type 1 diabetes, and systemic lupus erythematosus (40).

Genetic evidence has demonstrated the involvement of CLEC16A in

autophagy in various cell types (41–43). A previous study showed

that whole-body knockdown ofClec16a in non-obese diabetic (NOD)

mice with type 1 diabetes reduced autophagic activity in cTECs and

affected T cell selection in the thymus. Interestingly, while Atg5

disruption causes autoimmunity, Clec16a knockdown mice exhibit T

cell hyporeactivity and suppression of autoimmune phenotypes, even

though both impair autophagy activity in TECs (44). Although the

exact mechanism behind the suppression of autoimmunity by

Clec16a deficiency is unclear, CLEC16A-dependent autophagy in

TECs may regulate T cell maturation without significantly impacting

the T cell repertoire.
FIGURE 1

Model depicting autophagy- or proteasome-mediated processing of self-peptides in cTECs and mTECs. Self-antigens expressed in TECs are
processed into self-peptides by autophagy or proteasomes and then loaded onto MHC-II or MHC-I molecules, respectively. ATG5 and VPS34 are
required for autophagy in cTECs and mTECs. LAMP2, CLEC16A, and hydrogen peroxide (H2O2) are involved in autophagy in cTECs. C15ORF48 is
closely associated with autophagy initiation in mTECs and, to a lesser extent, in cTECs. Thymoproteasomes and immunoproteasomes are expressed
in cTECs and mTECs, respectively, with distinct catalytic subunits and substrate-processing activities. Post-translational modifications, such as
ubiquitination, may be involved in substrate recognition by autophagy and proteasomes.
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mTOR is a key regulator of various biological processes,

including cell growth, differentiation, and autophagy (45). The

role of mTOR in TECs was investigated using pharmacological

inhibition of mTOR kinase activity and TEC-specific deletion of

Mtor. The mTOR inhibitor rapamycin induces severe thymic

atrophy and reduces the number of TECs. TEC-specific deletion

of Mtor caused a significant reduction in mTECs, defects in

thymocyte differentiation, and autoimmune phenotypes, such as

multi-organ immune cell infiltration and autoreactive antibodies in

sera. Mechanistically, deletion of Mtor in TECs led to upregulation

of autophagy-mediated degradation of b-catenin and inactivation of

Wnt/b-catenin signaling, suggesting that mTOR promotes TEC

development and maturation by suppressing autophagy-mediated

over-degradation of b-catenin (46). Since the role of mTOR in

autophagy-dependent processing of self-peptides in TECs remains

unclear, further studies on the role of mTOR in TECs are needed.

H2O2 is a relatively long-lived, cell-permeable ROS that acts as an

inducer of autophagy (47). H2O2 activates AMP-activated protein

kinase (AMPK) in conjunction with a decrease in the ATP: AMP

ratio (48), leading to ULK1-mediated autophagy. Additionally, H2O2

enhances the oxidation of ATG4, thereby inactivating the LC3-

delipidation activity and promoting autophagosome formation (49).

H2O2 also initiates autophagy by altering the thiol redox state (50),

inhibiting mTOR signaling (51), and inducing beclin-1 expression (52).

cTECs exhibit low expression of the H2O2-quenching enzyme catalase,

suggesting the involvement of H2O2 in autophagy within these cells

(53). This involvement has been studied using transgenic mice stably

expressing mitochondria-targeted human catalase (mCat Tg). mCat Tg

mice showed a significant reduction in mitochondrial H2O2 levels and

autophagy in cTECs without affecting mTECs. Furthermore, these mice

exhibited defects in the clonal deletion of thymocytes and developed

autoimmune phenotypes, such as increased tissue infiltration of

lymphocytic cells and serum antinuclear antigen reactivity (54). These

findings suggest that the production of H2O2, facilitated by the low

expression of catalase, induces constitutive autophagy and regulates the

clonal deletion of T cells in cTECs (Figure 1).

Recently, our studies have demonstrated that the mitochondrial

protein chromosome 15 open reading frame 48 (C15ORF48) plays a

crucial role in initiating autophagy in TECs (55). C15ORF48 functions

as an accessory subunit of the electron transport chain complex IV,

where it suppresses cytochrome c oxidase activity (56, 57). We

identified C15ORF48 as an inducer of autophagy in human lung

cancer cells. Notably, C15ORF48 promotes autophagy independently

of mTOR phosphorylation, which is an indicator of starvation stress, or

mitophagic activity. This suggests that C15ORF48 initiates autophagy

independently of starvation stress or mitochondrial damage.

C15ORF48 has been shown to lower the mitochondrial membrane

potential and reduce intracellular ATP levels, thereby activating the

pro-autophagic signaling pathway AMPK-ULK1. Single-cell RNA

sequencing analysis of thymic cells revealed high expression levels of

C15orf48 in both cTECs and mature mTECs. Importantly, whole-body

C15orf48 knockout mice showed significant reduction in autophagy in

mTECs and, to a lesser extent, in cTECs. Moreover, C15orf48-deficient

mice exhibited autoimmune features, including the production of self-

reactive antibodies in the serum, multi-organ infiltration of

inflammatory cells, and glomerulitis-like IgG accumulation in the
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kidneys. Transplantation of C15orf48-deficient thymic stroma into

athymic nude mice resulted in similar autoimmune phenotypes.

Global T cell development remained largely unaffected by C15orf48-

deficiency, except for a slight reduction in mature CD4 T cells. Thus,

this study highlights the role of C15ORF48 in the induction of stress-

independent autophagy in TECs, likely independent of mitophagy, and

suggests it may shape the T cell repertoire by regulating T cell selection,

particularly in mTECs (55) (Figure 1). Future studies are needed to

explore the impact of C15orf48-deficiency on the T cell repertoire.
1.4 Thymoproteasomes in cTECs

Proteasomes are multicatalytic complexes that regulate protein

degradation. In general, ubiquitination of target proteins is a hallmark

of proteasome-mediated degradation (58). The cytosolic proteasome is

a 26S protein complex consisting of a 20S enzymatic core particle

flanked by two 19S regulatory particles. The 19S regulatory particles

recognize ubiquitinated target proteins. The 20S core particle is a

multicatalytic protease complex composed of 28 subunits arranged

cylindrically into four heteroheptameric rings: a1-7, b1-7, b1-7, and
a1-7. Within the proteasome, the b1, b2, and b5 subunits function as

catalytic components (58). Peptides processed by proteasomes in the

cytosol are translocated into the lumen of the endoplasmic reticulum

(ER) by a transporter associated with antigen processing (TAP) and

subsequently loaded onto MHC-I molecules (59). cTECs uniquely

express the catalytic subunit b5t (Psmb11), which forms a specialized

proteasome known as the thymoproteasome (19). The b5t subunit has
altered proteolytic activity that leads to the preferential cleavage of

proteins at hydrophilic peptide residues, reduced chymotrypsin-like

activity, and reduced enzyme kinetics compared with b5 (60). The

b5t-containing proteasome generates peptides with not only different

amino acid residues but also different quantities from those produced

by other proteasomes, and these quantitative and qualitative

differences may lead to the presentation of unique MHC-I-

associated peptides (61, 62). Targeted disruption of Psmb11 leads to

defects in the maturation of CD8 T cells, alterations in the TCR

repertoire, and impaired T cell responses (19, 63, 64). Since

proteasomes in TECs are crucial for generating peptides presented

by MHC-I molecules (65), these findings indicate that

thymoproteasomes contribute to the generation of self-peptides

necessary for the positive selection of CD8 T cells (Figure 1).
1.5 Immunoproteasomes in mTECs

mTECs express a different type of proteasome, the

immunoproteasome, which contains the catalytic subunits b1i
(Psmb9), b2i (Psmb10), and b5i (Psmb8) (20, 62). Psmb8, Psmb9, and
Psmb10 triple knockout mice showed a reduction in CD8 T cells and

decreased expression of MHC-I in the thymus. Mass spectrometry

analysis of peptides associated with MHC-I revealed that

immunoproteasome deficiency altered the MHC-I-associated peptide

repertoire (66). The peptide-processing-independent role of the

immunoproteasome in mTECs was shown in Psmb8 and Psmb10

double knockout (dKO) mice. These mice exhibited low expression of
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Psmb9, which rendered them almost complete deficiencies in

immunoproteasomes. dKO mice exhibited accelerated thymic

involution, characterized by a reduction in CD8 T cells and mTECs,

as well as the induction of multiorgan autoimmune manifestations. Loss

of Psmb8 and Psmb10 led to proteotoxic stress in mTECs, resulting in

the exhaustion of postnatal mTEC progenitors (67). These findings

suggest that the immunoproteasome plays a crucial role in generation of

MHC-I-associated self-peptides and maintaining mTEC homeostasis,

thereby supporting MHC-I-mediated CD8 T cell selection.

The thymus lacking thymoproteasomes and immunoproteasomes

was examined in Psmb8, Psmb9, Psmb10, and Psmb11 quadruple

knockout (4KO) mice. The 4KO mice showed a severe defect in

generation of CD8 T cells without affecting that of CD4 T cells. Loss

of thymoproteasomes and immunoproteasomes increased apoptosis-

dependent negative selection of CD8 T cells in the thymus (68). These

results suggest that the restricted expression of thymoproteasomes and

immunoproteasomes in the thymus is likely to promote a switch in the

self-peptides presented by cTECs and mTECs. The difference in self-

peptides displayed in the cortex and the medulla may be crucial for

eviction of positively selected thymocytes from subsequent negative

selection and the development of CD8 T cells (62).
2 Discussion

Autophagy- or proteasome-deficient mouse models have

demonstrated the indispensability of these proteolytic systems in

TECs for the processing of self-peptides and the selection and

differentiation of T cells. However, molecular details about how

autophagy and proteasomes in TECs selectively degrade self-

peptides have been largely unknown. Most likely, the reason of this

limitation is the difficulty in isolation of enough amount of primary

TECs from thymus for biochemical and cell biological analyses (16,

69). Ubiquitination functions as a signal for substrate recognition in

autophagy as well as proteasome-mediated degradation (22, 58).

Ubiquitinated proteins interact with the autophagy machinery

through autophagy adaptors and promote autophagosome

formation (70). Therefore, it is plausible that the ubiquitination of

self-peptides regulates their processing by autophagy and

proteasomes in TECs. However, whether self-peptides are

ubiquitinated in TECs remains unclear. As CLEC16A can associate

with ubiquitin ligases and deubiquitinases (71–73), CLEC16Amay be

involved in ubiquitination of self-peptides in TECs. A study on the

post-translational modifications of self-peptides in TECs would be

instrumental in understanding the mechanisms underlying

autophagy-mediated selective processing of self-peptides.

Recent studies have revealed that mTECs express lineage-defining

transcription factors and convert themselves into mimetic TECs that

possess characteristics of various peripheral-tissue cells (10). It is

obscure whether these mimetic TECs utilize constitutive autophagy

and immunoproteasomes for processing of self-peptides as observed

in mTECs. Given that Aire is involved in accumulation of mimetic

TECs (10) and that C15orf48 is highly expressed in Aire+ mature
Frontiers in Immunology 05
mTECs (55), mimetic TECs may have at least C15ORF48-dependent

constitutive autophagy for processing of self-peptides. This hypothesis

should be examined by isolating mimetic cells from thymus.

In conclusion, considering the importance of autophagy and

proteasomes in TECs for the development and selection of

immunocompetent T cells, understanding the molecular

mechanisms of these protein degradation systems is essential for

gaining insights into the nature of the immune system and

immune-associated disorders. Therefore, the relationship between

autophagy and proteasomes in TECs and human autoimmune

diseases warrants further investigation.
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