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Background: Esophageal squamous cell carcinoma (ESCC) remains a significant

challenge in oncology due to its aggressive nature and heterogeneity. As one of the

deadliest malignancies, ESCC research lags behind other cancer types. The balance

between ubiquitination and deubiquitination processes plays a crucial role in cellular

functions, with its disruption linked to various diseases, including cancer.

Methods: Our study utilized diverse analytical approaches, encompassing Cox

regression models, single-cell RNA sequencing, intercellular communication

analysis, and Gene Ontology enrichment. We also conducted mutation profiling

and explored potential immunotherapeutic agents. Furthermore, in vitro cellular

experiments and in vivo mouse models were performed to validate findings. These

methodologies aimed to establish deubiquitination-related gene signatures (DRGS)

for predicting ESCC patient outcomes and response to immunotherapy.

Results: By integrating datasets from TCGA-ESCC and GSE53624, we developed a

DRGS model based on 14 deubiquitination-related genes (DUBGs). This signature

effectively forecasts ESCC prognosis, drug responsiveness, and immune cell

infiltration patterns. It also influences the mutational landscape of patients. Those

classified as high-risk exhibited reduced survival rates, increased genetic alterations,

and more complex cellular interactions, potentially explaining their poor outcomes.

Notably, in vitro and in vivo experiments identified MTOR, a key component of the

signature, as a promising therapeutic target for ESCC treatment.

Conclusion: Our research highlights the significance of 14 DUBGs in ESCC

progression. The risk score derived from this gene set enables clinical

stratification of patients into distinct prognostic groups. Moreover, MTOR

emerges as a potential target for personalized ESCC therapy, offering new

avenues for treatment strategies.
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Introduction

Esophageal cancer (EC) is a common malignancy with a high

mortality rate, affecting populations worldwide (1, 2). EC primarily

includes two pathological classifications: esophageal adenocarcinoma

and esophageal squamous cell carcinoma (ESCC), with ESCC

accounting for approximately 90% of all cases (3). Despite

significant advances in science and technology, the treatment of

esophageal cancer remains challenging due to the high recurrence

rate, limited molecular markers, and restricted therapeutic options (4,

5). The 5-year survival rate is disappointingly low, ranging from only

10% to 30% (6). Therefore, identifying specific molecular markers for

the treatment and prognosis of ESCC is of critical importance (7–9).

Post-translational modification (PTM) is one of the key

mechanisms for regulating various biological functions of cellular

proteins (10). Different types of modifications can alter a protein’s

charge, hydrophobicity, conformation, and stability, ultimately

affecting its function. Among the most common PTMs are

phosphorylation, acetylation, ubiquitination, glycosylation, and

methylation (11, 12). Ubiquitination, in particular, has garnered

significant attention due to its regulatory role in nearly all cellular

processes, including the cell cycle, proliferation, apoptosis,

differentiation, signal transduction, DNA repair, and immune and

inflammatory responses (13, 14). Ubiquitin is a highly conserved

polypeptide composed of 76 amino acids (8.5 kDa) that is widely

expressed in eukaryotes (15). In the human genome, four genes

encode ubiquitin proteins: UBB, UBC, UBA52, and RPS27A. The

process of ubiquitination refers to the attachment of ubiquitin

molecules to specific sites on substrate proteins, while

deubiquitination is the removal of ubiquitin from substrate

proteins by deubiquitinating enzymes (DUBs), counteracting

ubiquitination (16). Ubiquitination and deubiquitination are

crucial physiological processes related to the specific degradation

of proteins and play a vital role in regulating cellular signaling

pathways (17).

The functions of DUBs within the cell can be broadly

categorized as follows: (1) Processing ubiquitin precursors to

generate free ubiquitin molecules; (2) Removing ubiquitin chains

from proteins to prevent their degradation by the proteasome,

thereby stabilizing the proteins; (3) Detaching non-degradative

ubiquitin signals from proteins; (4) Ensuring the stability of

intracellular ubiquitin molecules by preventing their degradation

alongside substrate proteins; (5) Participating in the disassembly of

free ubiquitin chains within the cell; and (6) Editing the types of

ubiquitin chains by cleaving them (18, 19).

DUBs play a crucial role in various cellular processes, including

protein modification, localization, and the maintenance of cellular

homeostasis, making them a highly promising therapeutic target

(20). However, their pathogenic mechanisms and specific roles in

disease progression, particularly in the development of ESCC,

remain insufficiently understood and require further in-depth
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investigation. Therefore, exploring the relationship between

DUBs, their associated pathways, and disease may lead to the

discovery of new therapeutic targets and drugs, providing new

insights into the treatment and prevention of diseases.

In this study, we integrated data fromTCGA-ESCC and GSE53624

to develop reliable deubiquitination-related gene signatures (DRGS)

capable of successfully predicting the survival of ESCC patients.

Through a comprehensive analysis that included single-cell analysis,

enrichment analysis, immune infiltration analysis, mutation analysis,

and immune therapy drug inference, we explored the potential impact

of DUBRGs on patient prognosis, immune cell infiltration, mutation

landscape, and response to immunotherapy. Finally, we selected the

key gene MTOR for in vitro and in vivo experimental validation. Our

findings revealed that knockdown of the MTOR gene not only

inhibited the growth of ESCC tumor cells in vitro but also reduced

the growth rate of subcutaneous tumors in a mouse model, thereby

improving the survival rate of the mice.
Materials and methods

Datasets and source

Gene expression RNAseq data and somatic mutation profiles

in Mutation Annotation Format (MAF) were downloaded from

The Cancer Genome Atlas (TCGA) database (https://

portal.gdc.cancer.gov/). In the TCGA dataset, gene expression

profiles were quantified using Transcripts Per Million (TPM)

estimates and then log2-transformed for further analysis. GEO

datasets were obtained from the Gene Expression Omnibus

(GEO) of the National Center for Biotechnology Information

(NCBI), which is publicly accessible at https://www.ncbi.nlm.

nih.gov/geo.
Establishment of DRGS for ESCC
patients’ prognosis

After batch effects were removed from the TCGA-ESCC and

GSE53624 datasets using the empirical Bayesian-based R package

sva, we merged the data. Deubiquitination-related genes were

identified as prognostic factors using univariate Cox regression,

Lasso regression, and multivariate Cox regression analyses. Based

on the results of the multivariate Cox regression, a mathematical

formula was developed to predict the risk score for each ESCC

patient:

Risk   score =on
i=1 Expi   �  Coefið Þ

Subsequently, all patients were divided into high-risk and low-

risk groups according to the median risk score for further analysis.
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Differential expression and
enrichment analysis

Based on gene expression profiles in ESCC, differential

expression analysis was performed between high-risk and low-risk

groups using the “limma” package in R to identify differentially

expressed genes (DEGs). The thresholds for DEGs selection were

defined as “adjusted P < 0.01 and |log(FoldChange)| > 0.5”. GO

enrichment analysis was conducted using the “clusterProfiler”

package in R, with a P-value less than 0.05 considered statistically

significant. Data visualization was performed using the “ggplot2”

package in R (21, 22). GO terms were categorized into three main

ontology categories: Biological Process, Cellular Component, and

Molecular Function.
Immune analysis

Using multiple algorithms, including CIBERSORT ,

MCPcounter, TIMER, and xCell, we estimated the differences in

the abundance of various immune cell types between high-risk and

low-risk groups (23). These differences were visualized using a

heatmap. Additionally, we performed a Spearman correlation

analysis (r) to explore the relationship between the ESCC patient

risk score and the StromalScore, ESTIMATEScore, ImmuneScore,

and TumorPurity, with the results displayed in scatter plots.
Mutation analysis

The R package “Maftools” was used to analyze and visualize the

gene mutation profiles and frequencies in high-risk and low-risk

groups, as well as to compare the differences in ESTIMATE scores,

stromal scores, immune scores, and tumor purity between these

groups (24). Tumor mutation burden (TMB) was calculated as the

number of mutations per million bases (mut/Mb), and an oncoplot

was generated using the “oncoplot” package to create a waterfall

plot. Patients were divided into four groups based on TMB (high or

low) and risk score (high or low), and Kaplan-Meier survival curves

were plotted to assess the impact of TMB and risk score on overall

patient survival.
Single-cell RNA-sequencing analysis

Single-cell sequencing data for esophageal cancer was

downloaded from the GEO database (GSE160269) and

preprocessed using the “Seurat-Req” package (25) for single-cell

RNA sequencing (scRNA-seq) analys is (26–28) . The

“PercentageFeatureSet” function was used to assess the proportion

of mitochondrial genes within the dataset. To ensure data quality

and completeness, only genes expressed in at least three cells were

retained. The scRNA-seq data was normalized using the

“NormalizeData” function. After normalization, the data was

converted into a Seurat object, and the “FindVariableFeatures”

function was used to identify the top 2,000 highly variable genes.
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Subsequently, these highly variable genes were scaled and subjected

to principal component analysis (PCA) using the “RunPCA” tool.

Dimensionality reduction and visualization in two-dimensional space

were achieved through the optimization of the Shared Nearest

Neighbor (SNN) module and the t-distributed Stochastic Neighbor

Embedding (t-SNE) clustering algorithm. Various cell subpopulations

were annotated based on marker genes. We then analyzed the

expression profiles of modeled DUBGs and classified the single-cell

data into high- and low-risk groups based on DUBGs, evaluating the

relationship between immune cell infiltration and risk scores.

Finally, “CellChat” was employed to assess differences in

signaling patterns and interaction networks between cell types in

the high- and low-risk groups (29, 30).
Drug sensitivity analysis

Gene expression and drug sensitivity data for the same samples

were downloaded from the CellMiner website (https://

discover.nci.nih.gov/cellminer/). Drug sensitivity data were

recorded after clinical laboratory validation and FDA standard

certification. Pearson correlation analysis was used to determine

the correlation between the risk score model and drug sensitivity.
Cell culture

The human ESCC cell line (KYSE30) and the mouse ESCC cell

line (mEC25) were obtained from the National Biomedical

Experimental Cell Bank (Beijing, China) (31). The cells were

cultured in 1640 medium (Gibco, USA)supplemented with 10%

fetal bovine serum (Hyclone, USA)and 1% penicillin/streptomycin

(Gibco, USA)in a humidified incubator with 5% CO2 at 37°C.
Cell transfection

The day before transfection, plate the cells to ensure they reach

50-70% confluence at the time of transfection. On the day of

transfection, prepare the transfection complex as follows: first,

dilute the siRNA (sequences shown in Table 1 for both human

and mouse MTOR) and the transfection reagent separately in

serum-free medium. Next, combine the diluted siRNA solution

with the transfection reagent, gently mix, and incubate the mixture

at room temperature for 15-20 minutes to allow the complex to

form (GenePharma, Shanghai, China). Next, remove the culture

medium from the cells, add the complex to the cells, and

supplement with fresh culture medium. Incubate the cells at 37°C

in a 5% CO2 incubator for 24-72 hours. To assess the efficiency of

siRNA-mediated knockdown, total RNA was extracted from the

transfected cells using a standard RNA isolation kit (e.g., TRIzol

reagent) according to the manufacturer’s instructions. The RNA

was then reverse-transcribed into cDNA using a reverse

transcription kit. Quantitative real-time PCR (qPCR) was

performed to measure the mRNA levels of the target gene

(MTOR) using specific primers. The relative expression levels
frontiersin.org

https://discover.nci.nih.gov/cellminer/
https://discover.nci.nih.gov/cellminer/
https://doi.org/10.3389/fimmu.2024.1490623
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tian et al. 10.3389/fimmu.2024.1490623
were normalized to GAPDH as an internal control, and knockdown

efficiency was calculated using the 2^(-DDCt) method.
TABLE 1 The target sequences used for MTOR siRNA transfection are
as follows:

Species Number Target sequence (5’-3’) Ref Seq

Human Sequence-1 CCGCTAGTAGGGAGGTTTATT NM_004958

Sequence-2 GCAACCCTTCTTTGACAACAT NM_004958

Mouse Sequence-1 GCTAGTTCGTATCAGCAGCAT NM_020009

Sequence-2 GCAGTGCTACACTACAAACAT NM_020009
F
rontiers in Im
munology
CCK-8 assay

Transfected cells (5×103) were seeded into the wells of a 96-well

plate and incubated for 6 hours to allow adhesion (considered the

starting point of the experiment, 0 h). Measurements were taken

every 24 hours by adding 10 mL of CCK-8 reagent

(MedChemExpress, USA) and 90 mL of 1640 medium to each

well, followed by a 2-hour incubation at 37°C. The absorbance (OD)

at 450 nm was then measured using a microplate reader (Thermo,

USA). After a total of four measurements, a growth curve was

plotted based on the OD values.
Establishment of a subcutaneous tumor
model in mice

The C57/BL6 mice used in the experiments were housed at the

XuzhouMedical University Animal Experiment Center. The animal

ethics for this study were reviewed and approved by the

Experimental Animal Ethics Committee of Xuzhou Medical

University. All mice were kept in an SPF (Specific Pathogen-Free)

environment with free access to food and water. All experimental

procedures were conducted in strict accordance with ethical

guidelines, ensuring that the design and execution of the

experiments adhered to the highest standards of animal welfare

and ethical considerations.

To establish a subcutaneous tumor model using the mEC25

mouse esophageal cancer cell line in 6-8 weeks-old C57BL/6 mice

(SPF (Beijing)BIOTECHNOLOGY CO., LTD). Begin by culturing the

mEC25 cells until they reach the logarithmic growth phase. Harvest

the cells and resuspend them in sterile PBS at a concentration of

1x10^7 cells/ml. Using an insulin syringe, inject 100 μL of the cell

suspension subcutaneously into the right flanks of each mouse. Every

2-3 days, measure the tumor’s length (L) and width (W) using calipers,

and calculate the tumor volume using the formula V = (L x W2)/2.
Statistical analysis

Data analysis and visualization were conducted using R version

4.0.2. Categorical variables were compared using the chi-square test,
04
while group differences were assessed using the Student’ t-test and the

Wilcoxon rank-sum test. The correlation between two parameters was

evaluated using Spearman correlation analysis. All statistical tests were

two-sided, and a P-value of less than 0.05 was considered

statistically significant.
Result

Construction and validation of a
prognostic model related
to deubiquitination

The complete workflow is shown in Figure 1. To explore the

potential of utilizing DRGS for clinical decision support in ESCC, we

combined the TCGA-ESCC (n=86) and GSE53624 (n=119) datasets to

develop a prognostic model for ESCC. Initially, batch effects between

the two datasets were removed (Figures 2A–C), followed by univariate

Cox analysis to identify DUBs significantly associated with overall

survival (OS) in ESCC patients (Figure 2D). To address overfitting risks

and refine gene selection for OS prediction, we performed LASSO

regression analysis, and stepwise multivariate Cox analysis

subsequently identified USP2, ITCH, ESR1, AXIN1, MTOR, USP22,

TRAF2, USP37, AKT1, AR, OTUD6B, ZC3H12A, and SMAD3 as

independent prognostic factors. These genes were used to construct the

DRGS for ESCC patients. The risk score was calculated by summing

the expression levels of individual genes, each weighted by their

respective regression coefficients (Figure 2H). Patients were then

divided into high- and low-risk groups based on the median risk

score (Figures 2E–G). Kaplan-Meier survival analysis revealed that

ESCC patients in the high-risk group had significantly shorter survival

probabilities, with 1-, 3-, and 5-year AUCs of 0.67, 0.74, and 0.75,

respectively, indicating a robust predictive capability of the DRGS for

ESCC patients (Figures 2I–J).
Exploration of mutational landscapes and
biological mechanisms

Next, we explored the functional classification of DRGS in ESCC

patients and their potential roles and impacts in cancer immunity. As

shown in Figure 3A, the Gene Ontology (GO) analysis indicates

that DRGS may influence ESCC progression by participating in the

regulation of biological processes such as Pattern Specification Process,

Epidermal Cell Differentiation, Epidermis Cell Differentiation,

Response to Other Organism, Response to External Biotic Stimulus,

and Antimicrobial Humoral Response, thereby affecting patient

prognosis. Figure 3B also suggests that DRGS may be involved in

processes such as the release of cancer antigens, the presentation and

activation of cancer antigens, immune cell recruitment, and

tumor killing.

To explore the molecular mechanisms driving the abnormal

expression of these 14 DUBGs, we examined the differences in TMB

between high-risk and low-risk groups of ESCC patients. The results

indicate that the high-risk group has a higher mutation frequency in

several genes (such as TP53, TTN, NFE2L2) compared to the low-risk
frontiersin.org
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group. Additionally, the high-risk group exhibits generally lower

ESTIMATE Score, Stromal Score, and Immune Score (Figure 4A).

The high-risk group also has a higher standardized Tumor Mutation

Burden (TMB, Figure 4B), and there is a positive correlation between

the risk score and TMB, though not statistically significant (Figure 4C).

The combination of TMB and risk score significantly influences patient

survival, with the combination of low TMB and low risk being

associated with better survival outcomes (Figure 4D).
DUBGs predicts immune cell infiltration of
ESCC patients

The previous analyses suggest that DUBGs may influence

immune cell infiltration in ESCC patients. Therefore, we

conducted a more detailed investigation to explore the

relationship between risk scores and immune cell infiltration,

immune-related gene expression, and tumor purity in ESCC

patients. Using different computational methods such as

CIBERSORT, MCPcounter, and xCell, we observed that the

expression levels of various immune cel ls , including

Macrophages_M0, NK_cells, Dendritic_cells, B-cells, CD4+
Frontiers in Immunology 05
T-cells, Memory_B-cells, and Monocytes, were lower in the high-

risk group compared to the low-risk group, particularly in the xCell

analysis (Figure 5A). Additionally, correlation analysis revealed that

risk scores were negatively correlated with Stromal Score,

ESTIMATE Score, and Immune Score, but positively correlated

with Tumor Purity, indicating that higher risk scores are associated

with higher tumor purity (Figures 5B–E). Moreover, key genes such

as USP37, USP22, TRAF2, SMAD3, and MTOR showed a positive

correlation with immune-related genes HHLA2 and CD48

(Figure 5F), and the expression levels of HHLA2 and CD48 were

significantly higher in the high-risk group (p < 0.05, Figure 5G).

These analysis underscores the potential role of DUBGs in

modulating immune cell infiltration and highlights the

relationship between risk scores, immune gene expression, and

tumor microenvironment characteristics in ESCC patients.

Single-cell sequencing reveals the
potential biological impact of DUBGs on
ESCC patients

To gain a deeper understanding of the underlying mechanisms

by which DUBGs influence the function and gene regulation in
FIGURE 1

Schematic representation of the research framework for constructing a deubiquitination related key genes model. The central block highlights the
integration of six datasets, including TCGA and GSE53624, as well as experiments using KYSE30 and TE1 cell lines, and colony formation assays. This
comprehensive approach is employed to construct a deubiquitination key genes model, which is subsequently evaluated through multiple analyses.
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FIGURE 2

Analysis of deubiquitination-related genes in the TCGA and GEO cohorts. (A) Pie chart representing the distribution of samples from TCGA (n=86)
and GEO (n=119) cohorts. (B) Principal component analysis (PCA) plot showing the variance between samples from TCGA and GEO datasets. (C)
PCA plot illustrating the clustering of samples from TCGA and GEO datasets. (D) Forest plot showing the hazard ratios (HR) for deubiquitination-
related genes. Genes with HR > 1 are considered hazardous factors, and those with HR < 1 are considered protective factors. (E) Volcano plot of Cox
regression coefficients for deubiquitination-related genes, highlighting protective and hazardous factors. (F) Partial likelihood deviance plot for
LASSO regression analysis to determine the optimal lambda value. (G) LASSO coefficient profiles of deubiquitination-related genes with varying
lambda values. (H) Bar plot of Cox coefficients, distinguishing risk and protective factors among deubiquitination-related genes. (I) Kaplan-Meier
survival curves comparing high-risk and low-risk groups based on deubiquitination-related gene expression. (J) Time-dependent ROC curves
showing the predictive accuracy (AUC) at 1, 2, and 3 years.
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esophageal cancer cells, we conducted a single-cell level analysis.

We first performed dimensionality reduction, clustering, and cell

identification on the single-cell sequencing data of esophageal

cancer from the GSE160269 dataset. A total of 13 cell types were

identified: B cells, CD4Tconv cells, CD8Tex cells, DC cells,

Endothelial cells, Fibroblasts, Malignant cells, Mast cells, Mono/
Frontiers in Immunology 07
Macro cells, Pericytes, Plasma cells, T prolif cells, and Treg cells

(Figures 6A–C).

Subsequently, we analyzed the expression profiles of DUBGs

within the single-cell data, observing distinct expression patterns of

these genes across different cell populations (Figure 6D). The

extracellular matrix is a supportive tissue structure composed of
FIGURE 3

Enrichment analysis of differentially expressed genes between high and low-risk groups. (A) Bar plot showing the Gene Ontology (GO) enrichment
analysis for differentially expressed genes. The identified GO terms are categorized into three main ontologies: Biological Process (blue), Cellular
Component (orange), and Molecular Function (pink). The y-axis lists the GO identifiers, and the x-axis shows the number of detected and enriched
genes for each GO term. (B) Correlation heatmap illustrating the relationship between immune-related pathways (right) and cancer-related pathways
(left). The color intensity represents the correlation coefficient (r), with red indicating positive correlations and blue indicating negative correlations.
The dotted lines connect pathways with significant correlations, highlighting key interactions involved in cancer immunity. NS stands for "Not Significant".
frontiersin.org
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complex molecules such as collagen and fibronectin. It plays a

crucial role in normal cell growth and function, while also

influencing the infiltration and activity of immune cells within

tumors. The extracellular matrix environment surrounding tumor

cells can affect the immune response to the tumor, sometimes even

forming a barrier that limits the activity of immune cells (32–35).
Frontiers in Immunology 08
Additionally, there were notable differences in the composition of

immune and malignant cells between ESCC patients with high and

low-risk scores. High-risk ESCC patients exhibited a higher

proportion of malignant cells and fibroblasts, with lower

infiltration of CD8 T cells and CD4 T cells compared to those

with low-risk scores (Figure 7A). Moreover, the number of inferred
FIGURE 4

Analysis of tumor mutational burden (TMB) in relation to risk scores. (A) Oncoprint plot showing the mutation landscape across high and low-risk
groups. The top bar plot represents the TMB, while the heatmaps illustrate the risk scores, ESTIMATE scores, Stromal scores, Immune scores, and
tumor purity for each sample. The percentage on the left indicates the frequency of mutations in each gene across the cohort. (B) Violin plot
comparing the standardized TMB between high and low-risk groups. (C) Scatter plot showing the correlation between risk scores and standardized
TMB. The blue line represents the regression line, with the shaded area indicating the confidence interval. (D) Kaplan-Meier survival curves
comparing overall survival across four groups categorized by high and low TMB and risk scores. The p-value indicates the statistical significance of
the differences between the groups.
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cell interactions in the high-risk group (4633) was significantly

greater than that in the low-risk group (3861) (Figure 7B,

Supplementary Figure 3A). Furthermore, the interaction strength

and patterns among certain cell types differed markedly between the

high-risk and low-risk groups, with more complex and intense cell-
Frontiers in Immunology 09
type interactions observed in high-risk patients, which may be

associated with their prognosis (Figure 7C).

We further identified the cell communication signaling

pathways in high-risk and low-risk ESCC patient groups and

generated relative information flow diagrams (Figures 7D, E) and
FIGURE 5

Correlation between immune cell infiltration, tumor microenvironment scores and risk scores. (A) Heatmap showing the comparison of immune cell
infiltration levels between high and low-risk groups across various immune cell types as quantified by multiple algorithms (CIBERSORT, MCPcounter,
xCell, etc.). (B–D) Scatter plots showing the negative correlation between risk scores and (B) StromalScore, (C) ESTIMATEScore, and (D)
ImmuneScore. (E) Scatter plot showing the positive correlation between risk scores and tumor purity. (F) Dot plot showing the correlation between
the expression of immune-related genes (HHLA2, CD48) and deubiquitination-related genes with risk scores. (G) Box plots comparing the
expression levels of CD48 and HHLA2 between high and low-risk groups, showing a statistically significant difference (P < 0.05).
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signal pattern maps (Figure 7F). The relative information flow

diagrams (Figures 7D, E) reveal that the high-risk group exhibits

more information flow pathways compared to the low-risk group,

with significant enrichment in pathways related to MHC-II, CD34,

ICAM, and LIGHT. The signal pattern map (Figure 7F,

Supplementary Figure 3B) shows that the high-risk group has
Frontiers in Immunology 10
increased interactions among certain cell types, particularly

among endothelial cells, fibroblasts, and malignant cells.

Moreover, cells in the high-risk group, such as fibroblasts,

malignant cells, and macrophages, demonstrate stronger

interaction intensities, which may be associated with more

complex signaling within the tumor microenvironment. These
FIGURE 6

Single-cell RNA-seq analysis and risk score evaluation of deubiquitination-related genes across different cell types. (A) Dot plot showing the
expression levels of deubiquitination-related genes across various cell types, including B cells, CD4+ T cells, CD8+ T cells, DCs, Endothelial cells,
Fibroblasts, Malignant cells, Mast cells, Monocytes/Macrophages, Pericytes, Plasma cells, Tprolif, Tregs, and others. (B) UMAP plot showing the
clustering of different cell types based on their gene expression profiles. Each cluster is color-coded and numbered. (C) UMAP plot highlighting the
distribution of specific cell types, such as B cells, T cells, DCs, Endothelial cells, and others, within the entire dataset. (D) UMAP plots illustrating the
expression patterns of individual deubiquitination-related genes (e.g., USP2, ITCH, ESR1, etc.) across different cell clusters.
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FIGURE 7

Comparison of cellular interactions and communication patterns between high and low-risk groups. (A) Stacked bar plot showing the proportion of
different cell types in high and low-risk groups. Each color represents a specific cell type. (B) Bar plots comparing the number of inferred
interactions and the overall interaction strength between high and low-risk groups. The high-risk group exhibits more interactions and stronger
interaction strength compared to the low-risk group. (C) Scatter plots showing the outgoing and incoming interaction strength for each cell type in
high and low-risk groups. The size of each point reflects the relative interaction strength. (D) Bar plot of relative information flow for specific
signaling pathways in high and low-risk groups. Pathways with higher flow in the high-risk group are marked in red, while those higher in the low-
risk group are in blue. (E) Bar plot comparing the absolute information flow for signaling pathways between high and low-risk groups. This highlights
the differences in communication intensity across different pathways. (F) Heatmaps comparing the differential number of interactions (top) and
differential interaction strength (bottom) between high and low-risk groups across different cell types. Red indicates higher values in the high-risk
group, while blue indicates higher values in the low-risk group.
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findings suggest that the tumor microenvironment in high-risk

patients is characterized by more active cell communication and

more intricate signaling mechanisms.
DUBGs involved in predicting drug
sensitivity in ESCC patients

Through the analysis of key DUBGs, we found that genes such

as CFTR, USP2, ITCH, ESR1, AXIN1, USP37, AKT1, OTUD6B,

ZC3H12A, and SMAD3 are significantly upregulated in tumor

tissues compared to normal tissues (Figures 8A, C). Additionally,

ESR1, OTUD6B, USP2, and USP37 showed a positive correlation

with risk scores, while USP22 exhibited a significant negative

correlation with risk scores (r = -0.7, p < 0.0001, Figures 8B, D),

suggesting a potential role for these genes in ESCC tumor

progression and patient prognosis. Subsequently, a drug

sensitivity analysis revealed differences in the sensitivity to certain

common drugs between high-risk and low-risk groups. Drugs such

as BMS-536924, BDP-00009066, AUZ-12345, and AZ6102 showed

significantly higher response levels in the high-risk group

compared to the low-risk group, indicating the potential

therapeutic advantages of these drugs in high-risk patients

(Supplementary Figure 2A).
MTOR+ tumor cells may serve as a
therapeutic target for ESCC patients

We incorporated a total of 14 DUBGs (USP2, ITCH, ESR1,

AXIN1, MTOR, USP22, TRAF2, USP37, AKT1, AR, OTUD6B,

ZC3H12A, and SMAD3) into our risk model. Among these, the

MTOR gene exhibited a higher Cox coefficient in our prognostic

model. Mammalian target of rapamycin (mTOR), the final

component of the PI3K/mTOR pathway, plays a crucial role in

regulating cell proliferation, growth, metabolism, and protein

synthesis (36). Previous studies have highlighted the significant

role of the MTOR gene in tumorigenesis and cancer progression.

Mutations in the MTOR gene can result in the persistent

hyperactivation of the mTOR signaling pathway, and over 30

mTOR gene mutations have been identified across various cancer

types (37). These mutations are not only associated with enhanced

mTOR protein activity but have also been linked to resistance

mechanisms against mTOR inhibitors (38).

To investigate the role of MTOR in esophageal cancer, we

constructed MTOR knockdown cell lines, KYSE30 and mEC25,

using siRNA technology. Five days post-transfection, qRT-PCR was

performed to assess MTOR expression levels, confirming the

effectiveness of MTOR knockdown in the KYSE30 and mEC25

cell lines (Figures 9A, D). Functional assays revealed that MTOR

knockdown significantly reduced colony formation efficiency and

cell proliferation in esophageal cancer cells (Figures 9B, C, E, F).

Additionally, in vivo experiments using a subcutaneous tumor

model in mice, established with the mEC25 cell line,

demonstrated that MTOR knockdown slowed tumor growth and

prolonged survival (Figure 9G–K). These findings strongly suggest
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that the MTOR gene is a risk factor for esophageal squamous cell

carcinoma (ESCC). Further research is warranted to develop more

effective diagnostic and therapeutic strategies for ESCC patients.
Discussion

Esophageal cancer is one of the most heterogeneous, common,

and deadly types of cancer, particularly in East Asia (8, 39).

However, compared to other common tumor types, research on

esophageal cancer is notably lacking, and there has been limited

progress in treatment over the past few decades (40, 41).

Deubiquitination is a process catalyzed by DUBs that removes

ubiquitin from ubiquitinated proteins, effectively reversing the

ubiquitination process. The dynamic interplay between

ubiquitination and deubiquitination is closely linked to various

cellular functions, and its dysregulation can lead to a range of

diseases, including neurodegenerative disorders and cancer (19).

Recent studies suggest that deubiquitination can affect the MTOR

pathway, a crucial regulator in cell growth and metabolism (Zhao

et al., 2021). For instance, the enzyme USP39 promotes mTORC2

activation, further enhancing tumor progression (42). Additionally,

inhibitors targeting DUBs like USP14 and UCH37 show potential

for controlling MTOR pathway activation, highlighting their

therapeutic relevance (Sha et al., 2019) (43). Understanding these

processes could offer new insights into cancer diagnosis and

treatment. In this study, we investigated the expression and

significance of DUBGs in ESCC, revealing their prognostic value.

Moreover, through in vitro cell experiments and in vivo

subcutaneous tumor models in mice, we validated that the

knockdown of the key deubiquitination-related gene MTOR

significantly inhibits the malignant biological behavior of

esophageal cancer cells, suggesting its potential as a therapeutic

target for esophageal cancer patients.

ESCC is considered a heterogeneous group of cancers, and this

study provides a comprehensive analysis of the biological processes

in ESCC patients influenced by DRGS. By stratifying ESCC patients

into high-risk and low-risk groups based on the median DRGS

score, we demonstrated that DRGS serve as reliable predictors of

patient prognosis. High-risk ESCC patients consistently exhibited

poorer survival outcomes compared to their low-risk counterparts.

Furthermore, integrating DRGS stratification with TMB analysis

provided additional insights into patient outcomes. Specifically,

patients categorized in the high-risk and high-TMB groups

exhibited markedly reduced survival probabilities, highlighting a

synergistic impact of DRGS activity and high TMB on patient

prognosis. These findings underscore the utility of DRGS in

predicting survival outcomes and emphasize their potential to

inform risk-adapted therapeutic strategies in ESCC management

(44). Differences between high-risk and low-risk groups were also

observed in TMB, ESTIMATE score, immune score, and tumor

purity. Specifically, high-risk patients tended to exhibit higher TMB

and altered ESTIMATE scores, reflecting significant variations in

immune and stromal components within the tumor

microenvironment. The tumor immune microenvironment

encompasses a complex network of interactions between tumor
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cells and their surroundings, including immune cells, inflammatory

cells, blood vessels, and the extracellular matrix. These components

collectively play a pivotal role in modulating tumor progression,

immune evasion, and therapeutic response. High-risk ESCC
Frontiers in Immunology 13
patients, characterized by distinct immune microenvironment

profiles, may thus demonstrate varying degrees of sensitivity to

immunotherapy and other targeted treatment modalities,

emphasizing the need for personalized therapeutic strategies
FIGURE 8

Expression analysis of deubiquitination-related genes used in the modeling process in normal versus esophageal cancer tissues and their correlation
with risk scores. (A) Violin plots comparing the expression levels of deubiquitination-related genes used in the modeling process (e.g., CFTR, USP2,
ITCH, etc.) between normal and esophageal cancer tissues. (B) Scatter plots showing the correlation between risk scores and the expression levels
of selected deubiquitination-related genes used in the modeling process (e.g., CFTR, USP2, ITCH, etc.) in esophageal cancer. (C) Violin plots
comparing the expression levels of USP22, TRAF2, AR, and MTOR, which are part of the deubiquitination-related genes used in the modeling
process, between normal and esophageal cancer tissues, showing significant differences in expression. (D) Scatter plots showing the correlation
between risk scores and the expression levels of USP22, TRAF2, AR, and MTOR in esophageal cancer, focusing on the genes used in the modeling
process. The blue lines represent the regression lines, and the shaded areas indicate the confidence intervals.
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FIGURE 9

Effect of MTOR Knockdown on Cell Growth, Colony Formation, and Tumorigenicity in Esophageal Cancer Cells. (A, D) Relative mRNA expression
levels of MTOR in KYSE30 (A) and mEC25 (D) cells following siRNA-mediated knockdown (si-1, si-2) compared to the negative control (siNC). A
significant reduction in mRNA levels was observed in the siRNA-treated groups. ****p < 0.0001. (B, C) Quantification and representative images of
colony formation assays in KYSE30 and TE1 cells (B) and KYSE30 and mEC25 cells (C) after siRNA-mediated knockdown of MTOR (si-1, si-2)
compared to the negative control (NC). The number of colonies was significantly reduced in the siRNA-treated groups. ***p < 0.001, **p < 0.01.
(E) Cell proliferation assay (CCK-8) in KYSE30 cells showing reduced cell growth in the siMTOR groups (si-1, si-2) compared to the negative control
(siNC). (F) Cell proliferation assay (CCK-8) in mEC25 cells showing reduced cell growth in the siMTOR groups (si-1, si-2) compared to the negative
control (siNC). (G) Representative images of tumors collected from mice injected with mEC25 cells transfected with either negative control siRNA
(siNC) or siRNA targeting the gene (siMTOR). The si3 group showed smaller tumors. (H) Kaplan-Meier survival curve of mice injected with mEC25
cells. Mice in the siMTOR group had significantly longer survival times compared to the siNC group (P = 0.037). (I) Tumor weight comparison
between the siNC and siMTOR groups. Tumors from the siMTOR group were significantly lighter than those from the siNC group. ****p < 0.0001.
(J, K) Tumor volume growth curves for the siNC group (J) and the siMTOR group (K), showing that the tumors in the siMTOR group grew more
slowly compared to those in the siNC group.
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tailored to tumor microenvironment characteristics (45–47).

Specifically, high-risk patients showed increased infiltration of

malignant cells and fibroblasts but decreased infiltration of

immune cells such as CD8+ T cells and CD4+ T cells, suggesting

that DRGS may influence the tumor immune microenvironment in

ESCC patients, thereby impacting their prognosis.

To fur ther exp lore the impact o f DRGS on the

microenvironment and potential biological processes in ESCC

patients, we integrated single-cell analysis for additional

validation. The analysis revealed that high-risk ESCC patients

exhibit significantly higher levels of cellular interaction frequency,

interaction strength, and network complexity compared to low-risk

patients, suggesting a highly intricate signaling network within the

tumor microenvironment. These complex interactions might

involve enhanced crosstalk between tumor cells, immune cells,

and stromal components, potentially contributing to the

aggressiveness and therapy resistance in high-risk patients.

Furthermore, DRGS appear to serve as reliable predictors of drug

sensitivity, as high-risk ESCC patients demonstrated significantly

greater responsiveness to targeted therapeutics such as BMS-

536924, BDP-00009066, AUZ-12345, and AZ6102. These results

highlight the potential for DRGS-based stratification to guide

precision oncology approaches, enabling the development of

more effective and personalized treatment strategies.

The hyperactivation of the MTOR pathway is increasingly

recognized as a driver of tumor recurrence and drug resistance

across multiple cancer types, including ESCC (48). Our findings

align with these observations, demonstrating that MTOR plays a

central role in enabling metabolic adaptations that support rapid

tumor growth. Specifically, MTORC1 activation drives glycolysis,

producing glycolytic intermediates essential for synthesizing

macromolecules like proteins, l ipids, and nucleotides.

Concurrently, mTORC2 activation enhances mitochondrial ATP

production, supporting the high bioenergetic demands of

proliferating tumor cells. Furthermore, our data suggest that

MTOR activation promotes glutamine uptake and lipid oxidation,

fueling the tricarboxylic acid (TCA) cycle to sustain mitochondrial

function. Notably, knockdown of MTOR in esophageal cancer cell

lines significantly inhibited cell proliferation and colony formation,

while in vivo experiments demonstrated reduced tumor growth

rates and prolonged survival in mouse models. These findings

underscore the potential of targeting MTOR as a therapeutic

strategy in ESCC. Moreover, given MTOR’s pivotal role in

nutrient sensing and metabolic reprogramming, its inhibition

may simultaneously reduce tumor resilience to therapeutic

interventions and sensitize tumors to existing treatment

modalities, ultimately improving patient outcomes.

Proliferating cancer cells require increased synthesis of proteins,

lipids, and nucleotides (49). Glycolysis can be upregulated through

the activation of mTORC1, providing more glycolytic intermediates

for the biosynthesis of these macromolecules (50, 51). Additionally,

the activation of mTORC1 promotes the uptake of glutamine to

sustain mitochondrial ATP production. Fatty acids can also supply

carbon to the tricarboxylic acid (TCA) cycle, thereby supporting
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mitochondrial function (52, 53). MTOR, as one of the key genes in

DUBGs, plays a crucial role in these processes. Through knockdown

of the MTOR gene in esophageal cancer cells, we found that

reducing MTOR expression significantly inhibits tumor cell

proliferation and colony formation, suppresses tumor growth rate

in a mouse subcutaneous tumor model, and prolongs survival in

mice. These findings suggest that MTOR could be a potential

therapeutic target for ESCC patients.
Conclusion

In this study, we developed a predictive risk scoring model

based on DRGS that effectively forecasts patient prognosis and is

closely associated with tumor mutational burden, immune cell

infiltration, tumor purity, and drug sensitivity, highlighting its

clinical relevance. Additionally, MTOR has been identified as a

potential therapeutic target in esophageal cancer, underscoring

its critical role in tumor progression. These findings enhance our

understanding of the pathogenesis of esophageal cancer and

offer new insights for the development of personalized

treatment strategies.
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SUPPLEMENTARY FIGURE 1

Survival analysis and ROC curves of esophageal cancer patients based on risk
scores derived from deubiquitination-related genes. (A) Kaplan-Meier survival

curves comparing overall survival between high-risk and low-risk groups of

esophageal cancer patients. The high-risk group shows significantly poorer
survival compared to the low-risk group (P < 0.0001).

SUPPLEMENTARY FIGURE 2

Drug sensitivity analysis in esophageal cancer based on risk groups. (A) Violin
plots comparing the sensitivity of esophageal cancer cells to various drugs

(e.g., BMS-538924, BDP-00009086, etc.) between high-risk and low-risk
groups. The sensitivity is measured as the drug response score, with higher

scores indicating greater sensitivity. The p-values indicate the statistical

significance of the differences between the two groups.

SUPPLEMENTARY FIGURE 3

Cell-cell interaction networks and signaling patterns in low-risk and high-risk

groups in esophageal cancer. (A)Network diagrams illustrating the number of
cell-cell interactions in the low-risk (left) and high-risk (right) groups. Each

node represents a different cell type, and the thickness of the lines indicates

the number of interactions between cell types. The high-risk group shows an
increased number of interactions compared to the low-risk group. (B)
Heatmaps showing the outgoing signaling patterns in low-risk (left) and
high-risk (right) groups. The heatmaps compare the relative strength of

signaling pathways between different cell types. The high-risk group
exhibits more robust and diverse signaling interactions.
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