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Background: Autophagy promotes the survival of acute myeloid leukemia (AML)

cells by removing damaged organelles and proteins and protecting them from

stress-induced apoptosis. Although many studies have identified candidate

autophagy genes associated with AML prognosis, there are still great

challenges in predicting the survival prognosis of AML patients. Therefore, it is

necessary to identify more novel autophagy gene markers to improve the

prognosis of AML by utilizing information at the molecular level.

Methods: In this study, the Random Forest, SVM and XGBoost algorithms were

utilized to identify autophagy genes linked to prognosis, respectively.

Subsequently, six autophagy genes (TSC2, CALCOCO2, BAG3, UBQLN4, ULK1

and DAPK1) that were significantly associated with patients’ overall survival (OS)

were identified using Lasso-Cox regression analysis. A prediction model

incorporating these autophagy genes was then developed. In addition, the

immunological microenvironment analysis of autophagy genes was performed

in this study.

Results: The experimental results showed that the predictive model had good

predictive ability. After adjusting for clinicopathologic parameters, this feature

proved an independent prognostic predictor and was validated in an external

AML sample set. Analysis of differentially expressed genes in patients in the high-

risk and low-risk groups showed that these genes were enriched in immune-

related pathways such as humoral immune response, T cell differentiation in

thymus and lymphocyte differentiation. Then immune infiltration analysis of

autophagy genes in patients showed that the cellular abundance of T cells

CD4+ memory activated, NK cells activated and T cells CD4+ in the high-risk

group was significantly lower than that in the low-risk group.
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Conclusion: This study systematically analyzed autophagy-related genes (ARGs)

and developed prognostic predictors related to OS for patients with AML, thus

more accurately assessing the prognosis of AML patients. This not only helps to

improve the prognostic assessment and therapeutic outcome of patients, but

may also provide new help for future research and clinical applications.
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Introduction

Acute myeloid leukemia (AML) is a complex and diverse blood

cancer triggered by abnormal proliferation and immature

differentiation of hematopoietic stem cells in the bone marrow

(1–3). Despite previous studies on the role of autophagy in AML (4–

6), the specific functions of ARGs and their interaction with

immune infiltration have not been thoroughly explored. This gap

not only makes the biological functions of ARGs unclear, but also

limits their potential application in AML therapy. Therefore, this

study aimed to reveal the key autophagy genes associated with the

prognosis of AML and their role in relation to the immune

microenvironment through comprehensive bioinformatics

analysis, providing new targets and strategies for AML treatment.

Autophagy is an important cellular self-regulatory mechanism

that maintains cellular and organismal homeostasis (7) and adapts

to changes in the external environment by disassembling and

removing damaged proteins and organelles inside the cell.

Autophagy gene (ARG) mutations linked to cancer and other

diseases (8). For example, autophagy levels are strongly associated

with the prognosis of ovarian cancer patients (9). Recent studies

have indicated that autophagy is closely linked to progression of

leukemia, including AML. However, the exact mechanism of

autophagy in AML and the expression and function of autophagy

genes in AML are still limited.

Certain immune cells play an immunoregulatory role in the

tumor microenvironment (TME) and are linked to the immune

escape of tumor cells, thereby influencing tumor progression (10).

Bansal et al. showed that the number of regulatory T cells was

significantly higher in patients with AML than in the healthy

population, and that the increased number of Tregs may be

strongly associated with poor prognosis (11). Wan et al. further

noted that Tregs contribute to immune escape of AML cells in the

tumor microenvironment by enhancing the inhibitory effect on

effector T cells (12). The study by Romee et al. demonstrates the

potential of using cytokines to induce memory-like NK cells for

immunotherapy in AML patients (13). Bioinformatics analysis of

immune infiltration is a powerful approach that allows in-depth

study of immune cell infiltration in TME and its relationship with

tumor development by integrating multi-omics data. Although
02
there have been several studies on immune infiltration in AML,

the interaction between ARGs and immune infiltration has not been

thoroughly investigated.

In this research, AML transcriptome data obtained from the

GEO database was used to screen for AML-related ARGs (14–16).

Then functional enrichment analyses were conducted to obtain the

biological meaning and functional features of these ARGs. In

addition, the autophagy genes obtained in this experiment were

analyzed by protein–protein interaction (PPI) network to obtain the

interactions between these autophagy genes and their regulatory

mechanisms inside the cell. After that, Random Forest (17), SVM-

RFE (18) and XGBoost were used in combination to identify key

autophagy genes associated with AML. Lasso-Cox analysis was then

conducted to identify six autophagy-related genes and construct a

survival prediction model. After that, AML high and low risk

groups divided according to the survival prediction model and

differential expression analysis was performed. The genes obtained

with significant differences were then analyzed for functional

enrichment. The results indicated that these ARGs were primarily

enriched in immune-related pathways such as T cell differentiation

in thymus and lymphocyte differentiation. Accordingly, the

autophagy genes were analyzed for immune infiltration.

Moreover, the link between ARGs and immune infiltration was

investigated. This study reveals the critical role of autophagy genes

in acute myeloid leukemia and their interaction with the immune

microenvironment, which is of great clinical significance. By

constructing a survival prediction model, it can provide AML

patients with prognostic assessment and personalized treatment

plans. In addition, autophagy genes are expected to be used as

potential targets for novel therapeutic strategies, especially showing

great potential in combination with immunotherapy. The basic flow

of this experiment is shown in Figure 1.
Methods

Data set acquisition

In this study, the original microarray dataset of GSE37642 (19)

was downloaded from the GEO database, including transcriptome
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data of GPL96 and GPL570 platforms. The data were first quality

checked for missing values, outliers and distribution. Subsequently,

the data were normalized using the robust multi-array average

(RMA) algorithm in the affy package to normalize gene expression

levels across arrays. To eliminate the batch effect due to different

platforms, the Combat algorithm from the sva package was used for

correction (20). Clinical information was then collated and

integrated to remove samples lacking relevant clinical

information, resulting in 553 usable acute myeloid leukemia

samples. Clinical information on these samples is presented in

Supplementary Table S1. The dataset GSE12417 was processed in

the same way, resulting in a total of 237 samples with clinical

information. The available clinical information for the samples used

was shown in Supplementary Table S2. AML RNA-seq datasets

were downloaded from the UCSC Xena database (https://

xenabrowser.net/datapages/). Available clinical information for

the samples used in this study is shown in Supplementary Table S3.
Acquisition of autophagy genes

Autophagy-related genes were obtained from the Human

Autophagy Database (HADB, http://www.autophagy.lu/

index.html) and from the GO_AUTOPHAGY gene set in GSEA

website (http://software.broadinstitute.org/gsea/index.jsp). The

Human Autophagy Database (HADb) is an authoritative database

dedicated to autophagy-related genes, covering a large number of

experimentally validated autophagy genes, which ensures the

breadth and comprehensiveness of the data. The collection of
Frontiers in Immunology 03
GO_AUTOPHAGY genes on the GSEA website is based on the

autophagy biological process as defined by Gene Ontology (GO),

and these genes are strictly classified according to the GO

classification criteria division, ensuring consistency in biological

function and annotation. This enables the autophagy genes selected

during the study to have a clear functional orientation and

ensures their relevance to the autophagy process. The two

obtained autophagy gene sets were combined to obtain 531

related ARGs (Supplementary Table S4). 392 ARGs were screened

from GSE37642.
Random forest identifies overall survival-
related ARGs

In this study, survival time and survival state information were

extracted from AML patient data, and a random forest model with

1000 decision trees was constructed to predict patient survival. The

model used multiple samples, each containing feature genes and

their corresponding survival information. To build the decision

trees, the random forest employed the log-rank split rule, which

assessed the survival differences between two subsets. At each

candidate split point, the log-rank statistic was calculated to

measure the difference between two survival curves, using the

formula X2 =o
m

i=0

(Oi − Ei)
Ei

, where Oi was the observed number of

events at time point i, Ei was the expected number of events at i,

and m was the total number of time points. The split point with the

highest log-rank statistic is selected as the optimal point, as it

maximizes the distinction between the survival curves of the
FIGURE 1

The general analytical flow of this experimental design.
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resulting subsets. This process continues recursively, splitting the

data at the best split points until a stopping condition is met.
SVM identifies ARGs

In this study, a SVM model was used to identify the most

important features for the classification task. The importance of

each feature was determined by looking at how much influence it

had on the model’s decisions. This was done by calculating the

absolute value of the product of the feature’s weight and the

corresponding support vector. In simpler terms, the importance

of a feature depends on how much its weight, when multiplied by

the support vector, affects the classification. After calculating these

importance scores, they were sorted from highest to lowest to

identify the most important features.
XGBoost Identifies ARGs

Firstly, the training data were preprocessed, including

extracting the autophagy gene expression data from the

transcriptome data, and also collecting clinical information such

as the survival time and survival status of the patients. Handle

missing and abnormal values to ensure complete autophagy gene

expression data for each sample and remove abnormal or

incomplete samples. Generate labels by combining survival time

and survival status. Next, the data are converted to DMatrix format

for XGBoost and the model parameters are set, where the objective

function is Cox proportional risk model and the evaluation metric is

negative log likelihood. The objective function of Cox proportional

risk model (21) is defined as:

logL(b) =oi∈E(xib − log(oj∈R(Ti)
exp(xjb))) (1)

where E denotes the set of events, i.e., all samples of observed

deaths, R(Ti) denotes the set of samples at risk at time Ti. xi dentes

the eigenvector of sample i, and b is a parameter of the model. The

model is trained through 100 rounds of iterations, setting the

learning rate to 0.1, and recording the negative log-likelihood

value and training error for each round as a function of the

number of iterations. The model is then used to calculate the

importance of the features. Feature importance (22) (Gain)

indicates the contribution of each feature to the model with the

following formula:

Gain(j) =otϵTj
DGt (2)

where DGt denotes the gain of feature j in tree t and Tj denotes

the set of all trees in which feature j  appears.
Permutation test

To further assess the impact of the identified ARGs on survival,

a permutation test was conducted. This test aims to verify the
Frontiers in Immunology 04
reliability of the model’s predictions by randomly shuffling the

survival labels, as described below.
1. Randomly disrupt survival state labels to generate a new set

of labels.

2. Retrain the Cox regression model using the disrupted data

and record the C-index of the model each time.

3. Repeat the above process a certain number of times to

generate a C-index replacement distribution.

4. The C-index of the original model was compared with the

C-index distribution of the replacement and the p-value

was calculated to assess the significance of the

original model.
Functional enrichment analysis and PPI
molecular interactions

Gene ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses of key autophagy genes were performed

using clusterProfiler (version 3.14.3) to reveal the primary functions

of these genes. We will apply the Benjamini & Hochberg correction

method and use a corrected P value of less than 0.05 as the criterion

for statistical significance.

To study the interactions between these key ARGs, a PPI will be

constructed using the STRING database. Subsequently, the

MCODE plugin was used in Cytoscape (v3.10.0) (23) to extract

densely connected modules with default parameters “degree cutoff

= 2”, “node score cutoff = 0.2”, “K-core = 2”, and “Maximum depth

= 100” to extract densely connected modules.
Construction and validation of survival
prediction models

To avoid overfitting of prognostic risk features, we performed

the following steps on the training set to construct survival

prediction models.
1. A Cox regression method based on the least absolute

shrinkage and selection operator (LASSO) was applied to

the training dataset to identify significant features of ARGs

associated with OS.

2. Subsequently, we performed multivariate Cox proportional

risk regression on these candidate genes and stepwise

variable selection using the Akaike information criterion.

3. Ultimately, risk scores for optimized prognostic markers

were calculated.
Risk score =on
i Coef i � Ai (3)

where Coefi represents the regression coefficient of the i gene,

indicating the degree of influence of the expression level of the gene

on the risk. Ai denotes the expression level of the i gene, and n

denotes the total number of genes selected for characterization.
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Differences in patient OS were assessed by Kaplan-Meier analysis

and log-rank tests. The predictive power of ARG-based

characteristics was assessed using time-dependent ROC curves (24).

To test the accuracy of the survival prediction model, external

validation was performed using the GSE12417 (n=242) dataset and

AML cohorts-TCGA-LAML (n=129). First, the risk scores of

patients in each external validation dataset were calculated using

the survival prediction model from the training set. Then, patients

were categorized into high-risk and low-risk groups based on their

risk scores. Next, the survival distribution of the model in the high-

and low-risk groups was assessed using Kaplan-Meier curves, and

the survival differences were compared to validate the predictive

performance of the model.
Identification of differentially
expressed genes

Differential expression analysis was performed on samples from

the high-risk and low-risk groups using the limma package, setting

the criteria of |log2FC| > 2 and a P-value < 0.05 to screen for DEGs.

Next, volcano maps of DEGs were plotted using the

EnhancedVolcano (25) function in the EnhancedVolcano package.
Immune infiltration analysis

The analysis of 22 immune cell types is of great importance

during the progression of AML. These immune cells, including T

cells, B cells, NK cells, T cells gamma delta and macrophages, are

known to play a key immunomodulatory role in the tumor

microenvironment (26). Ge Jiang et al. demonstrated that a

significant elevation in the abundance of NK cells and

macrophage infiltration was strongly associated with a poor

prognosis in AML (27). Another study by Moore et al.

demonstrated that macrophage reduction promoted AML cell

growth in vivo (28).

To further investigate the relationship between immune cell

infiltration and AML, the CIBERSORT algorithm was used to

calculate the infiltration abundance of 22 immune cell types in

gene expression data from AML patients. Subsequently, the

association between hub genes and the abundance of 22 immune

cells was detected and then visualized using the software package

“ggcorrplot”, and gene-immune cell correlations greater than 0.28

were considered significant.
Results

Using machine learning to select OS-
related ARGs

Three hundred and ninety-two ARGs were screened from the

gene expression matrix and screened for autophagy genes
Frontiers in Immunology 05
associated with survival prognosis using Random Forest, Support

Vector Machine (SVM) and XGBoost (29) algorithms, respectively.

First, in the random forest model, 1000 decision trees were

constructed and the variables were partitioned using the log-rank

rule. The model assessed the relationship between gene expression

and survival prognosis by calculating the importance of each

variable and the proximity of the samples (30). The OBB error

plot of the model showed a gradual decrease in error and improved

performance as the number of trees increased (Figure 2A). The

variable importance plot showed the importance of each gene

(Figure 2B), and 146 genes with significant effects on survival

analysis were screened (Supplementary Table S5). Meanwhile, the

performance of the model was assessed by the C-index (consistency

index), and a C-index value of 0.88 was obtained, indicating that the

model was predicted relatively well.

Next, the XGBoost algorithm was employed for survival

analysis. XGBoost used the Cox proportional risk model as the

objective function and evaluated the model by optimizing the Cox

negative log-likelihood ratio (cox-nloglik). Survival states and

survival times were converted into a labelled format suitable for

the Cox model, and the number of iterations of the model was set to

100 with a learning rate of 0.1. Figure 2C shows the trend of Cox

negative log-likelihood value during the training process. From the

figure, it can be seen that the model gradually converges and the

performance of the model gradually improves as the number of

iterations increases. The top 180 genes that had a significant effect

on survival analysis were screened by feature importance analysis

(Supplementary Table S6) and the performance of the model was

assessed with a C-index of 0.99. The top 10 ranked important

features are shown in Table 1. Figure 2D visualizes the top 10

ranked genes and their corresponding importance scores. These

features had the highest importance scores in the model and

significantly influenced survival prediction.

In addition, a support vector machine (SVM) was used for

survival analysis, and a linear kernel function (31) and epsilon

regression type were used for model training. The coefficients and

support vectors of the model were used to calculate the importance

scores of each feature, and the top 180 feature genes that had a

significant effect on survival prediction were filtered out

(Supplementary Table S7), and the top 10 features with the

highest importance scores were visualized by bar graphs to show

the importance scores of these feature genes (Figure 2E). The model

has a C-index of 0.17. Table 2 demonstrates the top 10 significant

feature genes and their importance scores. A total of 45 overlapping

genes common to all three algorithms were screened by the above

algorithm (32) (Figure 2F).

By comparing the importance scores of the top 10 genes

screened by the three algorithms (Supplementary Figure 1), it was

found that genes such as ITGB1, ANXA7, and ULK1 scored higher

across all algorithms, suggesting a significant association of these

genes with survival prognosis in AML. In model performance

comparisons, XGBoost showed the best performance, while SVM

performed relatively poorly. However, although XGBoost leads in

prediction, it is too dependent on parameter tuning in the case of
frontiersin.org
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small samples and is prone to overfitting if the parameters are not

adjusted properly. SVM, on the other hand, is more suitable for

handling high-dimensional data with small samples, and although

its overall performance is not as good as that of XGBoost, it has a

unique advantage in handling data dimensions.

In order to improve the stability and consistency of the

screened genes, we adopted a combination strategy of multiple
Frontiers in Immunology 06
algorithms. By using SVM, Random Forest and XGBoost

algorithms to identify prognostic genes from different angles, we

further screened the overlapping genes that showed significance in

all three algorithms. Finally, we screened 45 overlapping genes in

total (Figure 2F).

To further validate the impact of the screened ARGs on the

survival prognosis of AML patients, we used the replacement test to
FIGURE 2

Screening for prognostically relevant autophagy genes using machine learning methods. (A) The OBB error plot of the random forest algorithm is
used to estimate the generalization performance of the model. The graph shows that as the number of trees increases, the errors of model become
smaller. (B) VIMP plot showing the importance scores of each variable to help identify the most important feature genes. (C) Plot of the number of
iterations of the training process of the XGBoost algorithm versus the Cox negative log-likelihood value. (D) Bar chart of the top 10 genes and their
corresponding importance scores screened by the XGBoost algorithm (E) Bar chart of the top 10 genes and their corresponding importance scores
screened by the SVM algorithm. (F) Venn plots of overlapping genes shared by SVM, Random Forest and XGBoost.
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assess their statistical significance. The results showed that the C-

index of the original model was significantly higher than that of

most of the replacement models, and was located at the rightmost

end of the replacement distribution (Supplementary Figure 2). By

comparing the C-index of the original model with that of the

replacement models, a p-value of 0.0429 was calculated,

indicating that the original model was statistically significant in

predicting the survival of AML patients, further confirming the

importance of the screened ARGs in survival prediction.
Enrichment analysis of ARGs

In order to better study the biological features in the autophagy

gene data so as to understand the functions and regulatory

mechanisms of the biological systems, GO and KEGG analyses

were conducted. For GO enrichment analysis of autophagy genes,

the genes related to total survival were analyzed in terms of

biological processes (BP), cellular components (CC), and

molecular functions (MF), respectively. BP analysis revealed that

these genes were primarily associated with cytolytic metabolic

processes, autophagy, and the regulation of processes that utilize

autophagic mechanisms (Figure 3A). CC analysis indicated that

these ARGs were predominantly distributed in cellular components

of vesicle, cytoplasmic vesicle and bounding membrane of organelle

(Figure 3B). MF analysis showed that most of these genes act

together on a protein and enzyme with catalytic effects

(Figure 3C). KEGG revealed that these ARGs were primarily

enriched in the pathways of autophagy animal, AMPK signaling

and longevity regulation in animals (Figure 3D). To gain insight

into the interactions between these autophagy genes associated with

overall survival, STRING (33) was utilized to construct the PPI

network and identify two important modules: the HSP90AB1

module and the BECN1 module (Figure 3E). The BECN1 module

contains 12 nodes and 29 edges, while the CASP3 module consists

of 4 nodes and 6 edges. HSPA5, VDAC1, and BAG3 are the other 3
Frontiers in Immunology 07
nodes of the CASP3 module. These ARGs may be important for the

pathogenesis of AML.
Modelling survival predictions

In this study, survival data were systematically analyzed, and

feature genes significantly associated with survival were screened by

Lasso-Cox regression and used for modelling. First, the optimal

lambda value (lambda.1se) of 0.09393562 was selected by 10-fold

cross-validation, and the lambda plot and LASSO regression were

plotted (Figures 4A, B). Next, the non-zero coefficients were

extracted and the six characterized autophagy genes and their

regression coefficients selected by LASSO were saved. Cox

stepwise regression (34) analysis was then conducted to optimize

the selection of feature genes (Table 3). The resulting risk score

model for the patients was as follows:

Risk score = (0:14747� BAG3) − (0:14437� TSC2)

− (0:32652� CALCOCO2) + (0:32410

� UBQLN4) − (0:24254� ULK1) + (0:23913

�DAPK1) (4)

Risk scores were subsequently calculated for each sample, and

the samples were divided into high and low risk groups based on the

median risk score. An increase in the risk score was correlated with

a higher number of patient deaths (Figures 4C, D). Among the

characterized genes screened, DAPK1, UBQLN4, and BAG3 were

highly expressed in high risk, and ULK1, ALCOCO2, and TSC2

were highly expressed in low risk (Figure 4E).

To assess the difference in survival time, the Kaplan–Meier

survival curves were used (35). The results showed that patients in

the high-risk group had a shorter OS than those in the low-risk

group (P< 0.0001, Figure 5A). The accuracy of the constructed

survival prediction model was evaluated, and the results showed

that the AUCs of 1-year, 3-year, and 5-year OS were 0.660, 0.733,
TABLE 1 The top 10 important genes of XGBoost and their
importance scores.

ID Feature Gain

1 SLC1A3 0.022978235

2 YIPF1 0.014842549

3 PACS2 0.014716427

4 CDKN2A 0.014447571

5 DAPK1 0.013909943

6 MYH11 0.011887605

7 DDIT3 0.011406339

8 ULK1 0.010654985

9 BAG3 0.00985662

10 ATG2B 0.009385788
TABLE 2 SVM top 10 significant genes and their importance scores.

ID Feature Gain

1 CASP4 0.514479265

2 VPS37C 0.48390987

3 EIF2AK3 0.454698135

4 KIF5B 0.441155029

5 HSP90AB1 0.426529294

6 TSC2 0.416280361

7 VAMP7 0.410471634

8 NFE2L2 0.410017974

9 ANXA7 0.40822591

10 ITGB1 0.40279245
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and 0.739, respectively (Figure 5B), which indicated that the

survival prediction model constructed by using the prognostic

genes screened in this experiment had high predictive ability.

To quantify the relative importance of the screened autophagy

genes in the survival prediction model, we employed a game theory-

based SHAP value (SHapley Additive exPlanations) technique. By

using the SHAP values calculated by the iml package, we provided a

quantitative relative importance score for each gene. Analysis of

each gene in the model by SHAP value visually demonstrates the

contribution of these genes to the prediction of AML survival

(Supplementary Figure 3). The average contribution of each gene

in the model to the prediction is summarized in Table 4. As shown

in Table 4, these autophagy genes have high contribution values in

the model, further supporting their key role in AML

survival prognosis.

Univariate Cox regression analysis (UCRA) and multivariate

Cox regression analysis (MCRA) were conducted to validate the

independence of prognosis-related autophagy gene survival

prediction. UCRA revealed that age, runx1 mutation, and risk
Frontiers in Immunology 08
score were significantly associated with patients’ OS (Figure 5C).

MCRA indicated that age and risk score were independent

predictors for AML patients, respectively (Figure 5D).

To more precisely evaluate the survival prediction model’s

effectiveness, nomogram plot integrating risk scores and other

survival information was constructed. (Figure 5E) The calibration

curves demonstrated accurate predictions OS in AML patients

(Figures 5F–H). This suggests that that integrating our risk score

with clinical information can enhance the prediction of OS.
External validation set validation of survival
prediction models

This study evaluated the diagnostic performance of the models

in two external independent validation groups, GSE12417 and

TCGA-LAML. Comparison of OS using Kaplan-Meier curves

(36) and the log-rank test revealed that in the GSE12417 group,

patients in the high-risk group had significantly shorter OS
FIGURE 3

Functional enrichment analysis and PPI analysis of ARGs associated with survival. The gene functional enrichment analysis of key modules (A) BP; (B) CC;
(C) MF; (D) KEGG pathways. (E) HSP90AB1 and BECN1 modules were identified by PPI analysis of ARGs. Darker node colors represent greater node degrees.
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compared to those in the low-risk group (P<0.0001, Figure 6A).

Similarly, in the TCGA-LAML group, the prognosis of patients in

the high-risk group was significantly worse than that in the low-risk

group (P=0.015, Figure 6B).

To further evaluate the classification performance of the model

for patient survival on different datasets, ROC curves for patient

survival were plotted based on the model risk score. In the

GSE12417 group, the area under the curve (AUC) for 1-year and

3-year OS was 0.633 and 0.651, respectively (Figure 6C). In the

TCGA-LAML group, the AUC values for 1-, 3- and 5-year OS were

0.632, 0.612 and 0.704, respectively (Figure 6D). These results

demonstrated the strong predictive power of the model in

predicting survival in AML patients. Additionally, this study

analyzed the distribution of patients’ risk scores and OS, and

found that the mortality rate in the high-risk group was higher

than that in the low-risk group. In terms of gene expression, the
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validation group showed that DAPK1, UBQLN4, and BAG3 were

significantly up-regulated in the high-risk group, whereas ULK1,
FIGURE 4

Identify autophagy genes associated with survival. (A) Path diagram of LASSO coefficients. (B) Cross-validation curve for LASSO regression analysis.
(C) Change curves of patient risk scores. (D) The number of patients corresponding to different survival times. (E) Expression of six model genes.
TABLE 3 Survival prediction models for acute myeloid leukemia.

Gene Coefficients Exp(coef) P-value

TSC2 -0.14437 0.86556 0.128973

CALCOCO2 -0.32652 0.72143 0.000299

BAG3 0.14747 1.15890 3.70e-05

UBQLN4 0.32410 1.38278 0.009121

ULK1 -0.24254 0.78463 0.020660

DAPK1 0.23913 1.27015 3.26e-06
Coefficients was the regression coefficient for each variable, indicating the direction and
magnitude of the variable's effect on survival time. Se(coef) was the standard error of the
regression coefficient for each variable, indicating the uncertainty in the estimation.
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ALCOCO2, and TSC2 were significantly down-regulated in the

low-risk group (Figures 6E, F), which was consistent with the risk

score calculation. Overall, the validation results indicated that the

proportional risk model has reasonable accuracy and discriminative

ability for independently predicting OS in AML patients.
Identification and enrichment of DEGs

Differential expression analysis of transcriptome data from

patients in the high- and low-risk groups using the limma package

identified 63 DEGs, including 47 up-regulated genes and 16 down-
Frontiers in Immunology 10
regulated genes (Figure 7A). The expression patterns of the

differential genes are shown in Figure 7B. GO enrichment analysis

revealed that these DEGs were mainly associated with BP such as T

cell differentiation in thymus and lymphocyte differentiation. In

terms of cellular components, these genes are predominantly found

in the tertiary granule lumen, actin filament bundle, and platelet

alpha granule. They are involved in molecular functions such as

chemokine activity and cytokine receptor binding (Figure 7C).

KEGG pathway analysis indicated that these DEGs were

primarily enriched in the IL-17 signaling pathway and Th1 and

Th2 cell differentiation (Figure 7D). High and low risk group

differential genes enriched in lymphocyte differentiation, humoral
FIGURE 5

To assess the predictive accuracy of survival prediction models for patient OS. (A) Kaplan–Meier curves visualizing the difference in survival time.
(B) AUC curves for prognostic markers. (C) UCRA (D) MCRA (E) Development of autophagic clinicopathological nomograms for the prediction of OS
in AML patients by combining risk scores and clinical information. (F–H) Calibration curves-predicting 1-, 3-, and 5-year survival in AML patients.
Solid lines indicate ideal performance.
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immune response and T cell differentiation in thymus associated

with immune GO terms were TPD52, ZFP36L1 and GATA3

(Figure 7E). Figure 7F shows DEGs enriched in KEGG pathways

such as IL-17 signaling pathway and so on.

In addition to these genes such as BAG3, DAPK1 and GATA3

are enriched in multiple other GO pathways (Supplementary

Figure 4), and genes such as CXCL2, CXCL3 and CYP1B1 are

also present in multiple other KEGG pathways (Supplementary

Figure 5). This suggests that these genes play important roles in

biological processes. In addition, by analyzing the relationships

between the enriched pathways, the GO term network relationship

map showed significant correlations between chemokine receptors

and term such as activity, humoral immune response, and myeloid
TABLE 4 Relative importance ranking of autophagy genes based on
SHAP values.

ID Feature Mean(|SHAP|)

1 BAG3 0.23646

2 TSC2 0.12995

3 UBQLN4 0.04845

4 DAPK1 0.04821

5 ULK1 0.01969

6 CALCOCO2 0.01892
Mean(|SHAP|) denotes the mean of the absolute value of the SHAP value for the gene or trait,
i.e., the mean of the gene's contribution to the significance predicted by the model.
FIGURE 6

External gene set validation of survival prediction models. (A, B) Kaplan-Meier curves of prognostic genes in validation sets GSE12417 and TCGA-
LAML. (C, D) AUC curve of the GSE12417 validation sets and TCGA-LAML. (E, F) Risk score distribution, survival status and 6 prognostic genes
expression heatmap in the GSE12417 and TCGA-LAML cohorts.
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leukocyte migration (Supplementary Figure 6). The KEGG pathway

showed that the IL-17 signaling pathway, Chemokine signaling

pathway, and TNF signaling pathway also interacted with multiple

other pathways (Supplementary Figure 7). The enrichment analysis

results suggest that these DEGs may play a role in the prognosis and

immune response in AML.
Immune infiltration and
immune interactions

There are complex interactions and associations between leukemia

and immune infiltration. The immune system was crucial in regulating

the development of leukemia. The experiment used the CIBERSORT

(37) algorithm to identify 22 subtypes of immune infiltrating cells in

AML samples and investigated the interactions of different immune cell

subpopulations in AML patients (Figure 8A).
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Supplementary Figure 8 shows the ratio of each type of immune

cell in AML patients, from which it can be seen that immune cells

such as Mast cells activated and Macrophages M0 have a higher

ratio in AML. The immune infiltration results indicated that the

abundance of immune cells, including T cells CD4+ memory

activated, NK cells activated and T cells CD4+ naive was higher

in patients in the low-risk group of AMLs than in the high-risk

group (Figure 8B). Additionally, the relationship between six key

ARGs and immune infiltration was investigated in this experiment.

The results showed that these six key ARGs were associated with T

cells CD4+ naive, T cells CD8+, and Macrophages M1, respectively,

and immune cells, and changes in the abundance of these immune

cells may influence the pathogenesis of AML (Figure 8C). The above

results suggest that key autophagy genes may affect the abundance

of immune cells in AML patients, thereby attenuating the control of

leukemia by the immune system and consequently affecting

leukemia survival.
FIGURE 7

Identification of DEGs in high and low risk groups. (A) Volcano plot of DEGs. (B) Heatmap of DEGs. (C) GO terms analysis of differential genes.
(D) KEGG pathway enrichment analysis. (E) Network diagram of GO terms enrichment with differential genes. (F) Network diagram of KEGG pathway
enrichment of differential genes.
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Discussion

Despite significant progress in recent years in the study of

prognostic markers for acute myeloid leukemia, the role of

autophagy genes in AML is still understudied (38). In this

experiment, machine learning methods such as XGBoost,

Random Forest and SVM were used to identify potential

prognostic markers associated with overall survival in AML (39).

Lasso-Cox was then used to further screen for prognostic markers

and a survival prediction model consisting of six genes was

constructed. The model can predict the overall survival of

patients with some generalization ability. In addition, an immune

infiltration analysis of autophagy genes in transcriptomic data from

AML patients was performed using the CIBERSORT algorithm, and

the relationship between identified prognostic markers and immune

cell infiltration was analyzed. These analyses have deepened our

understanding of TME in AML patients and its impact on disease

progression and prognosis.

AML is a severe blood cancer triggered by abnormal

proliferation and differentiation of hematopoietic stem cells in the

bone marrow. The role of autophagy genes in AML remains under-

explored, despite significant progress in the study of AML

prognostic markers in recent years. Since AML is a highly

heterogeneous disease with multiple molecular features and

significant biological differences between patients, it is difficult for

a single prognostic marker to accurately predict the prognosis of all
Frontiers in Immunology 13
patients. Existing studies have mostly focused on common genetic

prognostic markers, while studies on autophagy genes are more

limited. However, the key role of autophagy in cell survival and

death suggests that it may be an important factor influencing

AML progression.

The role of autophagy in AML is dual, on the one hand helping

AML cells to survive in a hostile environment by removing

damaged organelles and proteins (7). On the other hand,

autophagy can promote apoptosis in AML cells under certain

circumstances (40). In recent years, some studies have begun to

explore the role of autophagy in AML. For example, the study by

Nan et al. demonstrated that FAT1 inhibited AML cell proliferation

by reducing autophagy levels (41), but the study did not delve into

the mechanism of the role of specific autophagy genes in AML

prognosis. In contrast, Fu et al. used univariate Cox regression to

initially screen autophagy genes associated with AML overall

survival and further constructed a survival prediction model by

Lasso-Cox regression (42). However, univariate Cox regression has

limited predictive power when dealing with the complex effects of

multivariate on survival. In this study, we conducted a more

detailed molecular-level analysis of the relationship between

autophagy genes and AML prognosis. We used a screening

approach combining three machine learning algorithms, SVM,

XGBoost, and Random Forest, which are capable of dealing with

complex interactions of multivariate variables and generally provide

higher prediction accuracy.
FIGURE 8

Analysis of leukemia autophagy gene immune infiltration and correlation with hub gene. (A) Heatmap of correlation of abundance of different
immune cells. (B) Violin plots of immune cell abundance. Red represents the high-risk group and dark blue represents the low-risk group.
(C) Heatmap of the correlation between six prognosis-related genes and immune cell.
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In this study, 45 autophagy genes associated with OS in patients

with acute myeloid leukemia were screened using three machine

algorithms, SVM, XGBoost and Random Forest algorithm. Among

these genes, PDK4 regulates glucose metabolism by inhibiting

pyruvate dehydrogenase complex and promotes glycolytic

metabolism in tumor cells, an altered metabolism that is a typical

feature of cancer cells. Low expression or mutation of BECN1 is

closely associated with tumorigenesis. ULK1 plays a crucial role in

regulating autophagy in cancer cells. These genes are clinically

important as prognostic markers or potential therapeutic targets in

cancers such as AML. These autophagy genes were subjected to PPI

analysis and then the PPI network was further analyzed using

MCODE. As a result, two important modules were identified,

namely the HSP90AB1 module and the BECN1 module. It was

shown that these ARGs modules have an important impact on OS

in AML patients. For example, low expression of BECN1 was

associated with poor prognosis in AML patients (43). High

expression of ULK1 is associated with better prognosis and it may

inhibit tumor growth by promoting autophagy to remove abnormal

proteins and damaged organelles from AML cells (4). In addition,

genes such as HSP90AB1, CALCOCO2, DNAJB1, and WDFY3

have not yet been extensively studied in the regulation of autophagy

in AML. However, these genes are correlated in other cancers (44–

46), and they may serve as important prognostic markers in AML.

Further pathway enrichment analysis showed that these autophagy

genes were mainly enriched in the AMPK signaling pathway,

animal autophagy and longevity. It was shown that the activation

of AMPK could inhibit the mTOR signaling pathway, promote

autophagy and maintain cellular energy homeostasis. By inhibiting

lipid and protein synthesis (47), AMPK can limit AML cell

proliferation. In terms of GO term these genes are mainly

associated with cytolytic metabolic processes, autophagy and the

regulation of processes that utilize the autophagic machinery.

Decreased cytolytic function is thought to correlate with

immunosuppressive status and poor prognosis in AML. For

example, Coles et al. showed that upregulation of the

immunosuppressive glycoprotein CD200 significantly inhibited

the cytolytic capacity of natural killer (NK) cells in AML patients,

and that this inhibition reduced the efficiency of the immune

system in the clearance of tumor cells, thereby worsening patient

prognosis (48). In addition, autophagy, as a key metabolic

regulatory mechanism, is closely related to drug resistance in

AML cells. a study by Chen et al. indicated that autophagy not

only helps leukemia cells to obtain energy and nutrients for

metabolism, but also slows down the damage of drugs on AML cells

by maintaining intracellular homeostasis under chemotherapeutic

stress conditions through metabolic reprogramming (49). Therefore,

over-activation of autophagy may make AML cells more resistant to

drugs, which in turn affects the prognostic outcome of patients. In

summary, cytolysis and autophagy regulation play key roles in the

pathogenesis and prognosis of AML, providing a new entry point for

the development of future targeted therapeutic strategies.

After Lasso-Cox regression analysis of 45 potential prognostic

genes, 6 potential prognostic markers independently affecting AML
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survival were further screened. Kaplan-Meier analysis showed that the

survival rate of the low-risk group was significantly better than that of

the high-risk group on both the training. To assess the robustness of

the model on different datasets, we validated the constructed survival

prediction model using the GSE12417 dataset TCGA-LAML dataset

combined with patients’ survival information, respectively. The AUC

values for 1-year and 3-year were 0.633 and 0.651, respectively, in the

validation set GSE12417.In the validation set TCGA-LAML, the AUC

values for 1-year, 3-year, and 5-year OS were 0.632, 0.612, and 0.704,

respectively. These results indicate the robustness of the model.

Differential expression analysis of patients in the high-risk and low-

risk groups showed that these DEGs were mainly enriched in terms

such as humoral immune response, T cell differentiation in thymus

and lymphocyte differentiation. To investigate the relationship

between immune cell abundance and autophagy genes and AML

prognosis, an immune infiltration analysis of AML autophagy genes

was performed using the CIBERSORT algorithm. The results showed

that the abundance of T cells CD4+ memory activated, NK cells

activated and T cells CD4+ naive was higher in patients in the AML

low-risk group compared with the high-risk group. This suggests that

alterations in the immune microenvironment may make the high-risk

group less able to fight cancer. Further investigation of the relationship

between these prognostic markers and immune cell abundance

showed that ULK1 was positively associated with macrophage

subtypes, whereas BAG3 was significantly negatively associated with

Mast cells resting, and DAPK1 was negatively associated withmultiple

immune cell subtypes. DAPK1 was negatively associated withmultiple

immune cell subtypes. The results suggest that these autophagy genes

may regulate AML progression by influencing immune cell

infiltration. The underlying mechanisms may involve the central

role of autophagy in regulating immune function, with ULK1

promoting anti-tumor immune responses by enhancing macrophage

phagocytic activity, BAG3 inhibiting mast cell activity to weaken the

immune response, and DAPK1 down-regulation inhibiting the

activity of a variety of immune cells, resulting in difficulties for the

immune system to recognize and destroy AML cells, which in turn

drives tumor progression. In terms of clinical treatment, by targeting

the autophagy pathway, it is possible to enhance the activity of specific

immune cell subtypes or inhibit the autophagy escape mechanism of

cancer cells. For example, activation of ULK1 may enhance the anti-

tumor effect of macrophages, whereas by inhibiting BAG3, the control

of AML by immune cells may be enhanced. In addition, DAPK1-

associated negative regulatory effects could also serve as potential

therapeutic targets aimed at restoring the immune system’s ability to

recognize and kill AML cells.

In this study, these gene-enriched pathways revealed the

critical roles of autophagy and metabolic regulation in the

pathogenesis of AML. Autophagy not only helps leukemia cells

to meet their metabolic demands, but may also enable AML cells

to better adapt to environmental stresses through inter-regulation

with, for example, the AMPK signaling pathway. Therefore,

targeting these aberrant pathways may provide new strategies

for the treatment of AML. Survival prediction models constructed

on the basis of these autophagy genes provide more
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comprehensive and precise prognostic information for

personalized treatment of AML patients, helping clinicians to

better assess the prognosis of patients and develop personalized

treatment plans. In addition, autophagy genes play a key role in

regulating immune cell infiltration and its prognostic impact on

AML, which provides a research direction to further explore the

complex relationship between autophagy and the immune

microenvironment. Overall, the study of these pathways is

important for an in-depth understanding of the prognostic

mechani sms of AML and prov ides new targe t s for

clinical treatment.

Although this study constructed a prognostic prediction model

for AML based on autophagy genes, there are still some limitations.

Firstly, although the joint screening of prognosis-related genes by

three algorithms, SVM, Random Forest and XGBoost, can combine

their respective advantages and improve the stability and

consistency of the screening results, XGBoost and Random Forest

are susceptible to overfitting when the sample sizes are small,

especially when the parameters are not precisely adjusted. In

addition, although SVM usually performs better on small sample

data, the risk of overfitting may be further amplified when

combining these three algorithms. Therefore, special attention

needs to be paid to model tuning and validation when applying

this combination strategy, especially when dealing with small-

sample data, in order to reduce the potential overfitting problem.

Secondly, this study mainly relied on transcriptomics data and did

not address protein expression or functional status, thus some key

biological processes may be missed. Although the model performed

well in the validation set, further functional validation and

experimental evaluation are needed for its clinical application

prospects. Compared with other AML prognostic models, such as

Guo et al. (19). who constructed models with common genetic

markers or mutation information, our model, although

incorporating the specific mechanism of autophagy genes, is

slightly deficient in predictive ability, especially the low AUC

value in the independent validation set, suggesting that the

model’s predictive performance needs to be further improved. In

addition, the relatively small sample size of the 2 external validation

datasets used in the study may not cover the diversity of AML

patients. This limits the ability of the model to generalize to a wider

patient population.

Therefore, future studies should further validate the robustness

and accuracy of the model in larger and more diverse AML patient

cohorts. Meanwhile, in addition to traditional transcriptomics data,

multi-omics data such as proteomics and metabolomics can be

integrated to provide a more comprehensive biological perspective

and avoid missing biological processes that may play a key role in

disease development. In addition, functional experiments should be

performed on the screened autophagy genes to delve into the

specific mechanisms of these genes in AML and to assess their

impact on disease progression. In order to gain a deeper

understanding of the complexity of the AML tumor immune

microenvironment, future studies should be expanded to cover

the analysis of more types and subpopulations of immune cells.

Finally, based on the importance of these key autophagy genes,
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precision therapeutic strategies targeting these genes or their

associated pathways could be explored in the future, thus

promoting further development of personalized treatment for

AML patients.
Conclusion

In this study, we screened six potential autophagy gene

prognostic markers for AML (TSC2, CALCOCO2, BAG3,

UBQLN4, ULK1, and DAPK1) and constructed a survival

prediction model of eight autophagy genes for predicting the

survival of AML patients. The model was validated by two

validation sets, and the results showed that the survival prediction

model had strong validity. In addition, autophagy gene pathway

enrichment analysis as well as immune infiltration and immune

correlation analysis of ARGs were performed to investigate the

biological functions of autophagy genes and the prognostic markers

of ARGs in correlation with many immune cells. However, although

potential prognostic markers and correlations can be identified

from transcriptomic data, the biological significance and clinical

application of these results have not been fully confirmed due to the

lack of further clinical validation. More medically relevant

experiments are needed in the future to validate the potential

molecular mechanisms of these genes to better understand their

role and application value in AML.
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