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Background: Anoikis, a unique form of cell death, serves as a vital part of the

organism's defense by preventing shedding cells from re-attaching to the

incorrect positions, and plays pivotal role in cancer metastasis. Nonetheless,

the specific mechanisms among anoikis, the clinical prognosis and tumor

microenvironment (TME) of bladder cancer (BLCA) are insufficiently understood.

Method: BLCA patients were classified into different anoikis subtypes based on

the expression of candidate anoikis-related genes (ARGs), and differences in the

clinicopathological features, TME, immune cell infiltration, and immune

checkpoints between two anoikis subtypes were analyzed. Next, patients in the

TCGA cohort were randomized into the train and test groups in a 1:1 ratio.

Subsequently, the anoikis-related model was constructed to predict the

prognosis via utilizing the univariate Cox, LASSO and multivariate Cox analyses,

and validated internally and externally. Moreover, the relationships between the

risk score and clinicopathologic features, immune cell infi ltration,

immunotherapy response, and antitumor drug sensitivity were also analyzed. In

addition, representative genes were evaluated using immunohistochemistry in

clinical specimens, and in BLCA cell lines, functional experiments were

performed to determine the biological behavior of hub gene PLOD1.

Result: Two definite anoikis subgroups were identified. Compared to ARGcluster

A, pat ients assigned to ARGcluster B were character ized by an

immunosuppressive microenvironment and worse prognosis. Then, the

anoikis-related model, including PLOD1, EHBP1, and CSPG4, was constructed,

and BLCA patients in the low-risk group were characterized by a better

prognosis. Next, the accurate nomogram was built to improve the clinical

applicability by combining the age, tumor stage and risk Score. Moreover,
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immune infiltration and clinical features differed significantly between high- and

low-risk groups. We also found that the low-risk group exhibited a lower tumor

immune dysfunction and exclusion score, a higher immunophenoscore (IPS),

had more sensitivity to immunotherapy. Eventually, the expression levels of three

genes were verified by our experiment, and knockdown of PLOD1 could inhibit

invasion and migration abilities in BLCA cell lines.

Conclusion: These results demonstrated a new direction in precision therapy for

BLCA, and indicated that the ARGs might be helpful to in predicting prognosis

and as therapeutic targets in BLCA.
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Introduction

Statistics show that bladder cancer (BLCA) has been increasing

in incidence each year, and it ranks as one of the ten most common

tumors. In men, BLCA is more prevalent due to hormones, tobacco

use, and other factors, ranking sixth among all cancers (1–4). It is

estimated that 45% to 50% of patients with non-muscle invasive

bladder cancer (NMIBC) will suffer a recurrence, and 6% to 40%

will progress to more advanced stages of the disease (5, 6). In

approximately 50% of MIBC patients, disseminated micro-

metastases lead to distant disease, even after radical cystectomy

and pelvic lymph node dissection. Advanced BLCA patients are

often treated with neoadjuvant chemotherapy and cisplatin-based

chemotherapy, as well as surgery (7). Recently, immune checkpoint

therapy has been shown to be a promising treatment for BLCA,

targeting PD-1, PD-L1, and CTLA4. For patients with metastatic or

unresectable BLCA, PD-1 inhibitors and PD-L1 inhibitors have

shown therapeutic benefit as a second-line treatment (8–10).

Nevertheless, like other cancers, this treatment may only be

beneficial to a small number of patients (11, 12). As a result,

novel medical tools and treatment modalities that can treat BLCA

patients are urgently needed.

Anoikis, a specific form of apoptosis, plays a crucial role in the

organism’s defense by preventing shed cells from re-attaching to

incorrect locations (13, 14). As the cells lose contact with the

extracellular matrix (ECM), it is triggered (15, 16). Initially

discovered in endothelial and epithelial cells, anoikis is associated

with tissue homeostasis and development (17). Currently, studies

have shown that anti-anoikis mechanisms play a pivotal role in

cancer development (18, 19). A number of molecular pathways and

tools have recently been identified that regulate anoikis resistance

and some downstream molecules, such as PI3K/Akt, ERK1/2,

MAPK, and Bcl-2 family, which have been considered to serve

crucial roles in anti-apoptotic and pro-survival (16, 20–24).

However, the molecular mechanisms and cellular features of

anoikis in BLCA are still unknown.
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In our study, the association between anoikis phenotypes and

prognosis , and tumor microenvironment (TME) were

comprehensively evaluated. Initially, the gene mutations and

expression levels of the candidate genes were analyzed, leading to

the identification of two distinct anoikis subgroups. Then, three

gene subtypes were classified according to differentially expressed

genes (DEGs) between two distinct anoikis phenotypes. Moreover,

the anoikis-related model was constructed, and we explored its

relationship with the prognosis, immune cell infiltration,

immunotherapy response, and antitumor drug sensitivity.

Additionally, the expression levels of three genes (PLOD1,

EHBP1, and CSPG4) were validated with immunohistochemistry

(IHC). Last but not least, the role of the hub gene PLOD1 was

investigated by further experimental verification. The results might

provide novel insights into targeted therapy for BLCA patients.
Materials and methods

Data acquisition

Gene expression data, copy number variation (CNV) data, somatic

mutation data, and clinicopathological data of BLCA patients were

obtained from the TCGA (https://portal.gdc.cancer.gov), including 19

normal samples and 412 tumor samples. The GSE13507 were

retrieved from the GEO (https://www.ncbi.nlm.nih.gov/geo/),

including 165 tumor samples. Based on previously published

literature, 434 anoikis-related genes (ARGs) were identified

(25, 26) (Supplementary Table S1).
Consensus clustering analysis of ARGs
in BLCA

The consensus clustering analysis was performed in accordance

with the ARG expression via the “ConsensusClusterPlus” R
frontiersin.org
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package, and different molecular subtypes were identified in BLCA

samples (27, 28). Principal component analysis (PCA) was utilized

to visualize the distribution of distinct subgroups. Then, the

Kaplan-Meier (KM) method was utilized to compare the

prognosis of distinct anoikis subgroups. Additionally, by utilizing

the “gsva” R package, gene set variation analysis (GSVA) was

performed to investigate the differences in biological processes.
Analysis of the correlation between BLCA
immune genome subtypes and
molecular characteristics

To calculate the scores of immune cells infiltrating, single-sample

gene set enrichment analysis (ssGSEA) was utilized. The differences in

HLA genes and immune checkpoints between distinct anoikis

subgroups were also evaluated. Moreover, to investigate the

differences in TME among anoikis subgroups, the stromal score,

immune score, ESTIMATE score and tumor purity were analyzed

via the ESTIMATE algorithm.
Gene consensus clustering analysis of
anoikis phenotype-associated DEGs

To identify anoikis phenotype-associated DEGs, “limma” R

package was utilized with adjusted P < 0.05 and |log2(FC)| ≥ 1.

Then, we carried out Gene Ontology (GO) and Kyoto Encyclopedia

of Genes andGenomes (KEGG) analyses in accordance with the DEGs.

Next, the univariate Cox was employed, and the candidate genes were

selected for the clustering analysis. The gene subgroups were eventually

constructed and the heatmap was mapped by combining the anoikis

subgroups, gene clusters and clinical characters of BLCA patients.
Identification of the anoikis-related model
and the nomogram

The BLCA patients in the TCGA were randomly separated into

two groups, including the training set (n = 202) and testing set (n =

202). Then, the DEGs among the gene clusters were subjected to the

univariate cox analysis, and P value of 0.05 was chosen as a cutoff. To

avoid overfitting, the LASSO regression analysis was utilized via the

“glmnet” R package. Moreover, multivariate Cox analysis was utilized

to select the candidate genes to establish the anoikis-related model. The

riskScore formula was as follows: riskScore = S (Expi * coefi) (EXpi:

gene expression level, coefi: coefficients). In accordance with the

median risk score obtained from the risk score, the patients were

divided into high-risk groups and low-risk groups. Next, the survival

curve and the ROC curve were utilized to validate the prognostic and

accuracy of the anoikis-related model in BLCA. According to the risk

score and predictive characteristics in BLCA, the “rms” R package was

utilized to perform the nomogram that could evaluate the overall

survival (OS) of BLCA patients. Calibration curves were made to show

the predictive power of our nomogram, and decision curve analysis

(DCA) was utilized to assess the clinical net benefit of BLCA (29, 30).
Frontiers in Immunology 03
Analysis of the immune landscape in BLCA

In BLCA, to further explore the association with immune cells

and the anoikis-related model, the spearman correlation analysis

was utilized via seven methods, including CIBERSORT,

CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ, and

XCELL. Moreover, the ssGSEA was utilized to evaluate the

activity of immune-associated pathways between two risk groups.

Additionally, the relationship between the expression of eight

immune checkpoints and anoikis-related model was analyzed.
Immunotherapy response and drug
susceptibility analysis

Immunophenoscore (IPS) and Tumor Immune Dysfunction

and Exclusion (TIDE) were utilized to predict immunotherapy

response (31). IPS can calculate z-scores according to 4

immunogenicity-associated cell types, and its data was

downloaded from the TCIA database (http://tcia.at/) (32). An

algorithm called TIDE was utilized to investigate distinct

mechanisms of tumor immune escape (33). In addition, the

IMvigor210 cohort was further utilized to assess the predictive

ability of our model for immunotherapy response (34, 35). To

investigate the differences in sensitivity predictions for common

chemotherapeutic agents between low- and high-risk groups in

bladder cancer (BLCA), the half-inhibitory concentration values of

the drugs were calculated using the ‘pRRophetic’ package (36, 37).
Cell lines and culture

The human urothelial carcinoma cells lines (T24, 5637, UM-

UC-3 and J82) and human normal uroepithelial cell lines (SV-

HUC1) were all purchased from ATCC (Virginia, USA) and

regularly screed for mycoplasma in the laboratory. All of these

cell lines were cultured in RPMI medium (Gibco, Grand Island,

USA) containing 10% fetal bovine serum (FBS, Gibco) and added

antibiotics penicillin and streptomycin at 1% final concentrations at

37°C in a 5% CO2 incubator.
SiRNAs and transfections

SiRNAs targeting PLOD1 and the control siRNA were

synthesized by ObiO Technology (Shanghai, China), the

sequences were listed in the Supplementary Table S2. The siRNA

transfection was performed using Lipofectamine 2000 (Invitrogen,

USA) according to the manufacturer’s instructions.
Cell Counting Kit-8 (CCK-8) Assay

For the cell viability assay, CCK-8 assays (Beyotime, Shanghai,

China) were performed. Cells with respective treatments were seeded

in 96-well plates at 4×103 cells/well cell concentration. After cell
frontiersin.org
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culture for 0 h, 24 h, 48 h, and 72 h, respectively, 10 mL CCK-8

solution was added to each well and incubated at 37°C for 2 h. Optical

density (OD) at 450 nm was measured for each well using a

microplate reader (Dojindo, Kumamoto, Japan).
Migration assay

To test the human urothelial carcinoma cell line (5637)

migration, 5637 (5 × 104 were resuspended in serum-free

medium and added to the upper chambers of transwell plates (8-

mm pore size). The medium containing 10% serum was added to the

lower chambers. After 48 h incubation at 37°C in a humidified

chamber with 5% CO2 membranes were rinsed by dH2O, and cells

remaining in the upper chamber were removed by a cotton swab.

Membranes were fixed and then stained with 0.5% crystal violet.

Cells that migrated to the lower chamber were counted.
Wound healing assay

Human urothelial carcinoma cells with respective treatments

were cultured in six-well plates at 37°C. A wound was created by

scratching the cell monolayer using the fine end of a 1 mL pipette

tip. Images of migrated cells were captured under microscopy at

indicated time points (0 h after wound scratching and 48 h after

wound scratching). The % of wound healing was calculated using

the formula below: wound healing (%) = (wound width at 0 h –

wound width at 48 h)/wound width at 0 h × 100%.
Colony formation assays

The treated human urothelial carcinoma cells were seeded into

6 well plates with 500 cells per well for colony formation. After two

weeks , the formed cel l colonies were fixed with 4%

paraformaldehyde for 10 minutes and stained with 0.5% (W/W)

crystal violet (diluted in phosphate buffered brine, PBS) for

30 minutes.
Clinical specimens

BLCA and adjacent tissues were acquired from patients who

underwent radical surgery from The First Affiliated Hospital of

Nanjing Medical University, and informed consent was signed from

all patients included in this study before the surgery. The study was

permitted by the Ethics Committee of The First Affiliated Hospital

of Nanjing Medical University.
Immunohistochemistry

In the immunostaining of tissues, the primary antibodies anti-

PLOD1(#38770, 1:100) and anti-EHBP1(#93614, 1:100) were

purchased from Novus, anti-CSPG4(#43916T, 1:50) was
Frontiers in Immunology 04
purchased from Cell Signaling Technology. The specific

experimental procedures refer to the previous literature (38).
Immunoblotting

The cell lysates were prepared and the same amounts of

proteins were subjected to SDS-PAGE and transferred to

polyvinylidene fluoride membrane by electroblotting. After

blocking, the membrane was incubated with the corresponding

antibody. The second antibody was horseradish peroxidase (HRP)

combined with goat IgG against IgG (Santa Cruz Biotechnology).

Imprinting is formed with an ECL substrate (Pierce) and exposed to

X-ray film for analysis by Image.lab3.0 software.
Statistical analysis

In our study, all statistical analyses were employed with the R

software (version 4.2.1) and GraphPad Prism software (9.1.0).

Statistical significance was set at P < 0.05.
Results

Identification of candidate anoikis-
related genes

In our study, by utilizing “limma” R package, differences in gene

expression were analyzed. 51 ARGs with down-regulated, and 68

ARGs with up-regulated were obtained with |log2FC| > 1 (Figure 1A,

Supplementary Table S3). Then, univariate Cox analysis indicated

that 17 of 119 differentially expressed ARGs were concerned to OS (P

< 0.01) (Figure 1B). Next, the network plots of 17 ARGs interactions

and the prognostic value of BLCA patients were presented

(Figure 1C). Meanwhile, PPI network uncovered a close linkage

among most candidate ARGs (Figure 1D). By utilizing “pheatmap”

R package, the heatmap of 17 ARGs were plotted (Figure 1E).

Moreover, mutation data demonstrated that 76 (18.36%) of BLCA

samples had ARGs mutations, of which ADAMTSL1 (4%), and GLI2

(4%) had the highest mutation frequency (Figure 1F). The frequency

of copy number variations (CNVs) in 17 candidate apoptotic-related

genes (ARGs) was also investigated. Notably, RAD9A exhibited the

most significant increase in CNVs, while CRYAB showed the most

substantial CNV deletion (Figure 1G).
Identification of anoikis subgroups in BLCA

To fully explore the expression pattern of 17 ARGs in BLCA,

unsupervised clustering analysis was utilized. The results indicated

that K = 2 was determined to be the best cluster, and 404 BLCA

patients fell into ARGcluster A (n = 213) and ARGcluster B (n =

191) (Figures 2A–C; Supplementary Table S4). PCA analysis

manifested the remarkable differences in the anoikis transcription

profiles between ARGcluster A and ARGcluster B (Figure 2D). The
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differences in prognosis between two subtypes were identified by the

OS analysis (P < 0.001) (Figure 2E). The heatmap indicated

significant differences in clinicopathological characteristics,

including tumor stage (P < 0.001) and grade (P < 0.001) between

two subtypes (Figure 2F).
Characteristics of the tumor
microenvironment in anoikis subgroups

To explore the biological processes in the anoikis subgroups,

GSVA analysis was conducted. The results indicated that ARG cluster

A was significantly enriched in pathways related to calcium signaling,

vascular smooth muscle contraction, ECM-receptor interaction,

arrhythmogenic right ventricular cardiomyopathy, hypertrophic

cardiomyopathy, dilated cardiomyopathy, melanoma, focal

adhesion, regulation of the actin cytoskeleton, prion diseases,

cytokine-receptor interaction, and hematopoietic cell lineage

(Figure 3A).We further assessed the differences in immune cell

infiltration between two anoikis subgroups, and the infiltration

levels of most cells, such as activated CD4 T cell, activated

dendritic cell, immature dendritic cell, macrophage, and type 1 T

helper cell were higher in the ARGcluster B than those in the

ARGcluster A. However, CD56 dim natural killer cells and

monocyte had higher infiltration in ARGcluster B than those in

ARGcluster A (Figure 3B). Moreover, the expression levels of HLA

genes were found to differ between two anoikis subgroups.

Surprisingly, all of the HLA genes showed higher expression in

ARGcluster B than in ARGcluster A (Figure 3C). We also observed

that except SIGLEC15, other vital immune checkpoints, such as
Frontiers in Immunology 05
TIGIT, PDCD1LG2, PDCD1, LAG3, HAVCR2, CTLA4, and

CD274 were all lowly expressed in the ARGcluster A than in the

ARGcluster B (Figure 3D). Regarding the TME score, patients in

the ARGcluster B have a lower tumor purity, whereas patients in the

ARGcluster A had a lower stromal score, immune score, and estimate

score, suggesting that BLCA patients in the ARGcluster A had lower

immune activity (Figures 3E-H).
Identification of gene clusters based on
anoikis phenotype-associated DEGs

Although consensus clustering algorithm was utilized to identify

two anoikis subgroups in BLCA, the potential biological behavior and

genetic alterations of two ARG clusters remained clarified. Finally, 446

anoikis phenotype-associated DEGs were obtained (Supplementary

Table S5). Go results demonstrated an association with external

encapsulating structure organization, extracellular structure

organization, collagen-containing extracellular matrix, collagen

trimer, extracellular matrix structural constituent, glycosaminoglycan

binding, etc (Figures 4A-C; Supplementary Table S6). KEGG showed

an association with ECM-receptor interaction, protein digestion and

absorption, viral protein interaction with cytokine and cytokine

receptor, focal adhesion, cytokine-cytokine receptor interaction, etc

(Figure 4D; Supplementary Table S6). Then, univariate Cox was

employed to screen out 446 genes related to OS in BLCA, and 24

genes were eventually identified at P < 0.001 (Supplementary Table S7).

According to the transcriptional levels of these 24 genes in BLCA,

consensus clustering analysis was performed to classify BLCA patients

into three gene subtypes (geneCluster A, geneCluster B and
FIGURE 1

Characteristics of candidate ARGs in BLCA. (A) The volcano plot of differentially expressed ARGs in normal and tumor samples in the TCGA cohort.
(B) The forest plot showed 17 of 119 differentially expressed ARGs concerned with OS (P < 0.01). (C) The network plot of interactions and the
prognosis of BLCA among 17 ARGs. (D) The PPI network uncovered a close linkage among most candidate ARGs. (E) The heatmap of 17 candidate
ARGs. (F) The mutation prevalence of 17 ARGs in BLCA. (G) The frequency of CNVs of 17 candidate ARGs in BLCA. ARGs, anoikis-related genes;
BLCA, Bladder cancer; OS, overall survival. *P<0.05; ***P<0.001.
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geneCluster C) (Supplementary Figure S1, Supplementary Table S8).

Survival analysis indicated that patients in geneCluster C had the worst

OS among three clusters, and patients in geneCluster A demonstrated a

superior survival outcome (P < 0.001) (Figure 4E). Additionally, anoikis

subgroups, gene clusters and clinical characters of BLCA patients were

combined to map the heatmap, and the different expression patterns

were found among three clusters (Figure 4F). Furthermore, most of the

expression of 17 candidate ARGs were significantly differed among

three gene clusters (Figure 4G).
Frontiers in Immunology 06
Construction and validation of anoikis-
related model in BLCA

In our study, to further quantify the risk of each BLCA patient, an

anoikis-related model was constructed based on gene cluster-related

DEGs. First, 86 DEGs were identified among three gene subtypes

(Supplementary Table S9). Then, the “caret package” in R was utilized

to randomize 404 BLCA patients into the training set (n = 202) and

the testing set (n = 202) at a ratio of 1:1 (Supplementary Tables S10,
FIGURE 2

Identification of potential anoikis subgroups in BLCA. (A) Two anoikis subgroups (k = 2) and their correlation area are defined by consensus matrix
heatmap. (B) The consensus clustering CDF. (C) The analysis of the variation in area under the CDF region. (D) PCA indicated the different
distributions between the potential anoikis subgroups. (E) Survival analyses for the ARGcluster A (n = 213) and ARGcluster B (n = 191) cohorts.
(F) Differences in clinical characteristics and expression levels of candidate ARGs between ARGcluster A and ARGcluster (B) BLCA, Bladder cancer;
CDF, cumulative distribution function; ARGs, anoikis-related genes. ***P < 0.001.
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S11). Next, in the training set, univariate Cox, LASSO and

multivariate Cox analyses were utilized to build an appropriate

model in accordance with the 86 DEGs (Supplementary Figures

S2A-C). Finally, three genes, including EHBP1, CSPG4, and PLOD1

were identified to construct the anoikis-related model, and the risk

score of each BLCA patient was calculated based on the formula: Risk

score = 0.2554*expression of EHBP1 expression + 0.2014*expression

of CSPG4 + 0.4737*expression of PLOD1 (Supplementary Figure

S2C). According to the Sankey diagram, there was a correlation

between anoikis subgroups and gene clusters, as well as risk scores.

Moreover, we found a significant difference in the risk score of

anoikis subgroups. The previous analysis demonstrated the more

prolonged OS in the ARGcluster A, and the model demonstrated the

lower risk scores in the ARGcluster A, which further showed the

excellent and reliable performance of anoikis-related model in BLCA

(Supplementary Figure S3).

Next, in accordance with the median risk score, BLCA patients

were divided into high- and low-risk groups. As shown in Figure 5A,

KM survival analysis indicated that patients in the high-risk group

had worse OS than those in the low-risk group (P < 0.0001). The

distribution plot of the risk score uncovered that the high-risk group
Frontiers in Immunology 07
had worse survival status and shorter survival time (Figure 5B). The

AUCs of 1-, 3-, and 5-years were 0.67, 0.70, and 0.67, respectively

(Supplementary Figure S4A). To validate the anoikis-related model in

BLCA, the testing set and the entire set (TCGA) were utilized

internally and GSE13507 was utilized externally. Similar results

were also obtained in our study, which further indicated that the

anoikis-related model had the excellent power to predict prognosis of

BLCA (Figures 5C-H; Supplementary Figures S4B-D).

Further, the heatmap depicted the relevance of anoikis-related

model and clinicopathological characteristics, which suggested that

grade and stage were significantly relevant to the model (both P <

0.001) (Figure 5I). We also found that the proportions of age > 65,

female, high grade, and stage III and stage IV patients in the high-risk

group were significantly higher than those of the low-risk group

(Figures 5J-M). To prove the independence of risk score, Cox

regression analysis was conducted in the entire TCGA set. As

shown in Figures 5N, O, in accordance with the results of

univariate (HR = 1.405; 95%CI = 1.267-1.558; P < 0.001) and

multivariate (HR = 1.362; 95%CI = 1.228-1.512; P < 0.001)

analyses, our risk score could be independent predictor in BLCA.

In addition, to make the anoikis-related model easy to employ in
FIGURE 3

Correlations of the TME and two different anoikis subtypes. (A) GSVA of biological processes between two distinct anoikis subtypes. (B) The
abundance of 23 infiltrating immune cells between two distinct anoikis subtypes. (C) The expression levels of HLA genes between two anoikis
subgroups. (D) The expression levels of immune checkpoints between two anoikis subgroups. (E-G) The analyses of (E) stromal score, (F) immune
score, (G) ESTIMATE score, and (H) tumor purity between two anoikis subgroups. TME, tumor microenvironment; HLA, Human Leukocyte Antigen.
**P < 0.01; ***P < 0.001.
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clinic, the nomogram was created by integrated age, stage and the

riskScore (Figure 6A). Surprisingly, the calibration plots exhibited

great consistency between the predicted and actual 1-, 3-, and 5-year

OS (Figures 6B-D). Subsequently, the clinical benefits of age, stage,

riskScore and nomogram were assessed, and the DCA illustrated that

the nomogram led to better benefit than other factors (Figures 6E-G).
The anoikis-related model significantly
associated with immune status
and pathways

The results of GSEA uncovered that the top five pathways were

cytokine receptor interaction, ECM receptor interaction, focal

adhesion, regulation of actin cytoskeleton, and systemic lupus

erythematosus in the high-risk group, and drug metabolism

cytochrome P450, metabolism of xenobiotics by cytochrome 450,

oxidative phosphorylation, Parkinsons disease, and ribosome in the

low-risk group (Figures 7A, B). To investigate the correlation

between immune cell infiltration and risk score, CIBERSORT,

CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ,

TIMER, and XCELL were applied. For instance, using the

CIBERSORT algorithm, we found that the risk score was

negatively correlated with memory B cells, plasma B cells, CD8+

T cells, naive CD4+ T cells, activated myeloid dendritic cells,
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follicular helper T cells, regulatory T cells (Tregs), and

monocytes. In contrast, it was positively correlated with resting

and activated memory CD4+ T cells, M0, M1, and M2

macrophages, resting mast cells, and neutrophils (Figure 7C,

Supplementary Table S12). Additionally, the relationship between

13 immune-related pathways and the risk score was explored by

ssGSEA. We found that except the type II IFN response, other

pathways, such as type I IFN response, parainflammation,

inflammation promoting, cytolytic activity and so on were all

improved in the high-risk group (Figure 7D). Furthermore, the

expression of immune checkpoints was analyzed, and Figure 7E

illustrated that CD274, HAVCR2, PDCD1LG2, TIGIT, PDCD1,

LAG3, and CTLA4 were highly expressed in the high-risk group,

whereas SIGLEC15 was lowly expressed. The distribution of

somatic mutations between the high and low risk groups were

also analyzed. The top ten mutated genes in two risk groups were

TP53, TTN, KMT2D, MUC16, ARID1A, KDM6A, PIK3CA,

SYNE1, KMT2C, and RYR2 (Supplementary Figure S5).
Analyses of immunotherapy response and
chemotherapeutic drugs

TIDE is a newly predictor for assessing the response of tumor

immunotherapy. In our study, the results indicated that BLCA
FIGURE 4

Identification of gene clusters in accordance with the anoikis phenotype-associated DEGs in BLCA. (A-C) GO enrichment analyses based on the
anoikis phenotype-associated DEGs. (D) KEGG enrichment analyses based on the anoikis phenotype-associated DEGs. (E) KM survival curves for
three gene subtypes in BLCA. (F) Heatmap indicating the association between geneCluster and clinicopathologic characteristics. (G) Expression
levels of 17 candidate ARGs in three gene clusters. DEGs, differentially expressed genes; BLCA, Bladder cancer; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; KM, Kaplan-Meier. ***P < 0.001.
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patients in the high-risk group had higher TIDE scores than those

in the low-risk group, suggesting a greater likelihood of tumor

immune escape in the high-risk group (P = 0.03). To further

estimate the prediction of immunotherapy response of our model,

the immunotherapy cohort (IMvigor210 cohort) was utilized. As

shown in Figure 8A, the frequency of partial response (PR)/

complete response (CR) was higher in the low-risk group than

that in the high-risk group (Figure 8B). Moreover, the survival rate

demonstrated a significant difference between two risk groups in the

IMvigor210 cohort (P = 0.038) (Figure 8C). However, the risk

scores between the immunotherapy-responsive group and the

immunotherapy non-responsive group had no statistical

difference (P = 0.28) (Figure 8D). IPS is also a biomarker to

assess the immunotherapy response of anti-PD1 and anti-CTLA4

therapies. The results demonstrated that the group of the low-risk

group had a significantly higher IPS (ips_ctla4_neg_pd1_neg and

ips_ctla4_pos_pd1_neg) compared to the high-risk group,

suggesting that BLCA patients with the low-risk had more

sensitivity to immunotherapy. However, there was no significant

difference between the high-risk and low-risk groups
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in ips_ctla4_neg_pd1_pos score, and ips_ctla4_pos_pd1_pos

score (Figures 8E-H).

To evaluate whether the risk score and chemotherapeutic

efficacy were associated with bladder cancer (BLCA) treatment,

we examined the relationship between the risk score and eight

common chemotherapeutic agents, including gefitinib, sunitinib,

cisplatin, vinorelbine, vinblastine, gemcitabine, vorinostat, and

sorafenib. The results showed that the IC50 values for cisplatin

(P < 0.001), sunitinib (P < 0.001), and vinblastine (P = 0.047) were

significantly lower in the high-risk group compared to the low-risk

group. However, other chemotherapeutic agents had no significant

differences (Figures 8I-P).
Verification of the crucial genes in the
anoikis-related model

In our study, three crucial genes (PLOD1, EHBP, and CSPG4)

were measured by immunohistochemistry in BLCA and adjacent

tissues. The protein level of PLOD1 was higher in BLCA than in the
FIGURE 5

Construction and validation of anoikis-related model in BLCA. (A) Kaplan-Meier analysis of the training set. (B) The distribution of risk score and the
survival status of BLCA patients in the training set. (C) Kaplan-Meier analysis of the testing set. (D) The distribution of risk score and the survival status of
BLCA patients in the testing set. (E) Kaplan-Meier analysis of the TCGA set. (F) The distribution of risk score and the survival status of BLCA patients in the
TCGA set. (G) Kaplan-Meier analysis of the GSE13507. (H) The distribution of risk score and the survival status of BLCA patients in the GSE13507. (I) The
heatmap showed the relevance of anoikis-related model and clinicopathological characteristics. (J-M) The differences in age, gender, grade, and stage
between the high- and low-risk groups. (N) The univariate Cox analyses of risk score and clinicopathological variables with OS. (O) The multivariate Cox
analyses of risk score and clinicopathological variables with OS. BLCA, Bladder cancer; OS, overall survival. ***P < 0.001.
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paracancerous tissue, whereas the protein levels of EHBP and CSPG4

were significantly decreased in BLCA (Figures 9A-F). Next, PLOD1

was chosen for further functional validation. Western blotting

indicated that protein expressions of PLOD1 were upregulated in

5637 (P < 0.01), T24 (P < 0.05), and U3 (P < 0.05) cells than in the

SV-HUC1 cells (Figure 10A). Then, we knocked down PLOD1 in 5637

cells by siRNA, and western blotting confirmed the knockdown

efficiency of PLOD1 (Figure 10B). Besides, siRNA1 and siRNA2

were chosen for further functional experiments. CCK-8 and colony

formation assays demonstrated that downregulation of PLOD1

suppressed the proliferative ability of the 5637 cells (Figures 10C, D).

Moreover, wound healing and transwell assays indicated that
Frontiers in Immunology 10
knockdown of PLOD1 inhibited the migration of 5637 cells

(Figures 10E, F). In all, downregulation of PLOD1 in 5637 cells

could attenuate cell proliferation and migration.
Discussion

As a commonly occurring urinary tumor, BLCA originates

primarily from the urothelium (39). Treatment for bladder cancer

has, however, made limited progress. It is common to remove the

tumor through the transurethral resection of bladder tumor

(TURBT) in NMIBC, but there is a high chance of recurrence,
FIGURE 6

Identification of a nomogram for predicting OS in BLCA. (A) The nomogram for predicting 1-year, 3-year, and 5-year survival rates for BLCA patients.
(B-D) Calibration curves of nomogram. (E-G) The DCA of the nomogram, risk score, age and stage.
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with a 31-78% recurrence risk after 5 years (40). The five-year

survival rate for radical cystectomy in MIBC is only 50% (41).

Therefore, identifying biomarkers for BLCA is crucial for

developing new treatment strategies, many studies have

confirmed this. For example, basic helix-loop-helix ARNT like 2

(ARNTL2) facilitates the progression of BLCA via activating ENO1-

mediated glycolysis in a SLC31A1-independent and -dependent

manner (42). Moreover, studies have clarified that the relationship

between the tumor microenvironment (TME) and cellular diversity

in bladder cancer (BLCA) progression. Potential biomarkers were

predicted by RNA sequencing, and prognosis models of BLCA were

constructed to improve prognosis accuracy (43). In this context, in-

depth analysis of public data has become a valuable resource for

guiding research (44–46).

When ECM attachment is lacking or when cells do not adhere

to appropriate locations, anoikis occurs (47). The study has

reported that anoikis evasion facilitates metastasis and invasion of

tumors (48). Evidence has shown that anoikis plays a vital role in

mechanisms of progression of tumors, such as head and neck

squamous cell carcinoma, breast cancer, gliomas and

hepatocellular carcinoma (49–52). However, a direct link between

anoikis and BLCA has not yet been established. Therefore, we have

made a number of efforts to investigate the relationship between

anoikis and prognosis and treatments in BLCA.

In our research, we presented a comprehensive view of the

differential expression of ARGs between tumors and normal tissues

in BLCA, as well as the implications for altered immune function.

Subsequently, 17 candidate apoptotic-related genes (ARGs) were

identified, and potential anoikis subgroups were distinguished

based on the expression of these candidate ARGs. Our analysis

demonstrated that ARGcluster A had better survival, lower levels of

immune infiltration, lower expression levels of HLA genes, lower

expression levels of TIGIT, PDCD1LG2, PDCD1, LAG3, HAVCR2,

CTLA4, and CD274, and lower ESTIMATE scores, immune scores,

and stromal scores than ARGcluster B. The ARGcluster B had lower
Frontiers in Immunology 11
tumor purity than ARGcluster A. The association between low

tumor purity and poor prognosis has been well-documented in

previous studies (53, 54). Taken together, ARGcluster B exhibited a

stronger immunosuppressive TME. The tumor cells within the

immunosuppressive TME were capable of evading the immune

cells and were highly malignant, which led to a shorter OS (55). In

our study, BLCA patients in the ARGcluster B had a poorer OS,

which was consistent with this observation. The complex molecular

events through which anoikis promotes metastasis involve a

combination of pro-metastatic properties acquired by cancer cells

and a tumor microenvironment that facilitates or supports

metastasis (56).

Moreover, 446 anoikis phenotype-associated DEGs were

obtained, and biological pathways, such as ECM-receptor

interaction, cytokine-cytokine receptor interaction, and protein

digestion and absorption, were explored based on these DEGs.

We also distinguished the gene subtypes via the consensus

clustering analysis. The geneCluster C group had the worst OS

among three clusters, while the geneCluster A group had the best.

Besides, most of the expression of candidate ARGs significantly

differed among three clusters, indicating that our gene subtypes

were closely related to the anoikis phenotypes.

Then, 404 BLCA patients were randomly divided into the training

set (n = 202) and the testing set (n = 202). Next, the effective and robust

anoikis-related model in BLCA was built via the univariate Cox,

LASSO and multivariate Cox analyses, and its predictive power was

revealed. In our study, a robust anoikis-related model was developed

based on the expression levels of three genes: EHBP1, CSPG4, and

PLOD1.The presence of these three genes has been linked to a variety

of malignant tumors. For example, a genome-wide association study

has linked EHBP1 to aggressive prostate cancer (57). Ghalali et al.

observed that statin-induced P2X7 signaling is linked to aggressive

prostate cancer via EHBP1. When P2X7 signaling was activated,

EHBP1 translocation was rapid, and EHBP1 knockdown prevented

both atorvastatin-induced inhibitions of invasion and nuclear depletion
FIGURE 7

The relationship between the anoikis-related model and the immune status. (A, B) GSEA indicates the functional pathways in the high- and low-risk
groups. (C) The Spearman correlation analysis of immune components and the risk score based on different algorithms. (D) The heatmap showing
the association with the risk-scores and immune-related functions. (E) The expression levels of immune checkpoints between high- and low-risk
groups. ***P<0.001.
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of pAkt (58). The CSPG4 gene had been described as a potential target

for cancer immunotherapy, and it was known to influence various

immune cell subsets, indicating a potential role in immunotherapy

efficacy (59). There is a strong correlation between CSPG4 expression

and poor prognosis in aggressive thyroid cancers. An enormous

number of CSPG4 peptides eluted by HLA-DQ were identified in

ATC, indicating the potential of CSPG4 as an immunotherapeutic

target (60). A high level of PLOD1 expression has been documented in

malignant tumors, such as BLCA, gastric cancer, glioblastoma,

colorectal cancer, and esophageal squamous cell carcinoma. Evidence

suggests that PLOD1 overexpression may contribute to increased

invasiveness and the mesenchymal subtype (MES) of glioblastoma,

indicating that PLOD1 could serve as a potential treatment target for

mesenchymal glioblastoma, and possibly for all types of glioblastoma.

Evidence suggests that PLOD1 overexpression may contribute to

increased invasiveness and the mesenchymal subtype (MES) of
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glioblastoma, indicating that PLOD1 could serve as a potential

treatment target for mesenchymal glioblastoma, and possibly for all

types of glioblastoma (61). Chen et al. found that genes in the PLOD

family were involved in immune responses and tumor-infiltrating

immune cells in BLCA (62). Based on these results, these three genes

might be utilized in the diagnosis and treatment of tumors.

Kaplan-Meier survival analysis showed that BLCA patients in

the high-risk group had significantly poorer overall survival (OS)

compared to those in the low-risk group. Similar results were also

confirmed in the three validation datasets (the testing set, the entire

set, and GSE13507). Our risk score also had a significant association

with the clinicopathological characteristics (tumor grade and tumor

stage). Moreover, the anoikis-related model was proved to be

independent predictor in BLCA in accordance with the results of

Cox regression analyses. The nomogram is widely utilized as a

survival prediction tool in various tumors (63). Therefore, the
FIGURE 8

The relationships between the risk score and the tumor immunotherapy and chemotherapeutic sensitivity. (A) The TIDE scores between the high- and low-
risk groups. (B) The proportion of BLCA patients with response to immunotherapy in two risk groups in the IMvigor210 cohort. (C) Survival analyses for BLCA
patients with high or low risk score in the IMvigor210 cohort. (D) Differences in risk scores between the responders and non-responders in the IMvigor210
cohort. (E-H) Differences in the IPS between high- and low-risk groups stratified by CTLA4 and PD-1. (I-P) Relationships between the risk score and the
chemotherapeutic sensitivity. TIDE, tumor immune dysfunction and exclusion; BLCA, bladder cancer. IPS, immunophenoscore.
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nomogram was developed by integrating age, stage and the risk

score to facilitate the use of anoikis-related models in clinics. The

calibration plots indicated that the nomogram model was highly

accurate at predicting OS of patients, and DCA illustrated that the

nomogram model yielded a better benefit in BLCA. Our new

nomogram may help clinician predict survival status of BLCA
Frontiers in Immunology 13
patients, improve risk stratification, and provide more

personalized treatment than previously possible. Thanks again for

your sincere help and reminder. In all, our anoikis-related model

provided excellent predictions of BLCA patient prognoses.

The relationships between the anoikis-related model and immune

status and pathways were also explored. A variety of algorithms were
FIGURE 9

Verification of the three crucial genes in the anoikis-related model. (A-C) Representative images of immunohistochemistry staining for (A) PLOD1,
(B) CSPG4, and (C) EHBP1 in tumor and peritumor tissue. (D-F) The staining intensity of (D) PLOD1, (E) CSPG4, and (F) EHBP1 in tumor and
peritumor tissue. *P<0.05.
FIGURE 10

Functional experiments were performed to explore the biological significance of PLOD1. (A) The protein levels of PLOD1 were analyzed by the
western blot in 5637, T24, U3, J82, and SV-HUC1 cells. (B) PLOD1 knockdown efficiency was evaluated by the western blot. (C, D) The CCK-8 and
colony formation assays demonstrated that down-regulation of PLOD1 inhibited cell proliferation. (E) Wound-healing assays detected the effects of
knockdown of PLOD1 on cell migration. (F) The effect of knockdown of PLOD1 on BLCA cell migration based on transwell assays. *P < 0.05, **P <
0.01, ***P < 0.001.
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utilized to investigate associations with the immune cell infiltration and

risk score. We found that some immune cells, such as B cell memory,

myeloid dendritic cell activated, T cell follicular helper, monocyte, and

myeloid dendritic cell activated were negatively correlated with our

riskScore. However, other immune cells, such as T cell CD4+ memory

resting, T cell CD4+ memory activated, macrophage M0, mast cell

resting, and so on were positively correlated with our riskScore. The

results of ssGSEA demonstrated that our risk score also had significant

association with 13 immune-related pathways. A common form of

intravesical therapy is BCG, and several mechanisms are thought to

trigger local immune response following intravesical BCG

administration, such as increased levels of urinary cytokine, elevated

expression of interferon gamma, and inhibition of tumor growth (64,

65). Recently, the effects of immunotherapy in BLCA have been

expanding. The use of ICIs has grown rapidly due to the approval of

second-line therapy for BLCA patients have failed platinum-based

chemotherapy before (66). Immunotherapy is increasingly being used

to treat advanced bladder cancer (BLCA), particularly through the use

of PD-L1 inhibitors, which suppress immune evasion by blocking the

interaction between PD-1 and PD-L1 (67). It is widely used to predict

disease outcomes in patients treated with ICIs based on TIDE score,

which measures tumor immune escape at different levels of cytotoxic T

lymphocytes (68, 69). Our study demonstrated that the TIDE scores of

BLCA patients in the high-risk group were higher than those in the

low-risk group. IPS is another biomarker to assess the immunotherapy

response. According to the results, in comparison with the high-risk

group, the low-risk group had a significantly higher IPS. IPS scores that

are high are associated with greater immunogenicity, whereas TIDE

scores that are high are associated with more likely tumor immune

escape (69, 70). As a result, patients with high IPS scores and low TIDE

scores have a better response to ICIs. In our study, low-risk BLCA

patients had lower TIDE scores and higher IPS scores, indicating that

low-risk patients were highly immunogenic, and were more sensitive to

ICIs treatment. Moreover, we examined the difference in sensitivity

between high-risk and low-risk groups for conventional chemotherapy

drugs. Patients with higher risk scores reacted more strongly to

gemcitabine, vincristine, and sorafenib.

Our study also has some shortcomings. First, in light of the

preliminary validation of the bioinformatics analysis in BLCA,

additional validation is required in a large cohort. Next, we

investigated the biological functions of PLOD1 in BLCA, and

further cell and animal experiments are needed to elucidate the

underlying mechanisms of PLOD1’s role. Nevertheless, A

comprehensive study was conducted on the prognostic and

immunological significance of anoikis in BLCA.
Conclusions

In summary, our study illustrated the landscape of candidate ARGs

in BLCA. Two definite anoikis subgroups were identified, and

ARG cluster B was characterized by an immunosuppressive

microenvironment, and worse OS. Moreover, the anoikis-related

model was constructed to predict prognosis, and the relationships

between the risk score and clinical characteristics, immune cell
Frontiers in Immunology 14
infiltration, immunotherapy response, and antitumor drug sensitivity

were investigated, which might help to understand the tumor features

and guide individual immunotherapy strategies. Last but not least, the

knockdown of PLOD1 could suppress proliferation and invasion

abilities in BLCA cell lines.
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SUPPLEMENTARY FIGURE 1

Consensus clustering analysis performed to classify patients into different gene

subtypes. (A) Three subgroups (k = 3) and their correlation area defined by

consensus matrix heatmap. (B) The consensus clustering CDF. (C) The analysis of
the variation in area under the CDF region. CDF, cumulative distribution function.

SUPPLEMENTARY FIGURE 2

(A) The forest plot of the univariate Cox in the training set. (B) The cross-
validation fit plot of LASSO Cox analysis in the training set. (C) The coefficients

of three genes measured by the multivariate Cox in the training set.

SUPPLEMENTARY FIGURE 3

(A) Sankey plot indicated the subtype distributions in risk groups with different
risk scores and survival status. (B) Differences in risk scores between

anoikis subtypes.

SUPPLEMENTARY FIGURE 4

ROC curves for predicting the 1-, 3-, and 5-year ROC curves in the (A)
training, (B) testing, (C) TCGA, and (D) GSE13507 sets. ROC, receiver

operating characteristic.

SUPPLEMENTARY FIGURE 5

The waterfall plot of somatic mutation features established with low- and

high-risk groups.

SUPPLEMENTARY FIGURE 6

Original Western blot images of Figure 10A.

SUPPLEMENTARY FIGURE 7

Original Western blot images of Figure 10B.
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