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Asthma, is a common, significant and diverse condition marked by persistent

airway inflammation, with a major impact on human health worldwide. The

predisposing factors for asthma are complex and widespread. The beneficial

effects of omega-3 (n-3) polyunsaturated fatty acids (PUFAs) in asthma have

increasingly attracted attention recently. In asthma therapy, n-3 PUFAs may

reduce asthma risk by controlling on levels of inflammatory cytokines and

regulating recruitment of inflammatory cells in asthma. The specialized pro-

resolving mediators (SPMs) derived from n-3 PUFAs, including the E- and D-

series resolvins, protectins, and maresins, were discovered in inflammatory

exudates and their biosynthesis by lipoxygenase mediated pathways

elucidated., SPMs alleviated T-helper (Th)1/Th17 and type 2 cytokine immune

imbalance, and regulated macrophage polarization and recruitment of

inflammatory cells in asthma via specific receptors such as formyl peptide

receptor 2 (ALX/FPR2) and G protein-coupled receptor 32. In conclusion, the

further study of n-3 PUFAs and their derived SPMs may lead to novel anti-

inflammatory asthma treatments.
KEYWORDS
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1 Introduction

Asthma, a common, non-communicable condition, with substantial morbidity,

impacted 262 million individuals worldwide and resulted in 455,000 deaths, according to

recent analyses (1, 2). The diversity and universality of pathogenic factors account for its

widespread prevalence. Genetic risk factors, including family history and gender; lifestyle

factors such as diet, exercise, stress, obesity and environmental factors, particularly inhalant

allergens (dust mites, pollen), air pollution, smoke and occupational exposures (3), all affect

the prevalence and mortality of asthma globally (4). The pathogenesis of asthma is

extremely complex, involving multiple inflammatory mechanisms including Type 2

inflammation, T-helper (Th)1/Th17 immune imbalance, increased inflammatory
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cytokines, inflammatory cell recruitment and ultimately pathologic

changes in the airways (5).

Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) comprise a

group of polyunsaturated fats, represented by Docosahexaenoic

acid (DHA), eicosapentaenoic acid (EPA), essential nutrients,

found in many foods. Published research suggests that n-3

PUFAs exhibit immunologic activity, affecting a variety of

physiologic and pathologic processes, including cognitive function

(6), vascular and myocardial function (7), inflammation (8), atopic

disease (9), and cardiovascular diseases (10). In recent years, n-3

PUFAs-derived lipid mediators called specialized pro-resolving

mediators (SPMs) were discovered and found to be

biosynthesized by lipoxygenase mediated pathways, with the

reports on their pro-resolving effects and anti-inflammatory

activity. SPMs were able to regulate various inflammatory

mechanisms in asthma and were the potential active mediators of

the anti-asthma effects of n-3 PUFAs (11). This review aims to

assess the established benefits of n-3 PUFAs in asthma, focusing on

the n-3 PUFA-derived specialized pro-resolving lipid mediators and

their anti-inflammatory properties.
2 Asthma phenotyping

Asthma is a diverse condition characterized by fluctuating

respiratory symptoms, particularly wheeze, cough and

breathlessness, which vary in intensity and frequency over time,

associated with reversible expiratory airflow limitation, which may

persist and become irreversible (12). Among the primary pathologic

traits of asthma are airway hyper-responsiveness (AHR), airway

remodeling, disrupted mucosal immunity, and persistent airway

inflammation (13, 14).

Asthma has been classified into different phenotypes (15):

according to age (childhood (16), adolescent (17), adult (18), and

elderly asthma (19)); severity (severe and non-severe asthma (20));

inducing factors (allergic, non-allergic and occupational asthma

(12), obesity asthma (21), etc.); biomarkers (eosinophilic,
Abbreviations: PUFAs, Polyunsaturated fatty acids; SPMs, Specialized pro-

resolving mediators; n-3, Omega-3; DHA, Docosahexaenoic acid; EPA,

Eicosapentaenoic acid; AHR, Airway hyper-responsiveness; Th, T-helper; T2,

Type 2; DCs, Dendritic cells; ILC2s, Type 2 innate lymphoid cells; IL, Interleukin;

TGF-b, Transforming growth factor-b; ILC, Innate lymphoid cells; NGF, Nerve

growth factor; ALA, Alpha-linoleic acid; DPA, Docosapentaenoic acid; ARA,

Arachidonic acid; ELFE, Etude Longitudinale Francaise depuis l’Enfance; RvD,

Resolvin D; TNF-a, Tumor necrosis factor-a; IFN-g, Interferon-gamma; OVA,

Ovalbumin; LPS, Lipopolysaccharide; FPR2/ALX, Formyl peptide receptor 2;

GPR, G-protein-coupled receptor; PBMCs, Peripheral blood mononuclear cells;

NF-kB, Nuclear factor kappa-B; CCL, C-C motif chemokine ligand; MaR,

Maresin; RORa, Receptor retinoic acid-related orphan receptor a (RORa);

LGR6, leucine-rich repeat containing G protein-coupled receptor 6; PD1,

Protectin D1; PDX, Protectin DX; PCTR1, Protectin conjugates in tissue

regeneration; GLA, Gamma-linolenic acid; MAG, Monoacylglyceride; COX-2,

Cyclooxygenase-2; LOX, Lipoxygenase; IgE, Immunoglobulin E; BALF,

Bronchoalveolar lavage fluid; HDM, House dust mite; RNA, Ribonucleic acid.
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neutrophilic asthma, etc. (22)). Cluster analysis studies have

defined the main phenotypes of asthma including early-onset

allergic asthma, early-onset allergic moderate-to-severe remodeled

asthma, late-onset nonallergic eosinophilic asthma, and late-onset

nonallergic noneosinophilic asthma etc. (23). Endotypes, subtypes

of disease defined functionally and pathologically by a molecular

mechanism or by treatment, more succinctly classify asthma as type

2 (T2) and non-T2 types (24).
3 T2 asthma

Type 2 immune processes represent a classic mechanism of

allergy and an essential feature of asthma (Figure 1). Type 2

inflammation plays a major role in eosinophilic and allergic

asthma, and has been observed in 50% - 70% asthma patients

(25). Inhaled allergens stimulate airway epithelial cells to release

alarmins (26), which may interact with dendritic cells (DCs) and

induce differentiation of naive T cells into Th2 cells (27). In

addition, Th2 cells and type 2 innate lymphoid cells (ILC2s)

produce a variety of type 2 cytokines, especially interleukins

including interleukin (IL)-4, IL-5 and IL-13 (28, 29). IL-4

promotes the differentiation of Th2 cells, B cell switching and IgE

production, goblet cell hyperplasia and mucus production,

epithelial barrier disruption and tissue remodeling, airway smooth

contraction and AHR (30, 31). Although the major effects of IL-13

are very similar to those of IL-4, some independent pathways of

eosinophilia (32) and M2 macrophage polarization (33) have been

reported for IL-13. IL-5 has a pivotal role in facilitating the

maturation and recruitment of eosinophils (34); it is also released

by mast cells and ILC2s, particularly after interaction with thymic

stromal lymphopoietin (TSLP) (33, 35). Mixed granulocytic

asthma, with elevation of sputum (and airway) neutrophils and

eosinophils is a rarer phenotype, but it tends to feature Type 2

inflammation with the anticipated responses (22, 36).
4 Non-T2 asthma

Non-T2 asthma is characterized by neutrophilic and

paucigranulocytic inflammation, and may be triggered by factors

including smoking, obesity, bacteria, viruses, and air pollution

(Figure 2) (37). In non-T2 asthma, naive T cells differentiate into

Th1, Th17 cells. Th1 cells produce tumor necrosis factor-a (TNF-

a) and interferon-gamma (IFN-g) while Th17 cells produce a

variety of cytokines (38, 39); together contributing to recruitment

and activation of neutrophils leading to AHR and airway

remodeling (40, 41). IL-17 stimulated airway epithelial cells

release IL-6, which promotes differentiation of naive T cells into

Th17 cells (42) and inhibition of transforming growth factor-b
(TGF-b)-induced production of regulatory T cells (Tregs) (43). IL-

8, is also produced by airway epithelial cells, increasing neutrophil

numbers (44). In addition, innate lymphoid cells (ILC) 3 cells are

another source of IL-17 (45), and macrophage-derived IL-6 and IL-

1b could stimulate ILC3 to produce IL-17 (46, 47). Tregs, generated

from naive T cells, suppress the Th2 response in asthma, inhibition
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1488570
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2024.1488570
FIGURE 2

Inflammatory mechanisms involved in Non-T2 asthma.
FIGURE 1

T2 inflammatory mechanisms in asthma. TSLP: thymic stromal lymphopoietin.
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TGF-b may exacerbate airway inflammation and remodeling by

Treg downregulation (48). Tregs (49), B cells (50) and CD8+ T cells

(51) produce IL-10, which decrease tissue mast cell and eosinophil

counts and may prevent neutrophilic asthma.

Paucigranulocytic asthma may account for up to 40% of patients

with asthma (52) and though it was usually well controlled on

treatment, or intermittent in the Severe Asthma Research Program

cohort (53), it has been relatively little studied. It has been suggested

that the number of granulocytes may reflect depletion of eosinophils

by steroid therapy. By contrast with the immune imbalance in

neutrophilic asthma,paucigranulocytic asthma may be more

strongly associated with neural regulation as suggested by high

levels of nerve growth factor (NGF) (54) and sphingolipid synthesis

inhibition (55) induced AHR, and bronchoconstrictor signaling (56)

are also involved in the pathogenesis of paucigranulocytic asthma.
5 PUFAs in asthma

PUFAs are defined as fatty acids characterized by the presence of

multiple double bonds, with a terminal methyl carbon at one end and

the iconic hydroxyl group at the other (57). They are sometimes

called essential fatty acids as they cannot be synthesized by humans

and must be obtained through the diet. PUFAs are classified as

omega-3 or n-3 PUFAs when their first double bond is situated
Frontiers in Immunology 04
between the third and fourth carbon atoms (58) and omega-6 PUFAs

when the carbon-carbon double bond is at the n-6 position. A series

of enzymatic reactions catalyzed the synthesis of n-3 PUFAs from the

precursor alpha-linoleic acid (ALA), including EPA, DHA, and

docosapentaenoic acid (DPA) and the biosynthesis of n-6 PUFAs

including gamma-g-linolenic acid (GLA), dihomo-gamma-linolenic

acid (DGLA), and arachidonic acid (AA) (59, 60) as shown in

Figure 3. The D5 desaturase and the D6 desaturase enzymes insert

double bonds at the fifth and sixth carbon atoms, and the chain is

shorted by b-oxidation (61). The shared desaturase and elongase

enzymes lead to competition between n-3 and n-6 PUFAs, the n-6/n-

3 ratio in organisms sometimes depends on the ingested ratio of

substrates for n-6 and n-3 PUFAs (62).The importance of the n-6/n-3

ratio has been highlighted in cardiovascular disease (63), cancer (64),

asthma (65) and other diseases. Because of the complicated combined

actions of n-3 and n-6 PUFAs, beneficial effects of mixed fatty acids at

an n-6/n-3 ratio of 5:1 were reported in asthma but at a ratio of 10:1,

the effects became negative (66), suggesting meaningful roles for both

n-3 and n-6 PUFAs in asthma.

N-6 PUFAs, particularly AA, have demonstrated complex effects

in asthma. In a large cross-sectional study, asthma risk was

significantly negatively corelated with omega-6 fatty acid intake

(67), as in the report from Lee-Sarwar et al. (9). However, asthma

exacerbations influenced the levels of n-6 PUFAs in vivo: the plasma

AA levels showed a positive correlation with childhood asthma
FIGURE 3

Synthesis of n-3 and n-6 fatty acid family members.
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attacks (68). Similar trends were also observed in lung cells of

asthmatic mice (69), and in plasma levels of the AA-derived

eicosanoids, prostaglandin E2 (PGE2) and thromboxane B2

(TXB2), in asthma patients (70). N-6 PUFAs generate mediators

that play important roles in asthma development (71, 72), while AA

produces leukotrienes, prostaglandins, and thromboxanes via a series

of enzymatic reactions catalyzed by cyclooxygenase and lipoxygenase

(Figure 4). There are some reports about the pro-inflammatory

activities of eicosanoids: leukotrienes increased vascular

permeability and smooth-muscle contraction (73), prostaglandins

induced allergen sensitization and Th2 immune response (74), and

thromboxanes promoted bronchoconstriction and AHR (75). Taking

into consideration the positive regulatory effect of n-6 PUFAs in

asthma, further studies are needed to clarify the complexmechanisms

of n-6 PUFAs effects in asthma. In fact, existing studies of PUFAs in

asthma are more focused on the n-3 PUFAs: many clinical trials and

animal experiments have elucidated their effects.
6 Effects of n-3 PUFAs in asthma and
lung inflammation

As critical nutrients in diets, the sources of n-3 PUFAs are

multifarious. The main sources of EPA and DPA are fish and

seafood, while ALA is found in leafy vegetables and nuts (57).

DHA has played a beneficial role in cardiovascular disease, the

brain and visual function and inflammation (76). EPA showed

helpful influences on brain function, oxidative stress, inflammation,

hyperlipidemia and neurodegenerative diseases (77). Fish and lean

red meat are sources of DPA, and the effects of DPA such as anti-

inflammatory actions, antiplatelet aggregation, and improvement of

plasma lipid have been reported (78). Because of the high b-oxidation
rate of ALA (79), the few sources and low conversion of SDA to DHA

(80), these two kinds of n- 3 PUFAs are rarely used in clinical anti-

inflammatory treatment. In this review, we mainly discuss EPA,
Frontiers in Immunology 05
DHA, and DPA that are easily obtained in the daily diet and

frequently supplemented in asthma therapy. Positive outcomes

associated with n-3 PUFAs have been documented in the context

of preventive measures (81, 82) and disease control (83) of asthma.

According to a related study (84), n-3 intake decreased asthma risk in

a dose-dependent manner (< 59.0 mg/kg/day). Various types of n-3

PUFA supplements have been implemented; including the delivery of

combinations of various PUFAs, fish oil and diets rich in PUFAs.

This article will examine the impact of various forms of n-3 PUFAs,

rather than n-6 PUFAs, on asthma prevalence, lung inflammation,

asthma challenge testing, and clinical asthma, as reported in recent

clinical trials [Table 1 (85–88), Table 2 (89–97)] and in animal/

cellular asthma models [Table 3 (69, 98–103)].

There is evidence suggesting that n-3 PUFAs and marine oils

have protective effects against asthma and allergies, as demonstrated

in both animal studies and clinical trials (104). As summarized in

Table 1, n-3 PUFAs were supplemented in a Swedish cohort of

children, a French longitudinal study of pregnant women and a

small study in children with asthma. The key constituents,

particularly DHA and EPA, were often reported in combination,

in clinical trials or studies. Generally, n-3 PUFAs were beneficial in

improving asthma-induced pathologic changes (85, 86), in reducing

levels of inflammatory cytokines (86), and in the reduction in usage

of asthma medications (90). In addition, prenatal n-3 PUFAs played

a role in prevention of asthma risk in offspring (91, 92, 94).

However, n-3 PUFA treatment did not lead to positive or

significant results in some clinical reports and the effectiveness

and mechanisms of action of n-3 PUFAs require further study. As

shown by a meta-analysis, fish intake and maternal n-3 PUFA

supplement lowered the asthma risk in childhood, but had no

significant effect in adult asthma (105), while in a Cochrane review,

including 9 clinical trials, no consistent effect of n-3 PUFAs on

asthma was demonstrated, apart from one study indicating a

reduction of asthma medication (106). A systematic review of 14

studies reported benefit effects of n-3 PUFAs on T2 inflammation
FIGURE 4

Biosynthesis of AA-derived lipid mediators.
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TABLE 2 Effects of n-3 PUFA-enriched fish oil diets on asthma in clinical trials.

Form of
n-3 PUFAs

Intervention Participants Outcomes Reference

EPA, DHA and
DPA in diet

Median dietary intakes:
0.24 g/1900 kcal and 0.27
g/1900 kcal at 8 and 16 y

1992 children born between
1994 and 1996
Swedish population cohort

High plasma n-3 PUFAs at 8 y was inversely associated with
prevalent asthma at 24 y suggesting protection from lower dietary
intake in childhood

(89)

Diet with
enriched DHA
or EPA

9.0 to 20.3 mg/100 kcal
for DHA and 2.1 to 3.3
mg/100 kcal for EPA

8389 formula-fed infants from
ELFE cohort at 2 mouths 36%
had DHA and ARA
supplementation and 11% had
DHA, ARA and
EPA supplementation

High DHA, ARA and EPA content supplementation was
associated with a lower use of asthma medications from aged 2
months to 5.5 y

(90)

n-3 PUFAs in
diet estimated by
food
questionnaire

1.6 - 2.6 g/d total n-
3 PUFA

412 mother-child dyads
(22% with active asthma
in pregnancy)

Lower n-3 PUFA intake during pregnancy was significantly
associated with risk of childhood asthma to age 4 y (p < 0.03),
more apparent in female children

(91)

n-3 PUFA-rich
fish oil

(55% EPA + 37% DHA)
2.4 g/day and placebo in
3rd trimester, double-
blind and randomized

695 pregnant women and their
children followed up till age 6 y

n-3 PUFA supplementation in 3rd trimester reduced risk of
wheeze or asthma by 30% at 6 y with 73% reduction in non-
atopic asthma

(92)

n-3 LCPUFA-
rich fish oil

(800 mg DHA + 100 mg
EPA)/d double-blind
randomized multicenter
recruited from 21 weeks
of pregnancy onwards

706 Australian children with a
family history of allergic disease
followed up till 6y of age

No difference in the percentage of children with allergic disease
(RR 1.04 p = 0.73)

(93)

n-3 PUFA-rich
fish oil

Fish oil dose < 250 mg in
11, Fish oil dose < 250
and < 500 mg in 9 and
Fish oil dose > 500 mg
in 26

46 pregnant women in 1st and
3rd trimester

Prenatal fish oil or fish oil supplementation in the first trimester
reduced asthma risk among offspring at age 3 y

(94)

n-3 PUFA-rich
fish oil

Fish oil capsules (900 mg
of LCPUFA) vegetable oil
control group

706 children with familial risk
of allergy

No difference between fish oil and controls in allergic symptoms
or sensitization at 1, 3 and 6 y

(95)

(Continued)
F
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TABLE 1 Effects of n-3 PUFAs on asthma in clinical trials.

Form of
n-3 PUFAs

Intervention Participants Outcomes Reference

EPA and DHA

High dose (3.7 g EPA +
2.5 g DHA/d) x 21 days, low
dose (1.8 g EPA + 1.3 g
DHA/d) and placebo x
21 days

8 male adults
with asthma and
HIB and 8
healthy male
adult controls

Peak fall in FEV1 reduced by 34% and 30% (both p + 0.001): baseline
fraction of exhaled NO was reduced by 24% and 31% (p = or < 0.02)

(85)

EPA and DHA
180 mg EPA + 120 mg
DHA/d x 3 months

39 asthma
patients (aged 4 -
14 y)

Two-point improvement in symptom score in 28 patients and in PEF and
lower IL-17A and TNF-a levels (p < 0.05)

(86)

PUFA-enriched
fat blend

450 mg EPA + 180 mg
DHA + 60 mg gamma
linoleic acid + 60 mg SDA/d

13 female and 10
male adults with
asthma (aged 22 -
29 y)

eNO was significantly lower (p = 0.022) with lower levels of serum
eosinophils (10.1 8 ± 0.1.84 vs. 5.79 ± 80.69%), eosinophilic cationic protein
(20.5 8 ± 9.93 vs. -1.68 ± 4.36 ng/mL) and cysteinyl leukotriene release (2,889
± 872 vs. 1,120 ± 173 ng/mL) (p < 0.05 each) in the n-3 PUFA group

(87)

EPA and DHA

(55% EPA+37% DHA) 2.4
g/day and placebo from 24
weeks’ gestation until
1week postpartum

Pregnant women
and their
offspring between
birth and 3 to
5 years of age

The cumulative risk of persistent wheeze or asthma were decreased from
birth to 3 - 5 years (16.9% vs 23.7%, relative risk (RR) = 0.69, 95%CI 0.49 to
0.97, p = 0.035) and birth to 5 years (17.5% vs 24.6%, RR = 0.68, 95%CI 0.49
to 0.95, p = 0.024), but no difference in the risk of asthma exacerbations

(88)
HIB, hyperpnoea-induced bronchoconstriction; FEV1, forced expiratory volume in 1 second; eNO, exhaled nitric oxide; y, years; PEF, peak expiratory flow; ELFE, Etude Longitudinale Francais
depuis L’Enfance; LCPUFA, long-chain PUFA; RR, relative risk.
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(107). A further review of the effects of n-3 PUFAs on asthma

pathology, cytokines and asthma exacerbations also reached similar

inconsistent conclusions (108).

As shown in Table 3, combined use of different n-3 PUFAs

was documented in cell and animal experiments, with attention

paid to downstream inflammatory products and signaling

mechanisms. Broadly similar results in these animal and cellular

experiments were seen to those in clinical trials suggesting
Frontiers in Immunology 07
protective effects of combined-n-3 PUFAs on pathologic

changes in asthma, with a reduction in airway responsiveness

(99), reduction in remodeling (100) and attenuation of eosinophil

chemotaxis and chemokinesis (101) etc. Inflammatory cytokines,

important in asthma, were generally decreased by n-3 PUFAs,

particularly the Th2-type cytokines IL-5, IL-13 (98, 103) and those

produced by Th1/Th17 cells such as TNF-a, IL-1b, IL-6, IL-17,
and IL-23 (100).
TABLE 2 Continued

Form of
n-3 PUFAs

Intervention Participants Outcomes Reference

n-3 PUFA-rich
fish oil

Fish oil capsules (3.2 g
EPA + 2.2 g DHA)/d
and placebo

10 athletes with exercise-induced
bronchoconstriction (EIB) and
10 athletes without EIB

FEV1 decreased were inhibited (3 ± 2% vs 14.5 ± 5%) at 15
minutes postexercise,TNF-a and IL-1b decreased

(96)

n-3 PUFA-rich
fish oil

Fish oil capsules (3.2 g
EPA + 2.2 g DHA)/d
and placebo

7 male and 15 female atopic and
nonsmoking asthma patients
(aged 18 - 42 y)

After 2 to 7 h of dietary supplementation with Max-EPA, the late
asthmatic response was significantly attenuated (p < 0.05), the
EPA content in neutrophil were increased to 10-fold, and
neutrophil chemotactic responses were depressed by
approximately 50%, 47% inhibition of leukotriene B generation

(97)
TABLE 3 Effects of n-3 PUFAs on inflammation in animal and cellular ‘asthma’ models.

Models Administration Effects Models Reference

OVA-induced
asthma in BALB/c
mice and
control groups

LCPUFAs (1000 mg/kg/d; 50% EPA and 50%
DHA) by gavage from days 21 - 28

Airway response and BALF eosinophils were
decreased by LCPUFAs (p < 0.05), IL-5, IL-4, IL-13
levels and remodeling were also decreased (p < 0.05)

OVA-induced
asthma in BALB/c
mice and
control groups

(98)

HDM-induced
chronic asthma
model in C57BL/6
mice and controls LCPUFA:1000 mg/kg EPA + 229.6 mg/kg

DHA + 246.0 mg/kg GLA + 200.9 mg/kg
SDA/day compared to1000 mg/kg/day EPA
from days 11 - 35

In asthmatic mouse lung and blood cells, AA and
DHA were increased (p < 0.001 and p < 0.01) while
DGLA was decreased. (p < 0.05) in lung cells.
Combination n-3 and n-6 LCPUFAs decreased AA
and increased EPA, DPA (all p < 0.001), and DHA
(p < 0.01) and reversed the lack of DGLA (p < 0.05)

HDM-induced
chronic asthma
model in C57BL/6
mice and controls

(69)

HDM-induced
asthma model in
C57BL/6 mice
and controls

LCPUFA combination reduced AHR, decreased the
relative amount of eosinophils, reduced IL-5, IL-4,
IL-13, IL-6, IL-10 and IFN-g, IL-6, and increased the
release of EPA derived E-series resolvins (RvEs), and
DPA-derived SPMs and D-series resolvins (RvDs)
in BALF

HDM-induced
asthma model in
C57BL/6 mice
and controls

(99)

PM2.5-induced lung
injury in male
C57BL/6N and
control mice

w-3 PUFAs-enriched diet (EPA/DHA = 3:2)
21 g/kg for 6 weeks, with/without
intratracheal PM2.5

n-3 fatty acid group showed reduced alveolar septal
thickness and inflammatory cells, with decreased
levels of TNF-a, IL-1b, IL-6, and IL-17 (p < 0.05 -
0.01) in serum and BALF

PM2.5-induced lung
injury in male
C57BL/6N and
control mice

(100)

HDM-induced
asthma model in
female adult mice

OmeGo (enzymatically liberated salmon oil;
20 and 60 mg, vehicle and positive
control (apolipoprotein)

vehicle and positive total cell and eosinophil
countsin BALF (p < 0.01) and eosinophils in spleen
(p < 0.001)

HDM-induced
asthma model in
female adult mice

(101)Intraperitoneal
eosinophilia
polymyxin B model
in guinea pig

OmeGo (30 mg/kg, 300 mg/kg), sea cod (cod
liver oil/omega 3) (30 mg/kg, 300 mg/kg), also
fevipiprant 5 and 20 mg/kg, and Linoleic acid
(LA) 300 mg/kg

300 mg/kg OmeGo attenuated eosinophil chemotaxis
(50.7%, p < 0.002) and chemokinesis (55.7% p <
0.005) to leukotriene B4 compared to LA control

Intraperitoneal
eosinophilia
polymyxin B model
in guinea pig

LPS-induced acute
lung inflammation in
male Wistar rats

O3FFA:31.6% EPA, 31.6% DHA, and 15.4%
DPA.EE: fish oil concentrate with 22% DHA
and 33% EPA and saline and LPS controls

O3FFA and O3EE reduced LPS induced alveolar
histiocytosis and decreased BALF IL-6, TNF-a,
TGF-b, and IL-10 (p < 0.05)

LPS-induced acute
lung inflammation
in male Wistar rats

(102)

Human DC2 - T-cell
model
and LPS matured
DCs as a control

100 µM of LA, ALA, AA, DHA, or EPA

DHA (p < 0.005) and EPA (p < 0.0001), LA and AA
decreased IL-12/IL-23 and IL-23production by DC2s
and lowered IL-13, IFN-g and IL10 production by
DC2-induced effector T-cells

Human DC2 - T-cell
model and LPS
matured DCs as
a control

(103)
OVA ovalbumin, HDM, house dust mite; BALF, bronchoalveolar lavage fluid; DGLA, dihomo-linoleic acid; PM2.5, particulate matter 2.5; AHR, airway responsiveness (to metacholine); LPS,
lipopolysaccharide; DC2, dendritic cells; SPM, specialized pro-resolving mediators.
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7 The anti-asthma activity of DHA and
DHA-derived lipid mediators:
resolvins, maresins and protectin

DHA is the most significant fatty acid of the n-3 family, with much

evidence suggesting beneficial effects on airway inflammation and in

asthma prevention (76). In a clinical investigation of 91 healthy infants,

born between 37- and 42-weeks gestation, fed with 0.32, 0.64, or 0.96%

DHA or 0.64% arachidonic acid (ARA) as dietary supplements, a lower

incidence of wheezing/asthma resulted, despite the mothers having a

history of allergies (109). In the Etude Longitudinale Francaise depuis

l’Enfance (ELFE) cohort of 8389 formula-fed infants, a high DHA

content resulted in a low risk of wheezing and lower respiratory tract

infections, with a lower use of asthma medications (90). DHA in

human milk may also reduce allergy risk in the offspring (110).

DHA reduced the pathologic changes of asthma in a mouse model

(111), and inhibited prostaglandin F2a-induced tracheal smooth

muscle contraction (112). In dust-induced lung inflammation in

mice, DHA increased levels of Resolvin D (RvD)1, one of the DHA-

derived lipid mediators, and inhibited neutrophil and macrophage

recruitment (113). In a mouse agricultural dust study, DHA reduced

lung neutrophil, macrophage and lymphocyte counts and IL-6 and

TNF-a levels in bronchoalveolar lavage fluid (BALF), with increased

RvD1 and RvD2 as well as altered macrophage polarization (114).

These effects indicated that DHA significantly inhibited macrophage

factors induced by lipopolysaccharide (LPS) or SiO2, reducing levels of

proinflammatory eicosanoids including prostaglandins, leukotrienes,

and thromboxane (115). In an agricultural dust-induced BEAS-2B

inflammatory cell model DHA reduced levels of IL-6, IL-8 and TNF-a
and promoted production of RvD1, amphiregulin and cell injury repair

(116). SPMs including resolvins, maresins and protectins are produced

from DHA via enzyme mediated biosynthesis as shown in Figure 5.
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Resolvins, including RvD 1 - 6, were discovered after 2002,

synthesized (117–122), and some have been produced on a

commercial scale (123). The systemic anti-inflammatory activity of

resolvins has been widely reported (124, 125). In asthma,

characterized by chronic inflammation, resolvins have also shown

beneficial effects. In ovalbumin (OVA)-induced murine asthma,

RvD1 reduced BALF eosinophils and lymphocytes, alleviated AHR,

and lowered IL-5 and IL-23 levels while enhancing allergen

phagocytosis by lung macrophages (126). In children with

moderate and severe asthma, RvD1 levels were typically reduced,

suggesting that RvD1 might be a potential indicator of asthma

severity (127). RvD1 ameliorated LPS-induced lung injury by

decreasing neutrophil infiltration and lung TNF-a concentrations

(128). RvD1 and RvD2 decreased IL-8 and other factors and

promoted IL-10 production, and activated the glycogen synthase

kinase-3b anti-inflammatory axis in human monocytes (129). RvD1

and RvD2 inhibited the differentiation of Th1/Th17 cells and

promoted production of Tregs through the signature transcription

factors T-bet and Rorc (130). An epimer of RvD1, AT-RvD1, has

been reported to possess potential anti-asthma activity. AT-RvD1 was

found to downregulate TNF-a in the peripheral blood mononuclear

cells (PBMCs) from both severe asthma patients and healthy

individuals (131). In addition to RvD1 and RvD2, the other RvDs

also showed anti-inflammatory activity. RvD3 protected against

epithelial lung injury (132) and RvD4 promoted neutrophil

apoptosis and neutrophil, monocyte and macrophage phagocytosis

(133). RvD5 down-regulated levels of IL-6 and the C-C motif

chemokine ligand (CCL)5 in LPS-stimulated THP-1 cells (134).

Furthermore, the D-series Resolvins D1-5 activated Phospholipase

D, a potential target in phagocytes (135).

Research into mechanisms suggested that the proresolving actions

of RvD1 on macrophages, neutrophils and leukocytes were associated

with two G protein-coupled receptors (GPR) the formyl peptide
FIGURE 5

Biosynthesis of DHA-derived lipid mediators.
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receptor 2 (ALX/FPR2) and GPR 32 (136, 137), as with regulation of

macrophage polarization into the anti-inflammatory type-M2 type

(138, 139). ALX/FPR2 receptors were identified in T cells, macrophages

and neutrophils (140, 141), and through the Gi/O family transduction

mechanisms, ALX/FPR2 regulated Ca2+ flux by a CD38- dependent

cyclic ADP-ribose (142), and influenced the expression of nuclear

factor kappa-B (NF-kB) (140). RvD1 and RvD2 inhibited neutrophil

apoptosis and promotion of macrophage phagocytosis, and these

effects were reversed by GPR32 and ALX/FPR2 antibodies in a

mouse LPS model of lung inflammation (143).Furthermore, an ALX/

FPR2 inhibitor prevented the RvD1-reduction of TNF-a by preventing

the RvD1 stimulation of type-M2 macrophages (144). Additional

supportive evidence from a clinical study in severe pediatric asthma

reported reduction of lipoxin A4 levels and FPR2/ALX expression

(133). AT-RvD promoted phagocytosis of apoptotic neutrophils and

downregulated NF-kB; anti-inflammatory effects also mediated by

ALX/FRP2 receptors (145).

Maresins exhibit significant anti-inflammatory effects in lung

disease. In an OVA-induced asthma model, maresin (MaR)1

alleviated inflammatory cell infiltration, reducing neutrophil and

eosinophil counts, and decreasing T2-cytokines by NF-kB
inhibition (146). MaR1 reduced levels of IL-5 and IL-13 in lung

and ILC2 cells in OVA-induced allergic BALB/c mice. MaR1

lowered IL-6, TNF-a and the production of Tregs in an acute

lung injury model (147). In pancreatitis-related lung injury, MaR1

reduced levels of IL-1b, IL-6 and TNF-a and increased IL-10 level

in lung tissues (148). The anti-inflammatory activity of MaR1 was

associated with the receptor retinoic acid-related orphan receptor a
(RORa) and human leucine-rich repeat containing G protein-

coupled receptor 6 (LGR6) (149, 150). The effects of MaR2 on

Tregs and ILC2 cells were related to LGR6; LGR6-knockout mice

showed IL-13 increasing and MaR1 inhibiting effects (151). In

human and mouse phagocytes, MaR1 increased phagocytosis

which was significantly enhanced by LGR6 overexpression (152).

MaR2 decreased the chemokines CCL2, CCL3, CCL17 and other

factors in LPS-injured mice (153), and conjugates of MaR1 and

MaR3 reduced lung injury (154) and AHR (155).

There is less published research on protectins compared to that on

resolvins and maresins, but existing studies have suggested a

relationship with asthma and inflammation. Protectin D1 (PD1)

administration improved AHR and mucus texture, decreased

eosinophil and T-lymphocyte counts, and attenuated lung

inflammation in murine asthma (156). An etiological study in

infants (157) reported that particulate air pollutants increased asthma

susceptibility and decreased PD1 levels. PD1 synthesis was inhibited in

eosinophils of patients with severe asthma (158). PD1 downregulated

IFN-g and TNF-a in patients with severe asthma (159), and PD1

alleviated infiltration and extracellular traps of neutrophils with

decreased IL-6 and TNF-a in LPS-induced acute lung injury (160).

Serhan’s group reported that PD1 promoted leukocyte ingestion and

macrophage phagocytosis, and facilitated phagocyte removal in

inflammation resolution (161). The PD1 isomer, protectin DX

(PDX), was also reported to have anti-inflammatory activity in lung

(162). PDX alleviated the symptoms of lung injury in mice (163),

increased alveolar fluid clearance in rats (164), and promoted alveolar

epithelial cell proliferation (165). PDX inhibited BALF macrophage
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and neutrophil recruitment in a mouse lung injury model via the TNF-

a signaling pathway (166). Protectin conjugates in tissue regeneration

(PCTR1) played a protective role in acute LPS lung injury in mice,

reduced IL-1b, IL-6 and TNF-a (167). In general, the anti-asthma and

anti-inflammatory activity of DHA have been reported in research,

with the DHA-derived lipid mediators, including resolvins, maresins

and protectins potentially showing beneficial effects in both Th2 and

Th1/Th17 immune mechanisms.
8 EPA and resolvin Es in asthma

EPA, a key component of n-3 fatty acids, has been studied

extensively in asthma and inflammation research. In a double-blind,

randomized clinical trial of 35 mild to moderate atopic asthmatics, a

medical food emulsion containing EPA and gamma-linolenic acid

(GLA) was reported to show improved asthma status in 19%

patients with a 23% reduction in rescue medication use (168). In

an uncontrolled second study on 65 patients, there was a significant

improvement in quality of life questionnaires in asthma patients (p

< 0.001). EPA may have beneficial effects on mesenchymal stromal

cells in asthma, with reduction in levels of IL-4 and IL-13 and

increase in the anti-inflammatory mediator IL-10 (169). The EPA

derivative, monoacylglyceride (MAG)-EPA, may reduce bronchial

hyperresponsiveness and Ca2+ hypersensitivity of bronchial smooth

muscle in asthmatic guinea-pigs with reduced eosinophils and

lymphocytes and lower transcript counts of eotaxin and related

factors (170). Following EPA supplementation, EPA and DPA

showed an increase in mice (69).

As shown in Figure 6, EPA produces pro-resolvin mediators

called E-series resolvins, which consist of RvE1, RvE2, etc. A variety

of enzymes play catalytic roles in the production of resolvins,

including aspirin-induced acetylated cyclooxygenase-2 (COX-2),

cytochrome P450, 5-lipoxygenase (LOX) and 15-LOX (171). EPA

is a substrate for E-series resolvins, and supplementation with EPA

upregulates the levels of RvEs (99, 172). The laboratory of CN

Serhan has been instrumental in elucidating the structure and

biosynthesis of RvE1 (173), RvE2 (174), RvE3 (175), RvE4 (176).

With reports of anti-inflammatory activity of RvEs (161, 177), there

is evidence of beneficial effects of RvEs on asthma and

inflammation. In OVA-induced BALB/c mice, RvE1 reduced IL-6,

IL-17, IL-23 and improved AHR (178). Even at a dose of 200 ng/

day, RvE1 reduced IL-17A and related factors, effectively reduced

the eosinophil, macrophage and lymphocyte counts (179). These

effects suggest that RvE1 inhibits Th1/Th17 cytokine imbalance of.

Targeted research on the effect of RvE1 on Th17 differentiation

further elaborated the mechanism, RvE1 suppressed the activation

of DCs and T cell, inhibited IL-17 expression with reduction in the

levels of IL-17A, IL-21, IL-2 and IL-6 (180).

In asthmatic FVBmice, RvE1 has been reported to decrease IL-13

and immunoglobulin E (IgE) and improve AHR (181). Another

study showed similar effects on Th2-type cytokines, decreased IgE,

eosinophils and lymphocytes, and related factors in lung and BALF

(182). A more comprehensive examination of cytokine levels

demonstrated effects of RvE1 on IL-4, IL-5, IL-1b, IL-6, IL-9, IL-13,
IL-17, granulocyte macrophage colony-stimulating factor, IFN-g and
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CCL family members CCL4, CCL5 and CCL11, restoring BALF

cytokine levels to near baseline levels 24 - 36 h after RvE1

administration and also induced Th2 cell differentiation (183).

Although relatively little research has been reported, a number of

other RvEs have also demonstrated anti-asthma or anti-inflammatory

activity. In asthma-susceptible neonatal BALB/c mice, RvE2 reduced

eosinophil counts and IL-4, IL-5 and IL-13 levels, suggesting that

RvE2 may prevent asthma risk (184). In house dust mite (HDM)-

induced allergic mice, RvE3 reduced eosinophils, decreased IL-23 and

IL-17 levels in BALF, and downregulated ribonucleic acid (RNA)

expression in lung and peri-bronchial lymph nodes (185). In

addition, anti-inflammatory activities of RvE3 and RvE4 have been

reported in cell experiments (186, 187).

9 DPA and DPA-derived resolvinsn-3
DPA, protectinn-3 DPA and
Maresinsn-3 DPA

As shown in Tables 1, 2, the combination of DPA with other fatty

acids has been used in clinical and animal studies related to asthma.

There are very few studies on the use of DPA alone in the treatment

of asthma, but there is some literature on the anti-inflammatory

effects of DPA and its derivatives. In a model of colitis, DPA inhibited

the RNA expression of TNF-a, IL-1b and IL-6 and increased the

amount of IL-10 (188). Increased levels of DPA induced by n-3 fatty

acids improved TNF-a related apoptosis-inducing ligand and

reduced allergic symptoms in infantile mice (189). MAG-DPA, a

glycerol esterification product of DPA, downregulated mRNA

expression of the TNF-a/NF-kB and COX-2 pathways and

controlled the Ca2+ sensitivity and airway overactivity in a guinea

pig AHR model (190). In experimental pulmonary hypertension,

MAG-DPA showed similar anti-inflammatory activity and

downregulated NF-kB expression (191). In addition, DPA

derivatives were found to decrease TNF-a activity (192, 193).
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Through reactions catalyzed by 5-LOX, 15-LOX or other enzymes

(194), DPA produces lipid mediators including resolvinsn-3 DPA,

protectinsn-3 DPA and Maresinsn-3 DPA (Figure 7). It is also worth

noting that the production processes of these DPA-derived SPMs is

somewhat similar to that of DHA-derived SPMs. In recent years, the

synthesis pathway of DPA-derived SPMs has been described (195–200)

and the anti-inflammatory activity of these lipid mediators has

demonstrated. RvD1n-3 DPA decreased neutrophil numbers (195)

and reduced NF-kB expression (201). The neutrophil activation

marker CD11b was downregulated when plasma RvD1n-3 DPA

was increased (202). RvD5n-3 DPA increased the amount of IL-10

and IL-10R and enhanced phagocytosis of neutrophils and

macrophages in murine inflammatory arthritis by a mechanism that

may be related to the receptor GPR101 (197, 203, 204). PD1n-3 DPA

reduced the number of neutrophils and promoted phagocytosis and

excretion by macrophages in mice with peritonitis (199). PD1n-3 DPA

and PD2n-3 DPA regulated human monocyte differentiation and

macrophage phenotype, and also stimulated phagocytosis in

phagocytes, as in mice (205). In addition, PD1n-3 DPA and its

analogs were protective against neuroinflammation (206) and

neuropathic pain (207). 13-series resolvins (also called RvTs) had

potent anti-inflammatory effect, that was substantially produced in

the initiation phase of inflammation, down-regulating expression of

caspase-1 and IL-1b of apoptotic neutrophils and macrophage

exudation, RvTs inhibited neutrophil infiltration and improved

macrophage uptake of neutrophil extracellular traps, in which the

cAMP-PKA-AMPK pathway may be involved (208, 209). RvTs also

have a likely treatment role in inflammatory arthritis, and the anti-

inflammatory effects of therapeutic agents such as atorvastatin and

pravastatin are markedly impaired when the RvT biosynthesis

initiating enzyme, COX-2, is inhibited (210).
10 Conclusions

As shown in Tables 1–3, the clinical trials and animal experiments

indicated the anti-asthma and anti-inflammatory effects of n-3 PUFAs.

The combination of n-3 PUFAs and n-3 PUFA-rich diets improved

asthma-induced pathologic changes, lowered asthma risk and the use

of asthma medication. As summarized in Figure 8, DHA, EPA and

DPA regulated immune cells including macrophage and neutrophils

with effects on the Th2-type cytokines IL-4, IL-13 and cytokines

produced by Th1/Th17 including TNF-a, IL-1b, IL-6, IL-8, IL-10
etc. However, there are some different opinions regarding the effects of

n-3 PUFAs because of the inconsistent results of some clinical studies.

In addition, although n-3 PUFA supplements in pregnancy and early

childhood have generally decreased asthma risk, their effects in adults

were less obvious. These results suggest the importance of life stages for

n-3 PUFA supplementation, and further studies are required to

elucidate the mechanisms of action and potential role of n-3 PUFAs

in anti-asthma effects.

Further research on n-3 PUFA-derived lipid mediators may offer

more insight into their anti-asthma effects. DHA-generated resolvins,

maresins and protectins demonstrate similar, but more

comprehensive, anti-inflammatory activity compared to DHA, with

regulation of IFN-g, TGF-b and differentiation of Th1 and Th17 cells.
FIGURE 6

E-series resolvins; biosynthesis pathways.
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The G protein-coupled receptors ALX/FPR2 and GPR32 play

important roles in the mechanism of action of RvDs, since the

antibody to, and the inhibitor of, these receptors suppressed the

anti-inflammatory effects of RvDs and DHA. The anti-inflammatory

targets of EPA and RvEs, with effects on IL-4, IL-5, IL-13, are similar

but there are some differences. RvEs exert effects on the Th1/Th17

cytokines TNF-a, IL-23, IL-17, and EPA regulate the level of IL-10.
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Fewer studies on DPA-derived SPMs were reported in the regulation

of macrophages and neutrophils. However, the similarities between

effects of n-3 PUFAs and their lipid mediators indicate that the lipid

mediators may be the active substances, and their inflammation

resolution activity may lead to their application in asthma therapy

and prevention. In general, supplementation with n-3 PUFAs has

been shown to be beneficial as adjunctive therapy for asthma
FIGURE 7

Biosynthesis of DPA-derived lipid mediators.
FIGURE 8

Effects of n-3PUFAs and their lipid mediators in T2 and Th1/Th17 immune.
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although further study is needed, and SPMs are promising, potential

adents for the treatment of asthma.
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