
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jian Song,
University Hospital Münste, Germany

REVIEWED BY

Jan Rahmig,
University Hospital Carl Gustav Carus,
Germany
Ming-Lin Liu,
University of Pennsylvania, United States

*CORRESPONDENCE

Zhongyang Hu

zhongyanghu@163.com

†These authors have contributed equally to
this work

RECEIVED 29 August 2024

ACCEPTED 27 November 2024
PUBLISHED 16 December 2024

CITATION

Li J, Liu L, Zhang R, Pan L, Tan J, Ou M,
Luo X, Peng J and Hu Z (2024) Associations
of NETs with inflammatory risk and clinical
predictive value in large artery atherosclerosis
stroke: a prospective cohort study.
Front. Immunol. 15:1488317.
doi: 10.3389/fimmu.2024.1488317

COPYRIGHT

© 2024 Li, Liu, Zhang, Pan, Tan, Ou, Luo, Peng
and Hu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 December 2024

DOI 10.3389/fimmu.2024.1488317
Associations of NETs with
inflammatory risk and clinical
predictive value in large artery
atherosclerosis stroke: a
prospective cohort study
Jiang Li1,2†, Lei Liu2†, Ruxu Zhang2, Liqun Pan2, Juanying Tan2,
Mingxin Ou2, Xiuju Luo3, Jun Peng4 and Zhongyang Hu2,4*

1Health Management Medical Center, The Third Xiangya Hospital, Central South University, Changsha,
Hunan, China, 2Department of Neurology, The Third Xiangya Hospital, Central South University,
Changsha, Hunan, China, 3Department of Clinical Laboratory, The Third Xiangya Hospital, Central
South University, Changsha, Hunan, China, 4Department of Pharmacology, Xiangya School of
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Background and objective: Neutrophil extracellular traps (NETs) with

inflammatory risk are important contributors to cardiovascular disease, but no

definitive information is available in large artery atherosclerotic (LAA) stroke. This

study aims to investigate the association between NETs with related

inflammatory biomarkers and prognosis of LAA stroke in the Chinese population.

Methods: A prospective study involving 145 LAA stroke cases and 121 healthy

controls was conducted. Serum levels of MPO-DNA, PAD4, HMGB1, C1q, AIM2,

ASC, Caspase-1, IL-1b, IL-6, and IL-8 were determined in all participants. The

biomarkers were detected at three time points after stroke onset (24 hours: T1,

48 hours: T2, 7 days: T3) for LAA stroke patients and once for controls. Patients

were followed up for 2 years after the ischemic event.

Results: The serum MPO-DNA, PAD4, C1q, IL-1b, IL-6 and IL-8 reach their peak

at 24 hours after stroke onset and show a decreasing trend during acute phase.

MPO-DNA, AIM2 and IL-1b at baseline were associated with poor outcome at 3

months, further GMDR analysis revealed that the combination of MPO-DNA,

AIM2 and IL-1b exert a synergistic effect on the prognosis of LAA stroke (OR: 8.75

95%CI (2.10-32.42)). For time-to-event analysis, MPO-DNA, Caspase-1 and IL-1b
at baseline were predictors of MVEs after stroke (HR:4.04 (95%CI 1.28-12.70),

2.33 (95%CI 1.06-5.12) and 4.09 (95%CI 1.39-11.99), respectively).

Conclusions: NETs and related inflammatory biomarkers at baseline predicted

outcome at 3 months and late major vascular events following LAA stroke,

supporting a rationale of randomized trials for targeted therapy directed at high-

risk patients with elevated baseline NETs and related inflammatory biomarkers.
KEYWORDS

large artery atherosclerosis stroke, neutrophil extracellular traps, inflammation,
prognosis, major vascular events
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1 Introduction

Ischemic stroke is the major cause of death and disability

worldwide (1). The prevalence and the burden of ischemic stroke

is marked increased in China (2). Despite the widespread use of

contemporary secondary prevention therapy, there is an inevitable

residual vascular risk in ischemic stroke survivors. In Chinese

population, the 5-years cumulative rate of recurrent ischemic

stroke and the rate of major vascular events (MVEs) at 5 years

were 41% and 45%, respectively (3). Notably, patients with large

artery atherosclerosis (LAA) stroke have a higher residual risk of

stroke recurrence than other subtypes of ischemic stroke (4, 5). It is

indicated that the residual risk of recurrent stroke may partial

attributed to inflammation (6–8). There is an urgent requirement

for novel prognostic biomarker to predict the residual risk following

LAA stroke, which will pave the way for precise treat and

prevention of LAA stroke in the future. Therefore, we aimed to

assess the value of inflammatory markers in predicting this residual

vascular risk following LAA stroke.

In recent decades, a plethora of studies have provided new data

highlighting the role of inflammation in the pathogenesis of LAA

stroke, such as atherogenesis and atherothrombosis (9–12).

Neutrophils are believed to be the predominant leukocyte

population in human blood and the first cells recruited to an

inflammatory site, such as ischemic brain tissue (13). Under the

influence of inflammatory cytokines, neutrophils further form

neutrophil extracellular traps (NETs), which are composed of

extracellular DNA, histones, and granular and cytoplasmic

proteins, such as myeloperoxidase (MPO), neutrophil elastase

(NE), Peptidyl arginine deiminase 4 (PAD4), etc. The mechanistic

understanding of NET formation in neutrophils is uncovered by

recent studies (14, 15). Rupture of the nuclear envelope, chromatin

decondensation, loading of the chromatin with granular and

cytoplasmic proteins, and plasma membrane breakdown are key

cellular events for the release of chromatin during NET formation

(16–19). The MPO-DNA complex is considered to be one of the

more specific markers currently available for NETs formation

assessment (20). Basic research revealed that NETs may further

exacerbated ischemic brain injury (21). However, the association

between circulating NETs concentration and the prognosis of

ischemic stroke patients is controversial, making the role of NETs

in cerebrovascular disease an intriguing topic (22, 23).

Recent studies indicate that the prognosis of ischemic stroke is

linked to the global inflammatory response in the brain (24, 25).

Interleukin-1b (IL-1b) is not only the core of inflammatory

response in the brain after ischemic stroke, but also as a key

driver of innate immune memory, which result in chronic post-

stroke comorbidities (16, 20–22). Understanding the mechanisms

regulating production of IL-1b during ischemic brain injury may

lead to the identification of new therapeutic targets. The activity of

interleukin-1 is regulated by multi-molecular protein complexes

called inflammasome, such as AIM2 (absent in melanoma 2)

inflammasomes and NLRP3 (NLR family, pyrin domain

containing 3) inflammasome, etc. (29). Using a rodent model of
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stroke, Denes et al. (30) revealed that AIM2 inflammasomes

contribute to brain injury, and that the NLRP3 inflammasome is

not involved in this process. Further researches indicated inhibiting

the NETs/AIM2 axis may be a potential strategy to reduce

inflammatory damage to target organs (31, 32), additional

evidence confirmed this double-strand DNA/AIM2 axis may

regulate atherosclerotic plaque vulnerability (33). Enhanced

plaque inflammation results in plaque destabilization and

atherothrombosis. Besides the pro-inflammatory property, pro-

thrombotic activity of extracellular DNA can be driven by

aggregated NETs, which provide a scaffold for thrombus

formation and are able to occlude vessels (15, 34, 35).

Furthermore, NETs-associated occlusions have been reported for

coronary vessels in acute myocardial infarction and atherosclerosis

(36, 37) and for cerebral vessels in ischemic stroke (38). Therefore,

investigation the prognostic value of markers in the NETs/AIM2

inflammasome axis, such as MPO-DNA, PAD4, HMGB1, C1q,

AIM2, ASC, Caspase-1, IL-1b, IL-6 and IL-8, in LAA stroke patients

is a meaningful endeavor.

In this prospective study, we aim to decipher the dynamic

change pattern of circulating biomarker in NETs/AIM2

inflammasome pathway at acute stage of LAA stroke. We further

explored the associations between these indicators and prognosis of

LAA stroke, which might promote the accurate prevention and

treatment of LAA stroke in the future.
2 Methods

2.1 Study design and participants

Between December 2020 and March 2023, patients aged ≥18

years with acute LAA stroke diagnosed by Chinese Guidelines for

the Diagnosis and Treatment of Acute Ischemic Stroke (2018) in the

Third Xiangya Hospital of Central South University were enrolled

(39). We enrolled LAA stroke patients within 24 hours of symptom

onset. Exclusion criteria included: (1) combined intracranial

hemorrhagic diseases; (2) transient ischemic attack; (3)

concomitant acute myocardial infarction; (4) active liver disease

or hepatic dysfunction, defined as aspartate aminotransferase

(AST), or alanine aminotransferase (ALT) ≥2×the upper limit of

normal (ULN); severe renal dysfunction, glomerular filtration rate

(GFR) <30ml/min/1.73m2; severe coagulation disorders and

hematological diseases; malignant tumors; autoimmune diseases;

heart failure and respiratory failure. (5) childbearing and pregnancy

women; (6) merging diseases such as Parkinson’s disease,

Alzheimer’s disease, Amyotrophic lateral sclerosis, Friedrich’s

ataxia, etc.(7) recent history of trauma and surgery; (8)

incomplete clinical data. All eligible patients were enrolled

consecutively in this study to eliminate selection bias.

Clinical follow-up was performed two years after stroke onset in

145 of the 170 initial patients (as shown in Figure 1). This was

conducted by reviewing the electronic records of our patients in

clinics or by telephonic contact. We consecutively enrolled 121
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healthy individuals with no history of stroke or other severe

diseases, who underwent health check-ups during the same

period as the enrollment of LAA stroke patients. This prospective

cohort study was approved by the Ethics Committee of the Third

Xiangya Hospital of Central South University (No.: 22125) and all

participants have provided written informed consent.
2.2 Clinical variables

The clinical variables collected for this study included age, sex,

history of hypertension and diabetes mellitus type 2 (T2DM),

history of smoking, body mass index (BMI), high density

lipoprotein cholesterol (HDL-C), low density lipoprotein

cholesterol (LDL-C), triglyceride (TG), total cholesterol (TC), and
Frontiers in Immunology 03
homocysteine (Hcy). Peripheral venous blood was obtained from

LAA stroke patients at 24 hours after the onset of the acute event

(T1) and from the healthy subjects after a night fast. In LAA stroke

patient group, the next two time points of collecting peripheral

venous blood were T2 (48 hours after stroke onset) and T3 (7 days

after stroke onset). HDL-C, LDL-C, TG, TC, and Hcy were detected

in all patients only once at 24 hours after stroke onset by standard

methods in the Clinical Laboratory of the Third Xiangya Hospital of

Central South University.
2.3 Laboratory methods

Venous blood samples were collected at three time points (T1,

T2 and T3) for LAA stroke patients and once for controls. Serum
FIGURE 1

The flow chart of patient enrollment for this study. LAA stroke, large artery atherosclerotic (LAA) stroke; IL, interleukin; MPO, myeloperoxidase; PAD4,
Peptidyl arginine deiminase-4; HMGB1, High mobility group box-1 protein; C1q, Complement component 1q; AIM2, absent in melanoma 2; ASC,
Apoptosis associated speck like protein containing CARD.
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was centrifuged within an hour of sampling (2500 rpm for 10 min),

and stored at −80°C pending analysis. The serum samples Enzyme

Linked Immunosorbent Assay (ELISA) was applied to measure the

levels of MPO-DNA, PAD4, HMGB1, C1q, AIM2, ASC, Caspase-1,

IL-1b, IL-6 and IL-8 with ELISA kits (Quanzhou Ruixin

Biotechnology Company, Quanzhou, China) according to the

manufacturer’s instructions.
2.4 Stroke related scale and follow-up

The severity of LAA Stroke patients was assessed by the

National Institutes of Health Stroke Scale (NIHSS) at admission.

Patients were followed-up for 2 years after the ischemic event.

During the 3 months follow-up, the Modified Rankin Scale (mRS)

was used to evaluate the prognosis condition. These scales were

evaluated by trained and qualified neurologists. We categorized

them into two groups based on their mRS scores: an mRS score of

≤2 was defined as the good outcome group, while an mRS score of

>2 was defined as the poor outcome group. The 2-year follow-up

was conducted by telephone calls or in-person interview during

outpatient visits. In time-to-event analysis we recorded major

vascular events as clinical endpoints. Major vascular events were

defined as recurrent ischemic stroke, myocardial infarction or

vascular death, whichever was reported first.
2.5 Statistical analysis

SPSS 26.0, GraphPad Prism 9.5 and GMDR 0.9 were used for

statistical analysis and data visualization. First, Kolmogorov-

Smirnov test was used to determine whether the measurement

data obey the standard normal distribution. The means ± SEM and

the median (interquartile distance) was used to represent the

measurement data, and counting data were expressed as

percentages (%). We compared continuous variables using t-test

or Mann-Whitney test as appropriate. Categorical variables are

reported as count (percentage). We compared categorical variables

by c2 test or Fisher exact test. After the homogeneity test of

variance, the mean of multiple groups was compared using single

factor repeated measure analysis of variance (ANOVA). For

correlation analysis, Spearman rank correlation was applied to

indicators that were not normally distributed. Receiver Operator

Characteristic (ROC) was used to analyze the prognostic value of all

relevant indicators in LAA stroke patients. Multivariate logistic

regression analyses were used to assess the independent association

between inflammatory biomarkers and clinical outcome. To further

elucidated the potential synergistic effect, we employed the

generalized multifactor dimensionality reduction (GMDR)

method to detect interactions between inflammatory factors.

Multivariate cox regression was used to analyze the risk factors of

clinical endpoints, which estimates the hazard ratio (HR) of a given

endpoint associated with a specific risk factor. A two- tailed P value

less than 0.05 was considered statistically significant.
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3 Results

3.1 Baseline characteristics

Comparison of clinical baseline characteristics between LAA

stroke group and healthy control group is shown in Supplementary

Table 1. The age and sex between the two groups were comparable

(P>0.05). Of the 145 LAA stroke patients, 98 were males (67.6%)

and 47 were females (32.4%), at average age of 65.0 years old.

Among these patients, 46 (31.7%) had a history of smoking, 109

(75.2%) had hypertension, and 40 (27.6%) had diabetes mellitus

type 2 (T2DM). Among patients with LAA stroke, the prevalence of

smoking history, hypertension, and T2DM was significantly higher

than that observed in the healthy controls (all P<0.05). The TG level

of LAA Stroke patients was significantly higher than in healthy

controls (P = 0.025). Similarly, The TC level of LAA Stroke patients

was significantly higher than in healthy controls (P = 0.031). There

was no significant difference in the LDL-C and HDL-C between the

groups. Comparison of the serum biomarkers level between LAA

stroke group and healthy control group is shown in Figure 2. The

levels of MPO-DNA, C1q, AIM2, ASC, Caspase-1, IL-1b, IL-6 and

IL-8 were significantly higher in LAA stroke group than in control

group at 3 time points (all P<0.05). The levels of MPO-DNA, PAD4,

C1q, IL-1b, IL-6, IL-8 and HMGB1 change significantly over time

during the acute phase of stroke (all P < 0.05) (as shown in

Figure 3). For detail, MPO-DNA, PAD4, C1q, IL-1b, IL-6 and IL-

8 reached their peak at 24 hours after stroke onset and show a

decreasing trend throughout the acute phase of stroke, while

HMGB1 peaked at 48 hours after stroke onset. The levels of

AIM2, ASC and Caspase-1 do not change significantly over time

during the observation timeframe (all P>0.05) (as shown in

Figure 3). Correlation analysis between NETs and inflammatory

biomarkers is shown in Supplementary Figure 1. Especially, MPO-

DNA was positively correlated with PAD4, HMGB1, C1q, AIM2

(P=0.002, r=0.260; P=0.002, r=0.251; P=0.001, r=0.322; P=0.019,

r=0.195, respectively). Furthermore, HMGB1 at T1 was correlated

with NIHSS scores at hospital admission (P=0.009, r=0.217, as

shown in Supplementary Table 2). At T2 and T3, correlation

analysis revealed no statistically significant associations between

any of the biomarkers and NIHSS scores at hospital admission (P >

0.05) (Supplementary Table 2).
3.2 Multivariate logistic regression analysis
of predictors for three months prognosis in
LAA stroke patients

Receiver Operator Characteristic (ROC) was used to analyze the

prognostic value of all relevant indicators in LAA stroke patients (as

shown Supplementary Table 3). According to the mRS Scores at 3

months after stroke onset, multivariate logistic regression analysis

found that high levels of MPO-DNA, AIM2, and IL-1b at 24 hours

after stroke onset were associated with poor prognosis in LAA

stroke patients (P=0.007, OR (95%CI): 4.88 (1.53, 15.5), P=0.012,
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OR (95%CI): 2.78 (1.25, 6.17), and P=0.017, OR (95%CI): 3.44

(1.24, 9.49), respectively), and coexisting T2DM were associated

with poor prognosis (P<0.05) (as shown in Table 1). To further

elucidated the potential synergistic effect, we employed the GMDR

method to detect interactions between inflammatory factors. The

model composed of MPO-DNA, AIM2 and IL-1b had the highest

level of testing balance accuracy (0.585), the cross-validation

consistency of 7/10, and scored 9 for the sign test at the 0.0107

level, as shown in Table 2. Furthermore, the significant interactions

between the above models were confirmed by a permutation test

implemented in the GMDR software (P=0.028). Further analysis

revealed that combination of MPO-DNA, AIM2 and IL-1b exert a

synergistic effect on the prognosis of LAA stroke [P=0.001, OR: 8.75

95%CI (2.10-32.42)] (Figure 4). At T2 and T3, multivariate logistic

regression analysis demonstrated that the associations between
Frontiers in Immunology 05
NETs and inflammatory biomarkers and stroke prognosis were

not statically significant(P>0.05) (Supplementary Tables 4, 5).
3.3 Multivariate Cox regression analysis of
predictors for clinical endpoints in LAA
stroke patients

A follow-up was conducted to document major vascular events

occurring 2 years post-stroke onset in 145 patients. 36 patients

(24.8%) experienced major vascular events, including 20 patients

with recurrent ischemic stroke (13.8%) and 16 patients with

vascular death (11.0%). For detail, 10 patients died from ischemic

stroke and 6 patients died from acute myocardial infarction.

Multivariate cox regression was used to analyze the risk factors of
FIGURE 2

Research factor level at three different time points in LAA stroke and Healthy controls. The results were obtained using Mann-Whitney U. HC, Healthy
controls *: p<0.05, **: p<0.01, ***: p<0.001, ns: no significance. 24h, 24 hours after LAA stroke onset; 48h, 48 hours after LAA stroke onset; 7d, 7 days after
LAA stroke onset; MPO, myeloperoxidase; PAD4, Peptidyl arginine deiminase-4; HMGB1, High mobility group box-1 protein; C1q, Complement component
1q; AIM2, absent in melanoma 2; IL-1b, interleukin-1b; IL-6, interleukin-6; IL-8, interleukin-8; ASC, Apoptosis associated speck like protein containing CARD.
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clinical endpoints, which estimates the hazard ratio (HR) of a given

endpoint associated with a specific risk factor. Multivariate cox

regression demonstrated high level of MPO-DNA, Caspase-1 and

IL-1b at baseline were risk factors of MVEs after LAA stroke

(P=0.017, HR (95%CI): 4.04 (1.2, 12.70), P=0.034, HR (95%CI):

2.33 (1.06, 5.12), and P=0.01, HR (95%CI): 4.09(1.39, 11.99),

respectively)). Additionally, the analysis showed female and

smoke predictors of MVEs (P=0.026, HR (95%CI): 0.31 (0.11,

0.86), P=0.029, HR (95%CI): 2.70 (1.11, 6.59), respectively)

(Figure 5). Furthermore, high level of ASC, IL-1b at baseline were

risk factors of recurrent stroke (P=0.034, HR (95%CI): 3.33

(1.096,10.161), and P=0.037, HR (95%CI): 7.67 (1.126,52.31),

respectively) (Figure 6).
4 Discussion

Recent basic studies have identified that neutrophil extracellular

traps (NETs) as a potential inflammatory biomarker in ischemic

stroke (27, 38, 40–42). Therefore, exploring the role of NETs in the

prognosis of cerebrovascular disease patients holds significant promise

for advancing our understanding of these conditions. However, the

association between NETs and ischemic stroke prognosis remains

controversial, making their role in ischemic stroke an intriguing topic,

which warrant further investigation (22, 23). Our results revealed, in

multivariate logistic analysis, baseline levels of MPO-DNA, AIM2, and

IL-1bwere predictors of poor outcome at three-months in LAA stroke

patients. To further elucidated the potential synergistic effect, we

employed the GMDR method to detect interactions between

inflammatory factors. The GMDR analysis revealed that the
Frontiers in Immunology 06
combination of MPO-DNA, AIM2, and IL-1b exert a synergistic

effect on the prognosis of LAA stroke, which indicated NETs/AIM2/

IL-1b axis may involve in inflammatory damage after ischemic stroke.

It is noteworthy that similar findings have been observed in clinical

cardiovascular study, which revealed an association between high

levels of NETs and inflammatory responses in ST-segment elevation

myocardial infarction (STEMI) (43). Additionally, circulating NETs

have significant predictive value for left ventricular remodeling in

myocardial infarction patients (40, 43). The above evidence indicated

that NETs could serve as prognostic biomarkers for clinical outcome

after both cerebrovascular and cardiovascular disease.

Although few study focus on the dynamic changes of NETs and

related inflammatory biomarkers in human peripheral blood during

the acute phase of ischemic stroke, De Wilde et al. (41) used a

middle cerebral artery occlusion (MCAO) rat model to described

the dynamic change pattern of NETs, which could be detected in the

ipsilateral brain hemisphere of MCAO rats 6 hours after stroke,

peaked at 24 hours, and decreased again 48 hours postischemia.

Based on above evidence, we hypothesized that circulating NETs

levels would peak approximately 24 hours post-onset of LAA

stroke. To investigate this, we examined the dynamic fluctuations

in NETs and related inflammatory biomarkers in peripheral blood

samples collected from 24 hours to 7 days following LAA stroke

onset. For the first time, our findings revealed that circulating NETs,

PAD4, C1q, IL-1b, IL-6 and IL-8 levels peaked at 24 hours after

stroke onset, followed by a gradual decline. These results suggest

that NETs formation and inflammation may be initiated in the early

stage of LAA stroke, underscoring a potentially optimal timing to

target NETs related inflammation in LAA stroke in future research.

However, certain biomarkers peaked at different time points, and
FIGURE 3

The level of NETs and inflammatory biomarkers at three different time points in the acute phase of LAA stroke. The results were obtained using
single factor repeated measure analysis (ANOVA). 24h, 24 hours after LAA stroke onset; 48h, 48 hours after LAA stroke onset; 7d, 7 days after LAA
stroke onset; MPO, myeloperoxidase; PAD4, Peptidyl arginine deiminase-4; HMGB1, High mobility group box-1 protein; C1q, Complement
component 1q; AIM2, absent in melanoma 2; IL-1b, interleukin-1b; IL-6, interleukin-6; IL-8, interleukin-8; ASC, Apoptosis associated speck like
protein containing CARD. *: p<0.05.
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the dynamic patterns of some biomarkers remain unclear within the

observed time frame in our study.

In future studies, we propose extending the observation

timeframe to encompass both the initial 24 hours and the period

beyond 7 days, to characterize more information about the dynamic

changes of predictive biomarkers and pave the way for precise

treatment and prevention of LAA stroke in the future.

Our study provides novel clinical evidence supporting the role

of the NETs/AIM2 inflammasome/IL-1b axis in the prognosis of

LAA stroke. Comparably, basic study indicated a significant

correlation between NETs levels and IL-1b levels, inhibiting the
Frontiers in Immunology 07
NETs/AIM2 axis may be a potential strategy to reduce

inflammatory damage to target organs (25, 26). AIM2 is regarded

as a novel receptor for cytoplasmic DNA, such as NET-DNA (32).

After AIM2 inflammasome activation, AIM2 forms an

inflammasome with its ligand and ASC to activate caspase-1,

which controls the catalytic cleavage of the cytokine IL-1b,
indicating that NETs/AIM2 inflammasome/IL-1b axis is involved

in sterile inflammation related to tissue damage (32, 44). Recent

preclinical evidence suggested inhibition of inflammation markers

in this axis, such as NETs and AIM2, could alleviate

neuroinflammatory responses and improves cerebral blood flow
TABLE 2 GMDR results of multi-factors interaction with ischemic stroke.

Factors Model
Training Balance
Accuracy

Testing Balance
Accuracy

CV Consistency Sign Test(p)

1 MPO-DNA 0.6252 0.5103 5/10 8(0.0547)

2 MPO-DNA IL-1b 0.6768 0.577 6/10 9(0.0107)

3 MPO-DNA AIM2 IL-1b 0.6933 0.585 7/10 9(0.0107)

4
5

MPO-DNA AIM2 ASC IL-1b
MPO-DNA PAD4 AIM2 Caspase-1 IL-1b

0.7308
0.7746

0.5572
0.5553

5/10
2/10

5(0.6230)
6(0.3770)
TABLE 1 Logistic regression analysis of inflammatory biomarkers at 24 hours after LAA stroke onset and poor clinical outcomes.

Variables Univariate Multivariate

OR 95%CI P OR 95%CI P

Age(≥60) 2.65 1.18-5.64 0.018 – – –

Sex(female) 2.35 1.13-4.90 0.022 – – –

Hypertension
T2DM

1.07
3.04

0.47-2.42
1.41-6.51

0.862
0.004

-
2.68

-
1.16-6.21

-
0.021

Smoke 0.67 0.31-1.46 0.322 – – –

BMI (≥28kg/m2) 1.22 0.38-3.86 0.736 – – –

LDL-C (≥3.4mmol/L) 1.35 0.55-3.21 0.512 – – –

HDL-C(≤1.16mmol/L) 0.93 0.45-1.93 0.851 – – –

Triglycerides (≥1.7mmol/L) 0.86 0.42-1.77 0.693 – – –

Cholesterol (≥5.2mmol/L) 1.11 0.51-2.38 0.790 – – –

Hcy (≥15mmol/L) 1.53 0.69- 3.36 0.288 – – –

MPO-DNA (≥11.5ng/mL) 4.78 1.57-14.52 0.006 4.88 1.53-15.5 0.007

PAD4 (≥6.78ng/mL) 1.32 0.64-2.74 0.447 – – –

HMGB1 (≥21.9ng/mL) 1.13 0.55-2.30 0.738 – – –

C1q (≥604.87ug/mL) 0.54 0.23-1.27 0.162 – – –

AIM2 (≥2.6ng/mL) 2.54 1.23-5.25 0.012 2.78 1.25-6.17 0.012

ASC (≥202.52pg/mL) 1.12 0.54-2.31 0.748 – – –

Caspase-1 (≥28.92pg/mL) 1.08 0.52-2.20 0.815 – – –

IL-1b (≥60.91pg/mL) 3.64 1.40-9.44 0.008 3.44 1.24-9.49 0.017

IL-6 (≥7.14pg/mL) 0.80 0.39-1.61 0.533 – – –

IL-8 (≥1736.92pg/mL) 0.81 0.37-1.76 0.601 – – –
OR, Odds Ratio; CI, Confidence Interval.
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perfusion in ischemic brain tissues in MCAO rat (21, 24), which

further supported our findings. Our results suggest that future

randomized controlled trials are warranted to evaluate the safety

and efficacy of targeting NETs, AIM2, or IL-1b for improved

stroke outcomes.

How to predict the risk of recurrent stroke and MVEs following

ischemic stroke using biomarkers is an unsolved issue. The Stroke

Prevention by Aggressive Reduction in Cholesterol Levels

(SPARCL) studies (6, 7) have demonstrated that despite optimal
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lipid-lowering therapy, a subset of patients continue to experience

recurrent stroke. Series of studies have provided evidence

suggesting that inflammatory biomarkers may serve as potential

predictors of residual vascular risk following ischemic stroke (7, 8,

45). The underlying mechanisms remain unclear, but recent basic

studies have provided some clues. Firstly, IL-1b is not only the core

of inflammatory response in the brain after ischemic stroke, but also

as a potential driver of innate immune memory (28), which may

result in chronic post-stroke comorbidities, such as major vascular
FIGURE 4

The best model for ischemic stroke identified by GMDR. The best model, which is composed of MPO-DNA, AIM2, IL-1b may statistically increase the
risk of ischemic stroke. In GMDR analysis, the three-loci combinations were classified into high- or low-risk groups. The background shading within
each cell indicates the risk to ischemic stroke of each given combination. High-risk cells are indicated by dark shading, low-risk cells by light
shading, and empty cells by white color. Based on the chi-squared test, the OR value of the high-risk combinations of the synergistic effects model
indicated an increased risk of poor prognosis of LAA stroke (P=0.0107, OR: 8.75 95%CI (2.10-32.42)). Cl, confidence interval; OR, odds ratio; GMDR,
generalized multifactor dimensionality reduction.
FIGURE 5

Time to event analysis of risk factors for MVEs in LAA stroke. HR, hazard ratio.
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events. Furthermore, recent experimental research has revealed that

NETs are associated with amplified immune cell recruitment in

atherosclerotic plaques and the formation of vulnerable plaques,

thereby increasing the risk of vascular events (46–49). While NETs

have been identified as biomarkers of acute stroke, their role in

post-stroke MVEs remains unclear (22, 23). Intriguingly, our study

revealed a novel association between high levels of circulating

NETs, Caspase-1, and IL-1b at baseline and the occurrence of

MVEs in our cohort, suggesting that NETs may contribute to the

residual vascular risk following LAA stroke. Additionally, our study

also revealed that elevated ASC and IL-1b levels were associated

with an increased risk of recurrent stroke. We proposed that the

NETs, ASC, Caspase-1, IL-1b pathway is an important regulator of

post-stroke inflammation which might exacerbate atherosclerosis.

Intriguingly, in animal model of recurrent stroke, rapid neutrophil

NETosis was identified as the main source of cell-free DNA after

stroke and NET–DNA as the causative agent leading to

inflammasome activation (50). It is postulated that DNA-sensing

inflammasomes may further cause amplified inflammation in

atherosclerotic plaques accounting for recurrent atherosclerotic

stroke, and targeting NETs, inflammasome and downstream IL-

1b may take effect in reducing residual vascular risk. The notion is

strongly supported by data from the CANTOS trial (Canakinumab

Anti-Inflammatory Thrombosis Outcome Study) showing that

treatment with an IL1b-blocking antibody decreases the risk of a

recurrent cardiovascular event in patients with established

atherosclerotic disease (51). However, treatment with

Canakinumab also comes with heightened risk for infection, a

side effect that may not be neglect (51). The challenge now is to

find out novel drug target which can achieve the goal of ischemic

stroke secondary prevention and with low risk of side effects so that

stroke patients can be treated for their disease over decades (33, 50).
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Comparison with global inhibition of IL1b, the side effect of

infection may not be assumed by specific inhibition of upstream

component of this pathway, such as NETs and AIM2

inflammasome (33, 50). This notion is based on the

understanding that Aim2 senses damage-associated molecular

patterns, such as NET-DNA, accumulating in steri le

inflammation; its inhibition may add the degree of selectivity

toward the cause of the sterile inflammation in comparison with

global inhibition of IL1b (33). Furthermore, neutralization of NET-

DNA by DNase treatment or inhibition of inflammasome activation

reduced the rate of stroke recurrence after experimental stroke (50).

It is postulated that treatment target NETs/AIM2 inflammasome

pathway may effectively alleviate the pro-inflammatory and pro-

thrombotic activity of aggregated NETs, which represents a

promising avenue for further clinical development in the precise

treat and prevention of LAA stroke in the future.

This research indicated NETs and related inflammatory

biomarkers at baseline independently predicted outcome at 3

months and late major vascular events following LAA stroke,

suggesting that targeted therapy directed at high-risk patients

with elevated baseline inflammation may be beneficial. However,

this study had some limitations. Firstly, we focused on LAA stroke

in the study and these findings might not be applicable to

cardioembolic stroke and other subtype of ischemic stroke.

Additionally, this was a single-center study in Chinese

population, which might not be generalized to other racial stroke

patients. Future multi-center studies with large-sample size are

needed to confirm these results. Finally, our study is a prospective

clinical observational study aimed at identifying new biomarkers

associated with the residual risk of recurrent events in LAA stroke,

which revealed NETs and related inflammatory biomarkers at

baseline predicted late major vascular events following LAA
FIGURE 6

Time to event analysis of risk factors for recurrence in LAA stroke. HR, hazard ratio.
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stroke. To validate the safety and efficacy of targeting NETs and

other components of this pathway to reduce residual vascular risk

after LAA stroke, future preclinical studies and randomized trials

are warranted.
5 Conclusions

NETs and related inflammatory biomarkers at baseline

predicted outcome at 3 months and late major vascular events

following LAA stroke, suggesting that targeted therapy directed at

high-risk patients with elevated baseline inflammation may be

beneficial. Our results supported a rationale of randomized trials

for targeted therapy directed at high-risk patients with elevated

baseline inflammation which characterized with high levels of NETs

and related inflammatory biomarkers.
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