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Background: Preeclampsia (PE) is a pregnancy complication characterized by

hypertension, proteinuria, endothelial dysfunction, and complement

dysregulation. Placenta-derived extracellular vesicles (EVs), necessary in

maternal–fetal communication, might contribute to PE pathogenesis.

Moreover, neutrophil extracellular traps (NETs) play a pathogenic role in other

complement-mediated pathologies, and their contr ibution in PE

remains unexplored.

Materials and methods: EVs were isolated from PE (peEVs) and normotensive

pregnant women sera. NETs were obtained incubating donor-pre-activated

neutrophils with PE or control sera. Microvascular (HMEC) endothelial cells

(ECs) were incubated with PE or control sera with or without (depleted sera)

EVs or NETs, to assess changes in VCAM-1, ICAM-1, VE-cadherin, eNOS, VWF,

ROS, and C5b-9 deposits. Results were expressed as fold increase vs. control.
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Results: VWF, VCAM-1, and ROS expression was significantly higher in cells

exposed to PE sera vs. control (12.3 ± 8.1, 3.6 ± 2.3, and 1.8 ± 0.2, respectively, p <

0.05), though significantly lower in cells exposed to depleted PE (dPE) sera (6.1 ±

2.7, 0.7 ± 0.6, and 1.2 ± 0.1, respectively, vs. control, p < 0.05). EC exposure to

depleted control sera supplemented with peEVs (dC+peEVs) significantly

increased VWF, VCAM-1, and ROS compared to non-supplemented sera (4.5 ±

0.3, 2.8 ± 2.0, and 1.4 ± 0.2, respectively, p < 0.05). ICAM-1, VE-cadherin, and

C5b-9 did not differ among groups. ECs incubated with PE-NETs increased VWF

and VCAM-1 and decreased VE-cadherin expression vs. control (4 ± 1.6, 5.9 ± 1.2,

and 0.5 ± 0.1, respectively, p < 0.05), and notably increased C5b-9 deposit (7.5 ±

2.9, p < 0.05). ICAM-1 and ROS did not differ.

Conclusions: Both circulating EVs and NETs from PE pregnant women exhibit a

deleterious effect on ECs. Whereas EVs trigger a pro-oxidant and

proinflammatory state, NETs potentiate the activation of the complement

system, as already described in PE.
KEYWORDS

pre-eclampsia, exosome, neutrophil activation, endothelium, complement membrane

attack complex, oxidative stress
Introduction

Preeclampsia (PE) is a pregnancy-specific complication that

affects 2%–8% of all pregnancies and is the leading cause of

maternal and neonatal mortality and morbidity. PE is

characterized by new-onset hypertension after 20 weeks of

gestation that is usually accompanied by proteinuria (1, 2).

Although the etiology of this multifactorial disease remains

unclear, endothelial dysfunction, complement dysregulation, and

the imbalance of angiogenic factors have been postulated as key

elements of this complication (3, 4).

Extracellular vesicles (EVs) originated from placental

trophoblast are increasingly released into the maternal circulation.

EVs contain RNAs, lipids, proteins, and DNA and play a key role in

endocrine and paracrine communication in both physiologic and

pathologic pregnancies (5). In PE, an increment of EVs has been

reported. PE-EVs contain phosphatidylserine in their surface,

resulting in widespread blood clot formation (6) and fibrin

depositions (7), and contributing to a PE hypercoagulation state.

Moreover, PE-EVs exhibit an increase of tissue factor (8, 9), which

is involved in the activation of monocytes, macrophages, and the

vascular endothelium (10).

These EVs are strongly related with NET formation as they

could directly activate neutrophils leading to NETosis (11).

Moreover, EVs interact with maternal immune cells (12) through

fusion protein syncytin-1 and promote the release of

proinflammatory cytokines [such as IFN-g, interleukin (IL)-8, IL-

12, and TNF-a] (13), which, in turn, induces neutrophil activation
02
and the subsequent NET release. Finally, the ischemic situation

occurring in PE placenta increases the production of reactive

oxygen species (ROS) (14), which also contributes to the

exacerbation of NETosis, increasing not only NETs’ soluble levels

(15) but also NETs’ deposits on placenta (11). At the same time, the

excessive production of NETs and their deposit on placenta hinders

trophoblast migration and could contribute to defective placental

development, scarce perfusion, and increased inflammation

together with EV release (16).

NETs, composed of extracellular strings of DNA, histones,

and enzymes such as elastase and myeloperoxidase, play an

important role in the elimination of pathogens. The presence of

circulating NETs has been described in healthy and pathologic

pregnancies (17) and also in association with endothelial

dysfunction (18), as extracellular histones activate NF-kB and

the transcription of activator protein 1 (AP-1) via Toll-like

receptor in vascular cells (19, 20), increasing the production of

inflammatory cytokines and the expression of tissue factor

favoring platelet activation and aggregation (16). Cytokines

released in PE together with the C5a component of the

complement system contribute to the upregulation of TLRs in

neutrophils and the consequent NET release (21). This NET

production increase (22) contributes to widespread damage of

the maternal endothelium in PE (23) causing multiorgan failure,

and especially affecting both liver and kidneys (24), together with

innate immune system dysregulation.

Although the complement system activation is normal in

pregnancy to protect against pathogens and to facilitate the
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clearance of placental debris (25), the overactivation of the

complement system has been related to the severity of the PE and

to the development of PE and adverse pregnancy outcomes (26–28).

This overactivation of the lytic complex was demonstrated by our

group in an in vitro model exposing endothelial cell (EC) culture to

activated plasma from PE pregnancy (29).

Together with the complement system activation, the

endothelial damage has also been associated with PE (30), the

pathophysiological mechanisms that connect these entities remain

unknown. Therefore, the aim of the present study was to investigate

the potential role of both EVs present in the sera of PE pregnant

women and NETs as inductors of endothelial damage and the

complement dysregulation occurring in PE. We hypothesize that

the bidirectional relationship between the two components creates a

vicious cycle that contributes to the clinical manifestations of PE

increasing the proinflammatory and procoagulant state of the

endothelium. The knowledge of the mechanisms involved may

improve the management of these pregnancies by providing more

targets for future therapeutic strategies.
Materials and methods

Study population

A total of 58 singleton pregnancies were prospectively enrolled

for this study in the Department of Maternal–Fetal Medicine at

Hospital Clinic, Barcelona, Spain, between 2016 and 2021. The

study population comprised blood samples from two groups:

normotensive mothers considered as controls (n = 23), and

pregnancies complicated by PE (n = 35). PE was defined as

systolic blood pressure >140 mmHg and/or diastolic blood

pressure >90 mmHg on two occasions, at least 4 h apart, and

proteinuria (>300 mg/24 h or protein/creatinine ratio > 300 mg/g)

developed after 20 weeks of gestation (31–33). Mothers under 18

years, twin pregnancies, congenital malformations, chromosomal

anomalies, and intrauterine infections were excluded. Gestational

age was calculated based on crown–rump length at the first-

trimester ultrasound. This study was approved by the ethics

committee of the Hospital Clinic (HCB/2020/0240) and

conformed to the ethical guidelines of the Helsinki Declaration.

All participants provided informed written consent before

sample collection.
Sample collection and storage

Maternal blood samples were drawn at the time of diagnosis or

at matched gestational age for controls and collected into citrated

and non-anticoagulated tubes. Plasma and sera were separated by

centrifugation at 1,500g for 10 min at 4°C, filtered through a 0.22-

mm filter, and stored at −80°C until further use. All samples were

enrolled in the National Register of Biobanks for biomedical

research that conformed to Real Decree 1716/2011.
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Study design

To explore EV and NET contribution to the endothelial damage

associated with PE, an in vitro endothelial dysfunction model was

used. To evaluate the role of EVs, ECs in culture were exposed to

four different conditions: a pool of control sera (C), a pool of PE sera

(PE), a pool of PE sera depleted from EVs (dPE), and a pool of

control sera depleted from control EVs and supplemented with EVs

from PE (dC+peEVs). Then, changes in different biomarkers of

endothelial activation and damage were assessed. NETs were

obtained from healthy pre-activated neutrophils exposed to

control or PE sera (C-NETs and PE-NETs, respectively). ECs in

culture were exposed to NETs to evaluate their effect on endothelial

damage biomarkers. The effect of both peEVs and NETs on C5b-9

deposits on ECs was explored.
EV isolation

EVs and depleted serum were obtained from sera pools of

patients in the study groups by differential centrifugation (34).

Briefly, sera samples were centrifuged at 800g for 7 min and at 2000g

for 15 min to remove cell debris. Subsequently, the supernatants

were filtered through a 0.22-µm pore filter and ultracentrifuged

(Optima L100XP, Beckman) at 100,000g for 2 h. Then, sera depleted

from EVs were recovered and the EVs were subsequently washed

with PBS and followed for a second ultracentrifugation. Pellets were

suspended in PBS and stored at −80°C until further use.
EV nanoparticle tracking analysis

The size distribution and concentration of EVs were both

measured using a NanoSight NS300 (Malvern Instruments Ltd.,

Malvern, UK), equipped with a 488-nm laser and camera—High-

sensitivity sCMOS. Samples were diluted with PBS. For each

sample, 5 videos of 50 s at camera level 10 and threshold 5 were

captured. Analysis was done with nanoparticle tracking analysis

(NTA) 3.4 Analytical software. Sample contamination was

discarded as any sample showed the characteristic fog pattern of

contaminated samples.
EV study by electron microscopy

EV characterization by electron microscopy was performed

using a holey carbon support film on a 400-mesh copper grid.

Three microliters of the EV sample was placed on a plunger (Leica

EM GP). The suspension was vitrified by rapid immersion in liquid

ethane (−179°C), and the grid was mounted on a Gatan 626 cryo-

transfer system and inserted into the microscope. The images were

taken using a cryo-electron microscope operating at 200 kV,

recorded on a GatanUltrascan US1000 CCD camera, and

analyzed with a Digital Micrograph 1.8 (n = 3 per group).
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Flow cytometry analysis of EVs

The phenotypic characterization of EVs isolated from sera pools

from patients included in the study and used in in vitro studies was

done using the MACSPlex Exosome Kit (Miltenyi Biotec, Bergisch

Gladbach , Ge rmany) fo l l ow ing the manufa c tu r e r ’ s

recommendations. This kit enables the simultaneous detection of

37 surface epitopes (CD3, CD4, CD19, CD8, HLA-DR, CD56,

CD105, CD2, CD1c, CD25, CD49e, ROR1, CD209, CD9, SSEA4,

HLA-BC, CD63, CD40, CD62P, CD11c, CD81, MCSP1, CD146,

CD41b, CD42a, CD24, CD86, CD44, CD326, CD133/1, CD29,

CD69, CD142, CD45, CD31, CD20, and CD14) that are known

to be present on different vesicles plus two isotype control beads

(REA and IgG1). Briefly, 1 × 109 EVs (quantified by NTA) were

diluted in 120 µL of MACSPLex buffer with 15 µL of beads and then

were incubated under gentle agitation and protected from light on a

rotor overnight at 4°C. After incubation and washing steps, APC

antibodies against CD9, CD63, and CD81 were added and

incubated for 1 h at RT under gentle agitation and protected

from light. The samples were washed and detected using a BD

LSRFortessaSORP cytometer analyzer (BD Bioscience, NJ, USA).

MFI values of buffer control were subtracted, and subsequently, the

MFI value of samples was normalized to the median fluorescence

intensity of CD9/CD63/CD81. Data analysis was performed with

FACS DIVA software (BD Biosciences, Heidelberg, Germany).
NET isolation

Citrated blood from a healthy human donor was mixed in the

same proportion with Polymorphprep (Progen Biotechnik GmbH,

Heidelberg, Germany) and centrifuged (500g, 35 min at RT) to

obtain neutrophils. Then, isolated neutrophils were centrifuged

with 25 mL of HBSS medium without Ca2+ and Mg2+ (400g, 10

min at RT) to obtain a pellet that was mixed with a hypotonic lysis

solution (1 mL of H2Od + 0.33 mL of NaCl 3.6% + 20 mL of HBSS

medium without Ca2+ and Mg2+) to remove red blood cells (250g, 5

min at RT). This pellet was resuspended with Ca2+ and Mg HBSS

medium to obtain 1 × 107 neutrophils/mL.

Then, NET production was performed following Schreiber et al.’s

protocol (35): 1 mL of 1 × 106 neutrophils/mL was seeded on

pretreated coverslips (incubated with 2 mL of poly-L lysine 0.01%

for 15 min at 37°C and 5% of CO2). After 15 min, 4 mL of TNFalpha 2
ng/mL was added to preactivated neutrophils and the coverslips were

incubated for 15min (37°C, 5%CO2). Then, neutrophils were exposed

to 20 mL of 1/1,000 stock PMA (10 mg/mL) as positive control, to 500
mL of control sera from normotensive pregnant women (to obtain C-

NETS), or to 500 mL of PE sera (to obtain PE_NETS) (3 h, 37°C, 5%

CO2). Finally, coverslips were washed with HBSS medium without

Ca2+ andMg2+, incubated with 500 mL of DNase solution (20 UI/mL)

for 30 min, and scratched to obtain NETs.

Coverslips of each group were stained with SYTOX green (2 mL
of 1/100 of SYTOX green + 1 mL of HBSS medium without Ca2+

and Mg2+, for 10 min, RT). Then, fluorescence was evaluated by

light microscopy as previously described (36). The results were

expressed as the percentage of the area covered by NETs (mean ±
Frontiers in Immunology 04
SD). Additionally, DNA concentration of the obtained NETs was

measured in supernatants, after scratching the coverslips, by a

nanodrop (ND-1000, Thermo Scientific).
Endothelial cell culture

Human microvascular endothelial cells (HMEC from ATCC,

Manassas, USA) were grown with medium MCDB131 (Gibco-BRL,

Madrid, Spain), supplemented with fetal bovine serum (Biowest,

Nuaillé, France), L‐glutamine, penicillin/streptavidin (Gibco-BRL,

New York, USA), endothelial growth factor (BD Biosciences,

Erembodegem, Belgium), and hydrocortisone (Sigma-Aldrich,

Madrid, Spain). Microvascular (HMEC) ECs were maintained at

37°C in a CO2 atmosphere (5%) and used at passages 5–12. ECs

were seeded on pretreated 18×18 mm2 coverslips, in 6‐well plates

(VWR, Radnor, USA). After 24 h, cells were exposed to the different

conditions under study (for 48 h).
VWF, VCAM-1, ICAM-1, eNOS, and VE-
cadherin expression in endothelial cells
exposed to EVs and NETs

To evaluate the expression of VWF, VCAM-1, ICAM-1, VE-

cadherin, and eNOS, ECs were exposed to EV groups (C, PE, dPE,

dC+peEVs) and media containing 20% of NETs solution (C-NETs

or PE-NETs). Then, cells were fixed with 4% paraformaldehyde (for

10 min), blocked with 2% BSA and incubated with a primary

antibody against: VWF 1:2,000 (Dako/Agilent, Santa Clara, USA);

VCAM-1 1:100 (GeneTex, Irvine, USA); ICAM1 1:50 (SantaCruz

Biotech, Dallas, USA); eNOS dilution 1:50 (SantaCruz Biotech,

Santa Cruz, USA), and VE-cadherin 1:500 (GeneTex, Irvine,

USA), (1 h, RT) and a secondary antibody IgG conjugated with

Alexa 488 or 594 (Molecular Probes, Eugene, USA) (dilution 1:500

for Alexa 488 and dilution 1:2,000 for Alexa 594), 1 h, at RT, and

4′,6-diamidino-2-phenylindole. Then, fluorescence was evaluated

by light microscopy as previously described (29). The results were

expressed in fold increase vs. control.
Reactive oxygen species production in
endothelial cells exposed to EVs and NETs

Changes in the production of ROS were explored by

immunofluorescence. EC seeded coverslips were preincubated

with ROS detection reagent CM.H2DCFDA (Molecular Probes,

New York, USA) at 37°C for 30 min. After three PBS washes, ECs

were exposed to the different EV conditions and both NET groups

(37°C, 30 min). ROS production was monitored by fluorescence

microscopy (Leica DM4B, Barcelona, Spain) and 15 images of each

sample were randomly captured through a video camera (Leica

DFC9000GT, Barcelona, Spain). The fluorescence intensity of the

images was analyzed by FIJI software (ImageJ Fiji, 10 Bethesda,

Rockville, USA). The results were expressed in fold increase

vs. control.
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C5b-9 deposition on endothelial cells
exposed to NETs obtained from healthy
pregnancies or preeclampsia

To evaluate C5b-9 deposition, a previous protocol was used

(37), activated plasma was obtained by adding control sera to

control citrated plasma (1:1), and then 6 mL of EVs or 10% of

NET solution was added (n = 3 and n = 5, respectively). The area

covered by the C5b-9 deposit was calculated and expressed as the

average fold increase of each condition versus control.
Statistical analysis

Data normality was checked, and then parametric or non-

parametric test was applied. Scheffe test was performed for

homogeneity parametric results and post-hoc Games-Howell was

carried out for non-homogeneity parametric results. Non-

parametric results were evaluated by median test. Results were

expressed as fold increase (mean ± SD) and differences were

considered statistically significant when the p-value was <0.05.
Results

Baseline and perinatal characteristics of
the study populations

Baseline characteristics of the study populations are

summarized in Table 1. Maternal characteristics were similar

between the two study groups. However, significant differences

were detected in some parameters: PE pregnant women showed a

higher body mass index compared to controls, and gestational age

at delivery was earlier in 26 of 35 PE mothers (preterm deliveries).

Furthermore, cesarean section was needed in 80% of PE deliveries, a

significantly higher proportion compared to controls. In addition,

the median birthweight of PE fetuses was below the 10th percentile

with more than half of these fetuses having FGR (68.6%). To note,

six PE patients developed HELLP syndrome.
Differential composition of PE-EVs
compared to control EVs

Through NTA and electron microscopy techniques, both

presence of EVs and non-contamination of the samples were

assessed (Figures 1A, B). No differences were observed regarding

the concentration and the size of the PE and control EVs

(Figures 1C, D). However, PE and control EVs characterized by

MACSPlex exosome kit in conjunction with flow cytometry showed

significant differences in their composition. PE-EVs showed a

statistically significant decrease in the expression of CD63, CD9,

CD29, CD42a, and CD41b compared to control EVs (CD63, CD29,

and CD41b, p < 0.05; CD9 and CD42a, p < 0.01), and an increase in

CD81 expression (p < 0.01) (Figures 1E, F).
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EVs from PE pregnancies contribute to
endothelial damage

As summarized in Figure 2, the exposure of ECs to PE sera

induced an increase of VWF and VCAM-1 expression and ROS

induction compared to control sera (fold change of 12.3 ± 8.1, 3.6 ±

2.3, and 1.8 ± 0.2, respectively, p < 0.05). Furthermore, these

biomarkers (VWF, VCAM-1, and ROS) were significantly lower in

ECs exposed to depleted PE sera with respect to ECs exposed to PE

sera (fold change of 6.1 ± 2.7 vs. 12.3 ± 8.1, 0.7 ± 0.6 vs. 3.6 ± 2.3, and

1.2 ± 0.1 vs. 1.8 ± 0.2 respectively, p < 0.05). Finally, the exposure of

ECs to control depleted sera supplemented with pdEVs from PE

significantly increased VWF, VCAM-1, and ROS with respect to

control sera (fold change 4.5 ± 0.3, 2.8 ± 2.0, and 1.4 ± 0.2,

respectively, p < 0.05). No differences were observed between groups
TABLE 1 Baseline and perinatal characteristics of the study populations.

Controls
n = 23

Preeclampsia
n = 35

Maternal characteristics

Age (years) 34 (30.8–37.9) 34.9 (30.4–38.2)

Ethnicity

White 13 (56.5) 23 (65.7)

African 1 (4.4) 3 (8.6)

Latin 5 (21.7) 4 (11.4)

Asian 4 (17.4) 5 (14.3)

Pre-gestational body mass index
(kg/m2)

21.3 (19.2–22.7) 25.1 (21.2–29.1)*

Nulliparity 12 (52.2) 15 (42.9)

Use of assisted
reproductive technologies

0 (0) 6 (17.1)*

Smoking during pregnancy 2 (8.7) 3 (8.8)

Perinatal outcomes

Gestational age at delivery (weeks) 40 (38.9–41) 34.1 (32.4–37.1)*

Preterm delivery# 1 (4.3) 26 (74.3)

Cesarean section 4 (17.4) 28 (80)*

Female gender 13 (56.5) 14 (41.2)

Birthweight (g)
3,262

(3,020–3,418)
1,778

(1,486–2,450)

Birthweight centile 38 (20–51) 2.5 (0–23)

Fetal growth restrictionY 0 (0) 24 (68.6)*

APGAR score 5 min <7 0 (0) 10 (28.6)*

Umbilical artery pH 7.19 (7.13–7.24) 7.22 (7.17–7.26)

Stillbirth 0 (0) 1 (2.9)
Data are median (interquartile range) or n (%) as appropriate.
#Preterm delivery defined as delivery occurring before 37 weeks of gestation.
YFetal growth restriction defined as birthweight below the 10th centile according to
local standards.
*p < 0.05 by Mann–Whitney U test, Pearson c2 or Fisher exact tests as appropriate, compared
to controls.
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FIGURE 1

Characterization of EVs isolated from control and preeclampsia pool serums. Upper images show EV characterization by (A) nanotracking analysis
with the absence of the characteristic fog pattern of contaminated samples and (B) electron microscopy (scale bars, 0.5 mm). Cryo-electron
microscopy allows one to visualize the grid with an irregular distribution of hole sizes and shapes containing EVs of various sizes. (C, D) NTA particle
concentration and size distribution of one control pool and three preeclampsia sera pools, respectively. (E) MFI of EV-markers CD9, CD63, and
CD81 (control in black and PE in blue), obtained from MACSPlex analysis of EVs surface markers, and (F) phenotypic signature of EVs quantified by
the MACSPlex Exosome Kit in conjunction with flow cytometry. Black bars correspond to PE pools and white bars correspond to control pools.
*p < 0.05 and **p < 0.01 compared to the control group.
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for eNOS, ICAM-1, VE-cadherin (Supplementary Figure 1), and C5b-

9 deposition (Figure 3).
PE sera increase NET production by
neutrophils from a donor compared to
control sera exposure

Donor neutrophils exposed to PE sera showed a marked NET

production compared to control sera exposure (Figure 4). This

increased NET formation was evaluated by both fluorescence

microscopy with SYTOX green staining (fold increase of 2.24 vs.

control, p < 0.01) and DNA quantification in the supernatant

(17.26 ± 0.52 ng/mL for PE-NETs vs. 13.61 ± 0.47 ng/mL for C-

NETs, p < 0.01).
PE-NETs induce a proinflammatory
phenotype in endothelial cells in culture

A prothrombotic state was observed in ECs incubated with PE-

NETs compared to the exposure to C-NETs triggered by an increase

of VWF release (fold increase of 4.0 ± 1.6 vs. C-NETs, p < 0.01).

Moreover, ECs incubated with PE-NETs showed higher expression

of VCAM-1 on cell surface compared to C-NETs (fold increase of

5.9 ± 1.2 vs. C-NETs, p < 0.01), while the expression of VE-cadherin

was significantly lower in ECs incubated with PE-NETs compared

to C-NET incubation (fold increase 0.5 ± 0.1 vs. C-NETs, p < 0.01)
Frontiers in Immunology 07
(Figure 5). No differences were observed between groups in ICAM-

1, eNOS, and ROS biomarkers (p > 0.05) (Supplementary Figure 2).
PE-NETs produce an increase in lytic
complex C5b-9 deposition on ECs

Complement function was evaluated through the quantification

of the lytic complex C5b-9 deposition on ECs. These deposits were

significantly triggered by PE-NETS. C5b-9 fold increase was 7.5 ±

2.9 in ECs incubated with PE-NETs compared to ECs incubated

with control activated plasma (p < 0.01) (Figure 6).
Discussion

The aim of the present study was to explore the contribution of

EVs and NETs in the endothelial damage associated to PE using an

in vitro model, and to explore their role as potential triggers of the

complement system dysregulation described in these patients. Our

results suggest that both elements play a pathogenic role in the

endothelial phenotype described in PE, but activating different

mechanisms. Moreover, NET overproduction in PE significantly

contributes to complement system dysregulation, whereas no effect

could be attributed to EVs.

Nowadays, no curative treatment has been established in PE,

and the unique solution is pre-term labor to preserve mother and

fetus health. Therefore, this disease is postulated as one of the most
FIGURE 2

The exposure of endothelial cells to PE-EVs increased the expression of dysfunction endothelial markers. Representative microscopy image (40×) of
VWF, VCAM-1, and ROS (red: VWF; ROS: green; and VCAM-1: green) on endothelial cells (4′,6-Diamidino-2-phenylindole-stained nuclei, blue)
induced by exposure (48 h) to control, preeclampsia, depleted preeclampsia (without PE-EVs), and control sera pool supplemented with PE-EVs. The
bar graph indicates the average fold increase of the different conditions compared to control. The vertical line indicates the standard deviation.
**p < 0.01 compared to the control condition, ##p < 0.01 compared to the PE condition.
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important complications during pregnancy. This pathology is

intimately related to the endothelium. Although the PE patients

of this study exhibited a slight overweight, its role in endothelial

damage observed in this manuscript was discarded because none of

these patients could be classified as obese. Our group has previously

described high levels of soluble endothelial injury biomarkers such

as VCAM-1 and VWF in these patients, and an increase of ICAM-1

and VWF expression in in vitro endothelial damage model in PE

(30, 38). In addition, the overactivation of the complement system

evaluated through an increase of C5b-9 deposition in ECs (37) has
Frontiers in Immunology 08
been proved in this pathology. Then, although endothelial damage

and complement system dysregulation have been extensively

demonstrated in this complication, the underlying mechanisms

connecting these entities are unclear.

An abnormal placentation in the first trimester of pregnancy

together with an imbalance of angiogenic factors (sFLT1 and

PIGF), a pathophysiological immune activation (39), and the

systemic activation of ECs of the maternal small arterioles in the

late second or third trimester of pregnancy trigger a maternal

endothelial crisis in PE. Moreover, there are some data relating

this endothelial damage with placental-derived EVs (36); for

instance, vasoconstriction and vascular endothelium damage

observed in PE could be prevented and protected, respectively,

by blocking the uptake of PE placenta-derived EVs (40). EVs

released from the placenta to the blood exhibit a predominant

role in paracrine and endocrine communication acting as

homeostatic regulators in healthy pregnancies, but they also

exhibit a potential implication in PE development (41–43). EVs

contain proteins, mRNA, lipids, etc., surrounded by a lipid

bilayer (44), and there are some studies suggesting differences

between healthy pregnancy and PE-EVs (45). In our analysis, PE-

EVs were not different from control EVs regarding size and

concentration, but did present significant differences in their

phenotype, especially in CD63, CD9, CD42a, and CD81

expression on their surface.

Both CD63 and CD9 are membrane markers expressed by

platelets and immune cells that were found significantly lower in

PE-EVs. CD63 has been proposed as a predictive PE biomarker

(46) as it is increased in platelets from PE patients in the early

stages of the complication but, to our knowledge, no evidence of

CD63 and CD9 presence in PE-EVs has been described so far.

Interestingly, we also found an increase of CD81 in PE-EVs

compared to C-EVs, and this marker seems to be intimately

related to PE pathogenesis (47). CD81, a member of the

tetraspanin superfamily that plays significant roles in cell

growth, adhesion, and motility, is significantly upregulated in

sera from patients with early-onset severe PE. In addition, the

exposure of ECs to a high dose of exogenous CD81 resulted in

interrupted angiogenesis and EC activation (48). Regarding the

detected lower expression of CD42a (or GPIX) in PE-EVs,

another study observed a similar tendency but in platelets from

PE pregnancies. This biomarker reflects severe PE progress and

may be involved in its pathogenesis (49). Together with CD42a,

CD29 and CD41b decrease was also observed in PE EVs. The EV

composition described here could be responsible for their effect

on the endothelial damage biomarkers evaluated in the

present study.

In our in vitro model, the addition of PE-EVs to ECs in culture

increased VWF and VCAM-1 expression and ROS production to

similar levels to those observed when cells were exposed directly to

PE sera, promoting the prothrombotic state and inflammatory

phenotype previously described in these patients (50, 51). This

increase in ROS production could activate NETosis as previous

studies suggested (52) and be an additional mechanism to the
FIGURE 3

The complement system dysregulation is not mediated by EVs.
Representative microscopy image (40×) of C5b-9 deposit (red) on
endothelial cells (4′,6-diamidino-2-phenylindole-stained nuclei,
blue) induced by exposure (4 h) to control, preeclampsia, depleted
preeclampsia (without PE-EVs), and control sera pool supplemented
with PE-EVs. The bar graph indicates the average fold increase of
the different conditions under study compared to control. The
vertical line indicates the standard deviation. **p < 0.01 compared to
control, ##p < 0.01 compared to PE.
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FIGURE 4

PE sera induce NET generation in neutrophils from a healthy donor. Micrographs of SYTOX green staining showed an increase in NET production by
isolated donor neutrophils preactivated with TNFalpha incubated with PE sera compared to preactivated donor neutrophils incubated with sera from
healthy pregnant women (micrographs taken at 40×). The bar graph indicates the result of DNA quantification (ng/mL). The vertical line depicts the
standard deviation. **p < 0.01 compared to the control group.
FIGURE 5

PE-NETs induce endothelial damage in the in vitro model compared to control NETs. Representative microscopy images of VWF (red, 40×
micrographs), VCAM-1 (green, 40× micrographs), and VE-cadherin (100× micrographs) on endothelial cells (4′,6-diamidino-2-phenylindole-stained
nuclei, blue) induced by exposure (48 h) to C-NETs and PE-NETS. The bar indicates the average fold increase compared to control. The vertical lines
indicate the standard deviation. **p < 0.01 compared to the control group.
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presence of EVs and cytokines that activate neutrophils in a dose-

and time-dependent manner (11). In contrast, PE-EVs alone did

not induce a direct change in complement deposition. As expected,

the exposure of cells to depleted-PE sera resulted in a milder effect

on the endothelium, pointing to the deleterious effect of EVs.

However, both VWF and ROS levels did not reach control levels

in this condition, suggesting complementary mechanisms not

related to EVs in the induction of the endothelial damage

associated with PE.

PE sera dramatically increased NET production and release

compared to control sera, in concordance with other studies (53).

This phenomenon could be attributed to sera composition and

maybe to the high interleukin levels, among other factors already

reported in PE pregnancies. Like EV effects, PE-NETs also

promote a prothrombotic and inflammatory phenotype state

triggered by an increase of the VWF. NETs and VWF directly

interact on the vascular wall and present a synergic effect

promoting both the prothrombotic and proinflammatory

phenotypes observed in PE. This proinflammatory phenotype

was reflected in the detected overexpression of VCAM-1 in cells

exposed in vitro to PE-NETs, in concordance with previous

studies reporting that NETs increased VCAM-1 mRNA and

protein expression in a time- and concentration-dependent

manner (54). Although PE-NETs did not play a significant role

in the induction of oxidative stress in our in vitro assays, ROS

produced by EVs may be crucial for NET formation (55, 56). ROS

overproduction found in PE, and triggered in our experiments by

EVs, among other molecules, present the ability to activate

transcription factors, such as NF-kB and AP-1 (57), promoting

an overexpression of adhesion factors such as VCAM-1, and

increasing IL-6 and IL-8 production (11, 48). This cytokine

release is known to induce chemotaxis and neutrophil activation

(58, 59), which, in turn, increases NET release (60).

Together with endothelial dysfunction and oxidative stress in

PE, complement system dysregulation has been described as one of

the most important pathophysiological mechanisms of this

pregnancy complication (61, 62). Some evidence of the
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uncontrolled activation of the complement system in PE is the

increment in C5b-9 membrane attack complex (MAC) deposition

on ECs in in vitro assays (37), together with an increase of

membrane attack complex at sites of villous injury in PE

placental sections (63) and an increase in urinary excretion of

C5b-9 (64) in these patients. The present study evidenced the direct

effect of NETs in the overactivation of the complement system,

causing a dramatic increase of C5b-9 deposition on ECs in vitro

when added to the cell culture. Complement activation occurs not

only on neutrophil membrane but also on released NETs (65), as

NETs can directly activate an alternative complement pathway

though properdin, factor B, and C3 (66, 67). Our results add new

evidence to this intimate interaction between NETs and the

complement system. Moreover, the potential linkage of severe PE

to the most central complement gene, C3 (68, 69), makes this

physical interaction between NETs and the complement system of

interest for further investigations. In addition, it is known that the

presence of complement split products, such as C3a and C5a (70),

also contributes to hypertension and angiogenic imbalance in PE

(71, 72). The terminal phase may be crucial in the management of

PE, as complement inhibitors, such as anti-C5 (73) or antagonists of

C5a receptor, reverted the angiogenic imbalance, prevented growth

restriction and hypertension, and rescued pregnancies in an animal

model (74). Moreover, the anti-C5 compound eculizumab has been

used in pregnant women with satisfactory results (75–77). While

the inhibition of the complement system may be a new treatment

for PE, EVs and NETs may be a new target to improve the

management of these patients.
Conclusion

In conclusion, the present study demonstrates the role of both

EVs and NETs as endothelial damage and complement

dysregulation factors in PE. While EVs specifically activated

oxidative stress, NETs could be the main factor responsible for

the complement system overactivation. Our data suggest that EVs
FIGURE 6

PE-NETs activate the complement system with an increase of the lytic complex C5b-9. Representative microscopy image (40×) of C5b-9 deposit
stained with red fluorochrome on endothelial cells (4′,6-diamidino-2-phenylindole-stained nuclei, blue) induced by exposure (4 h) to control
activated plasma (C) and this condition supplemented with PE-NETs (C+PE-NETS). The bar indicates the average fold increase compared to control.
The vertical lines indicate the standard deviation. **p < 0.01 compared to the control group.
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and NETs could be postulated as two critical elements participating

in the pathophysiology of PE. Targeting the involved pathways by

novel treatments that block the effect of EVs and NETs on ECs must

be further explored in the management of PE. These treatments

may potentially prolong the pregnancy and reduce maternal and

perinatal complications.
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