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Background: Immune checkpoint inhibitors (ICIs) treatment have shown high

efficacy for about 15 cancer types. However, this therapy is only effective in 20-

30% of cancer patients. Thus, the precise biomarkers of ICI response are an

urgent need.

Methods: We conducted a prospective observational study of the prognostic

potential ofseveral existing and putative biomarkers of response to

immunotherapy in acohort of 85 patients with lung cancer (LC) receiving PD-1

or PD-L1 targeted ICIs. Tumor biosamples were obtained prior to ICI treatment

and profiled by whole exome and RNA sequencing. The entire 403 putative

biomarkers were screened, including tumor mutation burden (TMB) and number

of cancer neoantigens, 131 specific HLA alleles, homozygous state of 11 HLA

alleles and their superfamilies; four gene mutation biomarkers, expression of 45

immune checkpoint genes and closely related genes, and three previously

published diagnostic gene signatures; for the first time, activation levels of 188

molecular pathways containing immune checkpoint genes and activation levels

of 19 pathways algorithmically generated using a human interactome model

centered around immune checkpoint genes. Treatment outcomes and/or

progression-free survival (PFS) times were available for 61 of 85 patients with
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LC, including 24 patients with adenocarcinoma and 27 patients with squamous

cell LC, whose samples were further analyzed. For the rest 24 patients, both

treatment outcomes and PFS data could not be collected. Of these, 54 patients

were treated with PD1-specific and 7 patients with PD-L1-specific ICIs. We

evaluated the potential of biomarkers based on PFS and RECIST treatment

response data.

Results: In our sample, 45 biomarkers were statistically significantly associated

with PFS and 44 with response to treatment, of which eight were shared. Five of

these (CD3G and NCAM1 gene expression levels, and levels of activation of

Adrenergic signaling in cardiomyocytes, Growth hormone signaling, and

Endothelin molecular pathways) were used in our signature that showed an

AUC of 0.73 and HR of 0.27 (p=0.00034) on the experimental dataset. This

signature was also reliable (AUC 0.76, 0.87) for the independent publicly available

LC datasets GSE207422, GSE126044 annotated with ICI response data and

demonstrated same survival trends on independent dataset GSE135222

annotated with PFS data. In both experimental and one independent datasets

annotated with samples’ histotypes, the signature worked better for lung

adenocarcinoma than for squamous cell LC.

Conclusion: The high reliability of our signature to predict response and PFS after

ICI treatment was demonstrated using experimental and 3 independent datasets.

Additionally, annotated molecular profiles obtained in this study were made

publicly accessible.
KEYWORDS

immune checkpoint therapy, pembrolizumab, ipilimumab, nivolumab, non-small cell
lung cancer, RNA sequencing, gene expression biomarker, personalized medicine
Introduction

Immunotherapy by immune checkpoint inhibitors has changed

the treatment landscape for many cancers in recent years. Unlike

chemotherapy and targeted therapies, which target tumor cells

directly, immunotherapy stimulates the patient's immune

response or enhances the patient's ability to fight tumor cells. ICIs

target regulators of immune checkpoints such as cytotoxic T-

lymphocyte associated protein 4 (CTLA4), programmed cell

death-1 (PD-1), or programmed death ligand 1 (PD-L1). Since

the FDA approved a CTLA-4 inhibitor (ipilimumab) in 2011, six
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other ICIs have been approved by the FDA (1). Of these, three are

PD-1 inhibitors (nivolumab, pembrolizumab, and cemiplimab) and

three are PD-L1 inhibitors (atezolizumab, avelumab, and

durvalumab). These ICIs are widely used in the daily practice of

oncologists in the treatment of about 15 tumor types (2) and have

shown high efficacy.

However, ICI treatment is only effective in 20-30% of cancer

patients (3). Most patients do not respond to treatment or are

resistant to treatment, which may be due to low infiltration by T

cells, low tumor mutational burden (TMB), and poor antigenic

presentation (3). Given the high cost of immunotherapy, effective

identification and selection of potential responders has become a

clinical challenge for the effective use of ICIs (4). There is an urgent

need to develop and validate more accurate biomarkers to aid in the

selection of patients for treatment with ICIs.

Several different types of predictive biomarkers have been

developed to optimize the use of immunotherapy, including

positive and negative predictive biomarkers to predict response or

resistance to ICIs (5, 6), and side effect biomarkers to predict

immune-related toxicity (7). Of these, three FDA-approved

positive predictive biomarkers, PD-L1, microsatellite instability/
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defective mismatch repair (MSI/dMMR), and tumor mutational

burden (TMB), are the most validated and clinically used (4). The

use of these three FDA-approved biomarkers has played an

important role in facilitating proper selection of patients for

ICI treatment.

PD-L1 was the first prognostic biomarker for non-small cell lung

cancer (NSCLC) approved by the FDA in 2015. PD-1 and PD-L1

belong to the family of immune checkpoint proteins. Their interaction

plays a key role in regulating the immune system, ensuring that it is

activated only at the right time to minimize excessive inflammation

and autoimmune responses. PD-L1 is expressed on a variety of normal

and immune cells such as dendritic cells, activated T and B

lymphocytes and macrophages. However, cancers have also adopted

this PD-1/PD-L1 interaction mechanism by expressing PD-L1 on the

surface of tumor cells. Binding of tumor PD-L1 to PD-1 on T cells

results in attenuation or inhibition of T cell activity, which helps

tumor cells escape immune surveillance (8).

In turn, blocking the interaction between PD-L1 and PD-1

allows T cells to be reactivated and their activity against tumor cells

to be enhanced. Since the number of tumor cells expressing PD-L1

greatly influences its ability to suppress immunogenicity and

further determines the efficacy of PD-L1 and PD-1 blockade with

ICI, PD-L1 expression on tumor cells is a predictive biomarker for

ICI therapy (4). Despite its most widespread use, PD-L1 has low

diagnostic accuracy in general, with particularly low negative

predictive value. For example, it has been reported that up to 20%

of patients with PD-L1-negative tumors benefit from PD-1/PD-L1

antibodies (9). In addition, PD-L1 expression is regulated in time

and space (10) and may be altered by prior therapeutic treatment

(11). The combination of these factors limits the predictability of

PD-L1 in certain circumstances.

FDA approval and validation of MSI/dMMR was the second

FDA-approved prognostic biomarker for pembrolizumab treatment

of adult and pediatric patients with unresectable or metastatic solid

tumors in 2017. The approval of pembrolizumab for the treatment of

MSI-H (MSI-high)/dMMR cancer was based on evidence of efficacy

from five clinical trials (12). This approval is the first drug approved

for the treatment of solid tumors in general based on a generic

biomarker rather than a specific tumor type. Tumors with a defective

DNA mismatch repair (dMMR) system accumulate thousands of

mutations throughout the genome. Because short tandem repeats are

particularly susceptible to mismatch errors, dMMR-induced

hypermutations are most often localized in microsatellite regions

(short stretches of DNA 1-6 nucleotides long), a condition defined as

microsatellite instability (MSI). MSI is a result and marker of dMMR

(4). Tumors with dMMR will also have more mutations in non-MSI

regions throughout the genome and are expected to have more

neoantigens compared to tumors with intact MMR (13). However,

this genetic abnormality is relatively rare in lung cancers being

characteristic for colorectal, cervical, and ovarian tumors (14).

TMB is a measure of the number of gene mutations that can be

reported as the total number of nonsynonymous somatic mutations

in the tumor exome (15) or per megabase (16). TMB was approved

for pembrolizumab for the treatment of adult and pediatric patients

with unresectable or metastatic solid tumors. Foundation One CDx

assay was also approved as a companion diagnostic test (4). A high
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number of mutations in somatic exonic regions will lead to an

increase in neoantigen production, some of which are

immunogenic, and could then be recognized by T cells, resulting

in improved antitumor immune responses. Consequently, patients

with high TMB likely produce more intensified immune responses

and are more sensitive to ICI treatments (4).

In addition, a number of emerging biomarkers including

various gene signatures have been proposed with the goal of

finding more efficient and accurate biomarkers suitable for a

broader population of tumor patients, including immunologically

cold tumors (4). Additionally a number of signaling molecules, such

as cytokines expressions were reported as a putative biomarkers of

ICI response (17, 18).

Here we conducted a prospective observational study of the

prognostic potential of several existing and putative biomarkers of

response to immunotherapy in a cohort of 85 patients with lung

cancer (LC) receiving PD-1 or PD-L1 targeted immune checkpoint

inhibitors (ICIs). Tumor biosamples were obtained prior to ICI

treatment and profiled by whole exome and RNA sequencing. The

entire 403 putative biomarkers were screened, including tumor

mutation burden (TMB) and number of cancer neoantigens, 131

specific HLA alleles, homozygous state of 11 HLA alleles and their

superfamilies; four gene mutation biomarkers, expression of 45

immune checkpoint genes and closely related genes; for the first

time, activation levels of 188 molecular pathways containing

immune checkpoint genes and activation levels of 19 pathways

algorithmically generated using a human interactome model

centered around immune checkpoint; additionally, three existing

signatures for ICI response prediction were assessed on our dataset.

Treatment outcomes and/or progression-free survival (PFS) times

were reported in 61 patients with lung cancer, including 24 patients

with adenocarcinoma and 27 patients with squamous cell lung

cancer. Of these, 54 patients were treated with PD1-specific and 7

patients with PD-L1-specific ICIs. We evaluated the potential of

biomarkers based on PFS and RECIST treatment response data. In

our sample, 45 biomarkers were statistically significantly associated

with PFS and 44 with response to treatment, of which eight were

shared. Five of these (CD3G and NCAM1 gene expression levels,

and levels of activation of Adrenergic signaling in cardiomyocytes,

Growth hormone signaling, and Endothelin molecular pathways)

were used to construct a signature that showed an AUC of 0.73 and

HR of 0.27 (p=0.00034) on the experimental dataset. This signature

was also reliable (AUC 0.76) for the independent publicly available

LC dataset GSE207422 annotated with ICI response data. In both

datasets, the signature worked better for lung adenocarcinoma than

for squamous cell LC. All molecular profiles obtained in this study

and their clinical annotations are in the public domain and can be

freely used by the scientific community.
Materials and methods

Patient biosamples

The study was designed and conducted in accordance with the

ethical principles of the Declaration of Helsinki. The local ethical
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493877
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Poddubskaya et al. 10.3389/fimmu.2024.1493877
committee at the Vitamed Clinic, Moscow, approved the study

design and public presentation of its results as a research paper; date

of approval: 12 March 2019. All biosamples were formalin-fixed,

paraffin-embedded (FFPE) solid tumor blocks obtained from

primary or metastatic tumor sites and evaluated by a pathologist,

with at least 60% cancer cells.

The patients included in this study received PD(L)1 specific ICI

therapy within the frameworks of clinical trials NCT03777657 (19),

Oncobox (NCT03724097), CheckMate 078 (20), and (21)

CheckMate 817. All patients whose biosamples were included in

the present study had previously signed written informed consents

to participate in the observational clinical investigation and to have

their biosamples profiled by sequencing using the Illumina

HiSeq3000 or Illumina NextSeq550 next-generation sequencing

platforms. The patients also agreed to the publication of

depersonalized WES/RNAseq profiles of their cancer samples, as

well as the publication of study results in the form of gene activity

profiles associated with age, gender, and diagnosis.

All biosamples were collected prior to the treatment

with ICI PD(L)1 therapeutics, which was the next line of

treatment. Where possible, progression free survival times and

tumor response statuses according to RECIST criteria were

collected (Supplementary Table 1). The patients whose tumor

response status was defined as Complete Response (CR) or Partial

Response (PR) were categorized as the treatment responders. The

patients whose RECIST treatment outcomes were Stable Disease

(SD) or Progressive Disease (PD) were considered as the non-

responders to treatment.
RNA sequencing

RNA sequencing was performed at the Laboratory of Clinical

Genomic Bioinformatics, Sechenov First Moscow State Medical

University, as previously described (22, 23). Library construction

and ribosomal RNA depletion were carried out using the KAPA

RNA Hyper with rRNA Erase (HMR only) kit. Library

concentrations were measured with the Qubit dsDNA HS Assay

kit (Life Technologies) and quality was assessed using the Agilent

Tapestation (Agilent). RNA sequencing was performed on an

Illumina NextSeq 550 system for single-end sequencing with a 50

bp read length, generating at least 30 million raw reads per sample.

Data quality was checked using Illumina SAV, and de-multiplexing

was performed with Illumina Bcl2fastq2 v2.17 software.
Processing of RNA sequencing data

RNA sequencing FASTQ files were processed using the STAR

aligner (24) in "GeneCounts" mode with Ensembl human

transcriptome annotation (Build version GRCh38, transcript

annotation GRCh38.89). Ensembl gene IDs were converted to

HGNC gene symbols using the Complete HGNC dataset (https://

www.genenames.org/, database version from July 13, 2017). In total,

expression levels were determined for 36,596 genes with HGNC
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identifiers. RNA-seq data normalization was performed using the

DESeq2 (25), and a pseudo-count of 1 was added to the

normalized counts.
Whole exome DNA sequencing

Whole exome DNA sequencing (WES) was performed as

previously described (26). DNA was extracted from FFPE tissue

samples using the AnaPrep FFPE DNA extraction kit, and whole

exome DNA was captured from total genomic DNA using the

SeqCap EZ System from NimbleGen, following the manufacturer’s

instructions. Briefly, genomic DNA was sheared, size-selected to

approximately 200–250 base pairs, and the ends were repaired and

ligated to specific adapters and multiplexing indexes. The fragments

were then incubated with SeqCap biotinylated DNA baits followed

by LM-PCR, and the RNA-DNA hybrids were purified using

streptavidin-coated magnetic beads. The RNA baits were then

digested to release the targeted DNA fragments, followed by a

brief amplification of 15 or fewer PCR cycles. Sequencing was

performed on an Illumina NextSeq 550 for a paired-end 150 run.

Data quality was checked using Illumina SAV, and demultiplexing

was performed with the Illumina Bcl2fastq2 v2.17 program.
Processing of WES data

For WES data analysis, the GATK somatic mutation calling

pipeline was utilized. Reads were aligned to the human genome

version 38 using BWA mem v0.7.17 software (27) with the

following non-default parameters: −k 15, −r 2. The remaining

pre-processing steps were identical to those described for the

RNAseq pipeline, except that reads splitting and mapping quality

editing steps were omitted.

For mutation calling, GATK4 Mutect2 (28) software was used

simultaneously for tumor and matched normal samples, supplied

with the same dbSNP and indel databases, regions, and PCR model.

Subsequent post-processing steps included filtering with GATK4

FilterMutectCalls and annotation with ANNOVAR. All tri- or more

allelic sites were excluded from further analyses, as such mutations

were not annotated using ANNOVAR and were not included in

TMB calculation. For managing parallel computational tasks, GNU

parallel software was employed.
Construction of gene-centric
molecular pathways

The gene-centric molecular pathways specifically centered

around gene product of interest were algorithmically

reconstructed as previously reported in (29). Briefly, a model of

the human interactome was constructed using the OncoboxPD

collection of human molecular pathways (30) as a knowledge base

of molecular interactions. Gene composition and nodal pathway

interactions were extracted and cataloged. All pathway graphs were
frontiersin.org
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merged based on overlapping gene products. Only the gene

products were included that formed a connected network, i.e.

there was a link between each pair of gene products.

For each of the specific gene products under analysis, algorithmic

molecular pathways were constructed using gene products of interest

as the central nodes. The following types of interactions were

considered: "activation", "coupling", "inhibition", "phosphorylation",

"dissociation", "repression", "dephosphorylation", "binding/

association", and "ubiquitination".
Pathway activation analysis

Functionally annotated structures of molecular pathways were

extracted from online OncoboxPD database (30) and the enclosed

bioinformatic instruments were used to assess the pathway

activation levels (PALs) using experimental data.

The PAL values were calculated according to the following

formula (31):

PALp =oARRnp · BTIFn · ln(CNRn),

where CNRn (case-to-normal ratio) is the ratio of gene n

expression level in the sample under investigation to the mean

geometrical expression level in the group of control samples.

The Boolean flag BTIFn (beyond tolerance interval flag) is zero

when the CNRn value has not passed the significance criterion:

when the difference with the control group of samples is not

significant, where p>0.05. ARRn,p (activator/repressor role of

gene n in pathway p) is the discrete value that equals to −1 when

gene product n is a repressor of pathway p; 1, when gene product n

is an activator of pathway p; 0, when gene product n has both

activities of an activator and of a repressor of pathway p; 0.5 and

−0.5, respectively, when gene product n is rather an activator or

repressor of pathway p.

Each profile was normalized on a control group of RNA

sequencing profiles previously obtained for healthy human lung

tissues by the same research group using the same sequencing

equipment and protocols (22).

For the calculation of PALs we used DESeq2 normalized counts

which were processed using OncoboxPD web tool (30) using built-

in panel of normal lung tissues as the reference.
HLA calling

HLA-A, HLA-B, HLA-C, HLA-DPB1, HLA-DQB1, and HLA-

DRB1 alleles were assessed for all WES samples. HLA allele calling for

both classes of MHC was done via xHLA software version 1.2 (32).

HLA superfamilies were assigned according to Sidney et al. (33).
Statistical biomarker analysis

ROC AUC value was calculated for each putative biomarker to

assess its ability to distinguish between responders and non-
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AUC calculations were performed using ‘pROC’ R package

(v1.18.5) (34).

Additionally, Mann–Whitney U test was performed between

the groups of responders and non-responders for numerical

markers and Fishers’ exact test for categorical markers.

Survival analysis was performed using Cox regression model.

For categorical markers (such as the presence of HLA alleles or

specific mutations) model was fit by categorical explanatory

variable. For numerical markers (such as gene expressions and

PALs) numerical explanatory variables were translated to

categorical using specific thresholds calculated by optimizing HR

provided that in each group must have at least 30% of the sample

size. After threshold determination, a categorical value was assigned

to each patient and then used to fit Cox regression model. To fit Cox

models and plot Kaplan Meier curves, ‘survminer’ (v0.4.9) and

‘survival’ (v3.5-5) (35) R packages were used.
Assessment of diagnostic signatures

Tumor Immune Dysfunction and Exclusion (TIDE) signature

(36) was quantitatively assessed using TIDEpy library (v. 1.3) (37)

in the NSCLC mode using TPM values of genes.

T cell-inflamed gene expression profile (GEP) (38) signature

was assessed using weighted sum of normalized by housekeeping

genes log2 TPM expression values according to (39).

Integral GEP + TMB signature was assessed as a categorical

marker between the groups of patients with TMBhigh +GEPhigh and

TMBlow+GEPlow. “High” TMB status was determined as TMB

exceeding 10 non-synonymous mutations per megabase of coding

genomic sequence and “high” GEP status was determined as GEP

value exceeding optimized threshold calculated for PFS analysis.
Principal component analysis

Principal component analysis (PCA) was performed using TPM

gene expression values with scikit-learn (v. 1.5.1) software.
Results

This study was designed to establish whole-exome (WES) and

RNA sequencing profiles of non-small cell lung cancer (NSCLC)

biosamples obtained from patients prior to immunotherapy with PD-

1 or PD-L1 specific ICI therapeutics. In this longitudinal study,

progression-free survival (PFS) times and RECIST criteria-based

treatment outcomes for the patients under analysis were recorded

and analyzed. We explored totally 403 putative molecular biomarkers

including tumor mutation burden (TMB) and number of cancer

neoantigens, characteristic gene signatures, 131 specific HLA alleles,

homozygous state of 11 HLA alleles and their superfamilies; four gene

mutation biomarkers, expression of 45 immune checkpoint genes

and closely related genes and three previously published signatures.

For the first time, we assessed biomarker potential of the activation
frontiersin.org
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levels of 188 molecular pathways containing immune checkpoint

genes and activation levels of 19 pathways algorithmically generated

using a human interactome model centered around immune

checkpoint genes. Based on the best biomarkers detected, a

synthetic biomarker signature was developed with the optimal PFS

and RECIST survival predictive value that was further validated on an

independent clinically annotated lung cancer immunotherapy

molecular dataset GSE207422.
Clinical cohort and biosamples

The cohort under analysis included stage IV NSCLC patients

with available formalin-fixed, paraffin-embedded (FFPE) tumor

tissue biosamples obtained before the treatment with PD-1-

specific or PD-L1-specific ICI immunotherapeutic drugs, or both.

Treatment with ICI therapeutics was the next line after obtaining

tissue biomaterials. The biomaterials were biopsies or surgical

materials obtained for either primary or metastatic tumors

(Supplementary Table 1). Initially, 85 patients were included into

the investigation. However, for 24/85 patients no further ICI

treatment outcomes could be obtained. Thus, 61 patients where

either RECIST response status or PFS time, or both were registered,

were included in further analysis (Supplementary Table 1).

The patients were 20 women (47-79 years old, mean 59 y.o.)

and 41 men (41-75 years old, mean 62 y.o.), Table 1,

Supplementary Table 1.

Among them, 27 patients were diagnosed with squamous cell

carcinoma, 24 with adenocarcinoma, 9 had mixed phenotype, and

one with neuroendocrine cancer (Figure 1, Supplementary Table 1).

In 12 cases, the biosamples were isolated from metastatic sites,

whereas the remaining 49 biosamples represented the

primary tumors.

RNA sequencing (RNAseq) data were obtained for all 61

samples under analysis, whereas whole exome sequencing (WES)
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data could be obtained for 51/61 samples because DNA of sufficient

quality for sequencing could not be isolated from 10/61 biosamples

(Supplementary Table 1).

The RNA sequencing results are freely accessible through GEO

repository with ID GSE274975.

Twenty-six patients received PD-1 or PD-L1 (PD(L)1)-specific

ICI therapeutics as the monotherapy, whereas the others received

combination therapies (Supplementary Table 1). Fifty-four patients

received PD-1-specific and seven patients – PD-L1-specific ICI

therapeutics (Supplementary Table 1). Eleven patients received

combined treatment with (PD(L)1)-specific and CTLA4-specific

ICI therapeutics (Figure 1, Supplementary Table 1).

The data on RECIST response status and PFS times are outlined

in Supplementary Table 1.

The summary statistics of the entire patient cohort is given

in Table 1.
Assessment of putative
molecular biomarkers

On our experimental sampling, we then assessed the predictive

capacity of totally 403 putative molecular ICI therapy biomarkers in

relation to either RECIST response or PFS times for the treatment

with PD(L)1 ICI therapeutics (Figure 2). For these analyses, we

considered patients who demonstrated RECIST “complete

response” and “partial response” as the treatment responders,

whereas RECIST “progressive disease” and “stable disease”

outcomes were attributed to the non-responders to treatment.

The biomarkers under analysis included tumor mutation

burden (TMB) and number of cancer neoantigens, presence of

131 MHC (HLA) alleles identified by WES, homozygous state of

HLA genes and their superfamilies which were previously

associated with response to PD(L)1 ICI therapeutics in melanoma

(40). This list also included presence of mutations in KRAS, STK11,
TABLE 1 Summary statistics of the Oncobox NSCLC Immunotherapy cohort.

Total NSCLC
Lung

Adenocarcinoma
Lung Squamous
Cell Carcinoma Other histotypes

# of patients 61 24 27 10

# of female patients 20 13 2 5

# of male patients 41 11 25 17

Patients age range 41-79 41-77 45-79 50-74

# of responders 15 3 8 4

# of metastatic samples 12 8 1 3

# of patients with anti-PD-1 therapy 54 23 26 5

# of patients with anti-PD-L1 therapy 7 1 1 5

# of patients with anti-CTLA4 therapy 11 4 6 1

Median PFS time, months 6 8.5 6 4

# of events 41 16 20 5
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FIGURE 1

Characteristics of biosamples of the experimental NSCLC cohort. (A) Technical characteristics of biosamples under analysis. Sample IDs are given on
the left. Color markers indicate availability of the RNAseq, WES profiles; tumor Histotypes established by pathologists; primary or metastatic origin of
tumor samples; treatment with PD-1 or PD-L1 ICI therapeutics; treatment with CTLA4 ICI therapeutics; Availability of PFS data and availability of
RECIST treatment response data. More detailed characteristics are given in Supplementary Table 1. (B) Principal component analysis (PCA) plot of
RNA sequencing profiles in the experimental NSCLC cohort in comparison with the healthy lung tissue controls. Dot color indicates tissue type.
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POLE and PTEN genes previously associated with the sensitivity

to ICI treatments (4). These results are summarized on

Supplementary Table 2.

Additionally, immunohistochemical status of PD-L1 was

assessed for 22 patients (12 positives, 10 negatives) for which

these records were available. This biomarker demonstrated

expected trend, yet the results of ICI response prediction (AUC =

0.72, Fisher’ exact test p = 0.14) and survival analysis (HR = 0.66,

p = 0.42) appeared insignificant.

For the gene expression biomarkers, we assessed 45

transcriptional levels of known immune checkpoint genes or

relevant genes playing major roles in p38 signaling along with

expression levels of cytokines previously reported as ICI response

biomarkers (Supplementary Table 3). In addition, for the first time,

we assessed the activation levels of intracellular molecular pathways

as the putative ICI response biomarkers. The pathway activation

level (PAL) is the metric that reflects the extent of up/
Frontiers in Immunology 08
downregulation of a pathway in tumor samples under analysis

compared to the corresponding normal samples. Positive PAL

indicates upregulation of a pathway, zero PAL means no changes

in pathway activation, and negative PAL means downregulation

(30). PAL values were previously reported as the biomarkers for

various types on non-ICI targeted therapeutics in human cancers

such as ramucirumab, trastuzumab, bevacizumab, cetuximab and

sorafenib (41–46). In a recent case report, extreme activation of a

PAL of PD-1 signaling cascade along with the high tumor

infiltration by T-cells was a main reason to successfully prescribe

off-label PD-1 specific immunotherapy to a IV stage chemoresistant

gastric cancer patient (26).

Thus, we assessed activation levels of 188 human molecular

pathways containing immune checkpoint genes or p38 MAPK

proteins which were found relevant to ICI responsiveness in

previous research (47). Furthermore, based on the previous

human cancer cell interactome models (48, 49) we algorithmically
FIGURE 2

Outline of the putative PD(L)1 ICI NSCLC response biomarkers investigated in this study. The putative biomarkers used were assessed using RNA
sequencing (left) or WES data (right).
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reconstructed 19 additional molecular pathways specific for the

immune checkpoint genes, and used their activation levels as the

putative biomarkers (Supplementary Table 3). The following

immune checkpoint genes were considered: LILRB4, TIGIT,

LAG3, HAVCR2, PDCD1, CTLA4, CD28, TNFRSF9, ICOS, CD56,

CD226, CD274, CD80, CD86, TNFSF9, ICOSLG, VSIR, LILRB2, and

CD276. Additionally, the expression of the number of cytokines

were assessed in concordance with previous research. The

cytokines-related genes being considered includes: CXCL8,

CXCL10, CXCL11, IL2, IL6, TNF (18, 50).

Finally, we also assessed the biomarker potential of the

previously published gene signatures T-cell inflamed gene

expression profile (GEP), T-cell dysfunction and exclusion gene

signature (TIDE), and TMB+GEP signatures that have been

reported as the emerging ICI response biomarkers (4, 51).

Among them, the highest predictive capacity was demonstrated

by GEP signature with hazard ratio (HR) = 0.31 (p= 0.0011) for PFS

analysis, however, it could not differentiate the groups of treatment

responder and non-responder patients (AUC = 0.56). Combination

of TMB with GEP signature demonstrated non-statistically

significant association with PFS and poor AUC value (AUC =

0.55). In turn, TIDE signature also showed non-statistically

significant association with PFS and poor AUC value (AUC = 0.55).
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Interestingly, in our NSCLC sampling we observed correlated

transcriptional activities of some immune checkpoint genes that

formed clear-cut clusters on the correlation dendrogram (Figure 3).

In particular, we found clustered expression of CD80, LILRB2,

LILRB4 and LAG3 genes (cluster 1), VSIR, HAVCR2, CD86,

TNFRSF9, CD226 and TIGIT genes (cluster 2), and, most

importantly, coordinated expression of CD28, PDCD1, ICOS, and

CTLA4 genes (cluster 3), Figure 3.

On the whole NSCLC sampling we found 45 putative

biomarkers that were statistically significantly associated with

survival times (PFS thresholds were hazard ratio (HR) greater

than 2.5 or less than 0.4, and p-value<0.05),Supplementary

Table 3. Among them, there were 11 WES-based putative

biomarkers (listed from greater to lower significance): the

presence of HLA alleles DP-B1-104-01, DQ-B1-05-04, B-49-01, A-

02-05, DQ-B1-06-11, DP-B1-02-01, DQ-B1-03-01, DQ-B1-06-03,

DR-B1-13-01, A-26-01, and B-44-02.

Seven PFS biomarkers were related to transcriptional activities

of individual genes (NCAM1, CD3G, ICOS, CTLA4, CD3D, CD3E,

CXCL11,and FOXP3).

Other seven PFS biomarkers were related to the algorithmically

reconstructed gene-centric pathways (built around proteins CD86,

TIGIT, CD226, CD80, CD274, PDCD1, and PDCD1LG2)
FIGURE 3

Correlation heat map representing statistically significant Pearson correlation coefficients obtained for the expression of immune checkpoint genes
in the experimental NSCLC cohort. Color reflects correlation coefficients (see color scale) and dot size corresponds to the -log10(p-value) of the
Pearson correlation test.
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Finally, the remaining 19 PFS biomarkers were the activation

levels of previously catalogued molecular pathways (from greater to

lower significance) (1): Co-stimulatory signal during T-cell

activation main pathway, (2) Endothelins main pathway, (3) Co-

stimulation by the CD28 family main pathway, (4) The 41bb-

dependent immune response main pathway, (5) Adrenergic

signaling in cardiomyocytes main pathway, (6) STAT3 pathway

(growth arrest and differentiation), (7) Tumor infiltration

pathway, (8) Rheumatoid arthritis main pathway, (9) Growth

hormone signaling pathway (gene expression via SRF, ELK1,

STAT5B, CEBPD, STAT1, STAT3), (10) PD-1 signaling main

pathway, (11) Growth hormone signaling pathway, (12) TRAF

pathway, (13) FLT3 signaling pathway, (14) RANK signaling in

osteoclasts pathway, (15) Dopaminergic synapse main pathway, (16)

FLT3 signaling pathway (transcription via ELK3, MAPK12, CREB3,

STAT2), (17) ErbB family pathway, (18) GPCR pathway (gene

expression via JUN, NFKB2, ELK1, SRF, FOS, CREB3), and (19)

IL10 pathway. Of note, all of these pathways were the positive

treatment response biomarkers as could be judged by their HR

values (Supplementary Table 3).

On the other hand, when the biomarkers were selected based on

their capacity to distinguish between RECIST responders and non-

responders, 44 putative biomarkers were found (Supplementary

Table 3). To identify them we applied two criteria: Mann-Whitney

test p-value<0.05 for distinguishing the treatment responders and

non-responders and ROC AUC > 0.62. AUC, area under ROC-

curve, is a metric summarizing specificity and sensitivity of a

biomarker in two-class separation. It varies between 0.5 and 1,

and good-quality clinical biomarkers typically demonstrate AUC

higher than 0.7 (17).

The threshold of AUC>0.62 was selected to identify 10% of top

biomarkers by RECIST response.

Among them, only three WES-based biomarkers were found

(sorted from greater to lower significance): HLA alleles A24 and

DP-B1, and mutation in POLE gene.

The following seven gene expression biomarkers were found

(from top to bottom): PDCD1, CTLA4, CD274, IL2, IL2RA,

NCAM1, CD3G, and CD86.

For gene-centric pathways, two putative biomarkers were

found: for pathways built around MAPK14 and MAPK11 proteins.

Finally, the biggest number of such RECIST response

biomarkers represented the previously established molecular

pathways (29 biomarkers): (1) Growth hormone signaling pathway

(gene expression via SRF, ELK1, STAT5B, CEBPD, STAT1, STAT3),

(2) Prolactin signaling main pathway, (3) Endothelins main

pathway, (4) Adrenergic signaling in cardiomyocytes main

pathway, (5) Growth hormone signaling pathway, (6) S1P2 main

pathway, (7) CDO in myogenesis main pathway, (8) Pertussis main

pathway, (9) TGF-beta pathway (transcription-arrested growth,

apoptosis), (10) TGF-beta pathway (transcription-cell growth and

mobility and angiogenesis), (11) Chemokine pathway (cell

activation), (12) Activation of the AP1 family of transcription

factors main pathway, (13) CD40-CD40L signaling main pathway,

(14) Oocyte meiosis main pathway, (15) cAMP pathway (cytokine

production), (16) Activation of PPARGC1A PGC1-alpha by
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phosphorylation main pathway, (17) DSCAM interactions main

pathway, (18) cAMP pathway, (19) RANK signaling in osteoclasts

pathway (expression of osteoclastic genes via JUN, NFAT5, NFKB2,

MITF, FOS), (20) RAC1 signaling main pathway, (21) Chemokine

pathway (gene expression and apoptosis via ELK1), (22) MAP kinase

signaling main pathway, (23) Stathmin and breast cancer resistance

to anti-microtubule agents main pathway, (24) IL10 pathway, (25)

ErbB family pathway (gene expression via JUN, FOS, ELK1), (25)

RIG1-like receptor signaling main pathway, (26) IL10 pathway (IL

10-responsive genes: transcription of BCLXL, Cyclin D1, D2, D3,

Pim1, c-Myc, P19, INK4D via STAT3), (27) IL10 pathway

(inflammatory cytokine gene expression via STAT3), (28) MAPK

signaling main pathway, (29) Rap1 signaling main pathway.

Interestingly, as for the PFS biomarkers, all of these pathways

except for Oocyte meiosis main pathway were the positive

treatment response biomarkers.

In order to identify a fraction of universal biomarkers that

distinguish NSCLC patients by PFS times and RECIST response, we

then interested the above 45 PFS biomarkers and 44 RECIST

response biomarkers (Figure 4).

The following intersected biomarkers were found: (1) PAL of

Growth hormone signaling pathway (gene expression via SRF,

ELK1, STAT5B, CEBPD, STAT1, STAT3), (2) PAL of

Endothelins main pathway, (3) PAL of Adrenergic signaling in

cardiomyocytes main pathway, (4) expression level of CTLA4 gene,

(5) PAL of Growth hormone signaling pathway, (6) expression level

of NCAM1 gene, (7) expression level of CD3G gene, and (8) PAL of

IL10 pathway (Figure 4, Table 2).

Note that among the intersected items there were no WES-

derived biomarkers. In our sampling, the well-established NSCLC

biomarkers such as TMB and expression level of PD-L1 (CD274)

gene showed insufficient capacity of distinguishing patients by PFS

and/or by RECIST treatment response (Supplementary Table 3). In

particular, expression level of CD274 gene showed AUC 0.67 for the

whole NSCLC sampling, AUC 0.69 and 0.68 for the lung

adenocarcinoma and squamous cell lung carcinoma subsets,

respectively. At the same time, in all our cohorts it showed no

statistically significant association with the PFS. In turn, TMB

showed no significant association with RECIST response except

for the squamous cell lung carcinoma subset (AUC 0.72) whereas

no statistically significant association with PFS could be

detected (Figure 5).

The association of TMB and homozygosity of HLA genes was

also of an insufficient significance in our samplings (data

not shown).

On the other hand, all of the intersected biomarkers were

previously associated with the response to ICI immunotherapies.

As to the first biomarker (PAL of Growth hormone signaling pathway

(gene expression via SRF, ELK1, STAT5B, CEBPD, STAT1, STAT3),

Figure 6), growth hormone signaling has been previously associated

with the local activity of immune system (52, 53) and with the efficacy

of ICI treatment in human cancers (54, 55).

For the second intersected biomarker identified here (PAL of

Endothelins main pathway), the association of endothelin receptor

type B with the response of lung adenocarcinomas to
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immunotherapy was recently reported (56). In stomach

adenocarcinoma, endothelin receptor type A was strongly

implicated in building tumor immune microenvironment (57).

The third biomarker (PAL of Adrenergic signaling in

cardiomyocytes main pathway) is also in line with the previous
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reports of the use of beta-blockers as the supplement to ICI

immunotherapy. A trend was observed towards better outcomes

in advanced NSCLC patients in the beta-blocker group (median

overall survival of 9.93 months in the group not taking beta-

blockers versus 14.90 months in the beta-blocker group) (58).
FIGURE 4

Intersection of PFS biomarkers and RECIST response biomarkers identified in this study for NSCLC patients in relation to responsiveness to PD(L)1 ICI
therapeutics. (A) Intersection diagram of PFS and RECIST response biomarkers. (B) Statistics for the intersected biomarkers identified including PFS-
based HR values with p-values, AUC values for differentiating treatment responders and non-responders (R vs NR), and Mann-Whitney test p-values
for differentiating treatment responders and non-responders.
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The fourth biomarker was the expression of CTLA4 gene which

association with ICI immunotherapy is obvious. The fifth biomarker

(PAL of Growth hormone signaling pathway) was also related to

growth hormone pathway which association with ICI immunotherapy

is discussed above. The association of the sixth biomarker (expression

level of NCAM1 gene, Figure 7) with the response to ICI

immunotherapy in lung cancer was also previously reported (59).

The same is true also for the seventh intersected biomarker

from our study, expression level of CD3G gene, which was found to
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be associated with better response to lung cancer in a recent report

on a lower sampling (60), in line with the current findings.

Similarly, for the eighth (last) biomarker, PAL of IL10 pathway,

Figure 8, an association of the level of plasma IL10 with the ICI

treatment response in melanoma and NSCLC was recently

established (61).

Thus, the intersected biomarkers of NSCLC response on ICI

treatment identified here are strongly relevant to immunotherapy

efficacy according to the current literature.
TABLE 2 Major characteristics of intersected PFS and RECIST response biomarkers identified in the experimental NSCLC cohort*.

Biomarker ID Hazard
ratio (HR)

HR
p-value

AUC
(R vs NR)

R vs NR
p-value

Whole NSCLC cohort

CD3G gene expression 0.34 0.0018 0.63 0.13

NCAM1 gene expression 0.33 0.0008 0.64 0.1

CTLA4 gene expression 0.36 0.0042 0.68 0.04

Growth hormone signaling pathway (gene expression via SRF, ELK1, STAT5B,
CEBPD, STAT1, STAT3), PAL

0.37 0.0066 0.72 0.01

Growth hormone signaling pathway, PAL 0.34 0.009 0.66 0.07

Adrenergic signaling in cardiomyocytes pathway, PAL 0.38 0.0036 0.69 0.03

Endothelins pathway, PAL 0.35 0.0016 0.71 0.02

Interleukin 10 pathway, PAL 0.38 0.016 0.63 0.14

Lung adenocarcinoma cohort

CD3G gene expression 0.21 0.022 0.82 0.09

NCAM1 gene expression 0.12 0.0008 0.76 0.18

CTLA4 gene expression 0.17 0.001 0.9 0.03

Growth hormone signaling pathway, PAL 0.44 0.22 0.63 0.55

Growth hormone signaling pathway (gene expression via SRF, ELK1, STAT5B,
CEBPD, STAT1, STAT3), PAL

0.41 0.18 0.73 0.26

Adrenergic signaling in cardiomyocytes pathway, PAL 0.82 0.72 0.61 0.62

Endothelins pathway, PAL 0.33 0.044 0.53 0.92

Interleukin 10 pathway, PAL 0.37 0.21 0.65 0.48

Squamous cell lung carcinoma cohort

CD3G gene expression 0.33 0.026 0.57 0.58

NCAM1 gene expression 0.57 0.25 0.64 0.26

CTLA4 gene expression 0.45 0.091 0.52 0.9

Growth hormone signaling pathway, PAL 0.34 0.06 0.72 0.08

Growth hormone signaling pathway (gene expression via SRF, ELK1, STAT5B,
CEBPD, STAT1, STAT3), PAL

0.43 0.08 0.7 0.11

Adrenergic signaling in cardiomyocytes pathway, PAL 0.19 0.038 0.82 0.01

Endothelins pathway, PAL 0.48 0.13 0.87 <0.01

Interleukin 10 pathway, PAL 0.33 0.039 0.63 0.31
*Significant values are marked with bold font.
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Generation of diagnostic signature of
NSCLC response to ICI treatment

Among the intersected PFS- and RECIST-response biomarkers

identified on the previous step only two had AUC for

discriminating treatment responders and non-responders

exceeding 0.7, which is typically considered a threshold for the

high-quality biomarkers (Table 2). However, none of them could

meet the condition of high-quality association with PFS (HR<0.4 or

>2.5; p<0.05) and AUC exceeding 0.7 for any of the major NSCLC

sub-cohorts (adenocarcinoma or squamous cell lung carcinoma,

Table 2). Thus, we attempted to construct a new ICI response

biomarker diagnostic signature that could meet the above quality
Frontiers in Immunology 13
criteria for at least the whole NSCLC cohort and for one of the

above sub-cohorts.

For gene signature generation, we took the above eight

intersected biomarkers as the starting components. All biomarker

values were normalized using a min-max scaler to ensure equal

contribution from each marker in the subsequent analysis. We

aimed to design a risk score which is capable of both predicting

response and pathological free survival. To this end we combined

stepwise HR optimization with multivariate logistic regression

model trained to predict patient response.

Our algorithm consisted of following steps:
1. Remove 1 marker from the current set of biomarkers.
FIGURE 5

Progression-free survival analysis of tumor mutation burden (TMB) as the biomarker in the experimental NSCLC sampling. The Kaplan-Meier plots
are given for the whole NSCLC dataset, and separately for the lung adenocarcinoma and squamous cell lung carcinoma sub-datasets. TMB-high
status was defined as TMB greater than 10 per megabase.
FIGURE 6

Activation profile of the Growth hormone signaling pathway (gene expression via SRF, ELK1, STAT5B, CEBPD, STAT1, STAT3) in the experimental
NSCLC groups of RECIST responders (A) and non-responders (B) to PD(L)1 ICI immunotherapy. Color reflects the logarithm of the case-to-normal
ratio (CNR) of the pathway nodes, color scale is given (green – upregulated, red – downregulated, white – intact). Arrows show molecular
interactions within a pathway: green stands for activation, red for inhibition. PAL values were calculated for the averaged biosamples in the treatment
responder and non-responder groups.
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FIGURE 7

Assessment of biomarker potential of NCAM1 gene expression level as the PD(L)1 ICI response biomarker in the experimental NSCLC sampling.
(A–C) Progression-free survival analysis in the experimental NSCLC sampling. The Kaplan-Meier plots are given for the whole NSCLC (A) dataset, and
separately for the lung adenocarcinoma (B) and squamous cell lung carcinoma (C) sub-datasets. (D–F), ROC AUC analysis of RECIST response status
assessed for the whole NSCLC cohort (D) dataset, and separately for the lung adenocarcinoma (E) and squamous cell lung carcinoma (F) sub-datasets.
“R” means treatment responder, “NR” – non-responder.
FIGURE 8

Activation profile of the Interleukin 10 signaling pathway in the experimental NSCLC groups of RECIST responders (A) and non-responders (B) to PD
(L)1 ICI immunotherapy. Color reflects the logarithm of the case-to-normal ratio (CNR) of the pathway nodes, color scale is given (green –

upregulated, red – downregulated, white – intact). Arrows show molecular interactions within a pathway: green stands for activation, red for
inhibition. PAL values were calculated for the averaged biosamples in the treatment responder and non-responder groups.
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Fron
2. Predict coefficients for risk score using multivariate logistic

regression model.

3. Adjust threshold for the risk score to predict survival as it

was done for single markers.

4. Calculate HR for risk score using Cox model.

5. Compare calculated HR with previously acquired HRs.
Marker which removal resulted in best risk score improvement

in terms of HR was then removed from the current set of biomarker

components. The algorithm was repeated until removal of any

component did not result in signature improvement and the ability

to distinguish patients with different PFS. Five of the above eight

putative biomarkers were incorporated into the final signature

(termed Oncobox signature) and were included in the final risk

score formula (Table 3).

A prognostic risk score of the Oncobox diagnostic signature

obtained in this way was calculated using 5 components as a sum of

biomarker values multiplied by the coefficients obtained (Table 3).

We initially assessed the prognostic significance of the Oncobox

signature on the experimental NSCLC dataset and two sub-datasets

(Figure 9). We assessed the Oncobox signature capacity to

distinguish patients according to RECIST responder and non-

responder outcomes, as well as to group patients by PFS times.

We observed a superior performance for the Oncobox signature

compared to any of the individual intersected biomarkers used as the

signature components. In all three experimental NSCLC groups, the

signature showed strong HR values (0.27-0.31, p-value 0.00034-0.046).

In two cohorts (whole NSCLC cohort and lung adenocarcinoma

cohorts) the signature showed high ROC AUC values (0.73 and 0.82,

respectively), whereas in the squamous cell carcinoma cohort the

signature showed a borderline value of AUC 0.69 (Figure 9).

We also assessed the Oncobox signature performance on a

modified experimental cohort with metastatic samples excluded,

since their gene expression patterns may be strongly different from

the primary tumor sites. The signature preserved its predictive power

in terms of response prediction and improved it for prediction of PFS,

r e a ch ing HR = 0 .22 on the who l e NSCLC cohor t

(Supplementary Figure 1).

To additionally test the predictive capacity of our signature we

applied multivariable survival analysis with variables such as

signature status, gender, age and therapy regime. We found that
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the additional regressors had either non-significant HR values or

non-statistically significant p-values, or both, with the exception of

a parameter “anti-PD-1 therapy” in lung squamous cell carcinoma

(Supplementary Table 4), where the smallest HR of 0.06 was

assigned to anti PD-1 therapy status. We speculate that this may

be due to a strong class imbalance in the above cohort where only

one out of 27 patients did not receive anti PD-1 ICI therapy

(Table 1, Supplementary Table 1).

Thus, the Oncobox signature generated here could effectively

serve as the biomarker of clinical response to PD(L)1 ICI

immunotherapeutics in NSCLC. We then attempted to validate

this signature on an independent clinically annotated lung cancer

gene expression dataset.
Validation of Oncobox signature

To validate the diagnostic signature generated, we, first, utilized

the publicly available clinically annotated dataset GSE207422

published by Hu and coauthors (62), including RNA sequencing

profiles obtained from lung cancer patients who had undergone

PD-1 ICI immunotherapy. This independent validation dataset

includes 39 samples, 24 of which were collected before the start of

ICI immunotherapy and were included in our analysis. We

extracted raw sequencing data and the bulk RNAseq FASTQ files

were aligned to the hg38 reference genome using the STAR aligner

(version 2.7.4a) and gene expression was quantified using Salmon

(version 1.3.0) to calculate transcripts per million reads per kilobase

(TPM) expression values for each gene.

Histologically, the selected dataset contained lung

adenocarcinoma samples (n = 8) and squamous cell carcinomas

(n = 12), along with other NSCLC histotypes. The initial assessment

of response to treatment has categorized outcomes as either major

pathological response (MPR) or non-MPR. For consistency, these

were reclassified here as the treatment responders and non-

responders, respectively (Figure 10). No PFS or overall survival

data were available.

We then tested Oncobox signature risk score on an independent

dataset GSE207422. Association with PFS or overall survival was

not possible, so we could only assess the response prediction

capacity of the signature developed (Figure 11). For the whole

GSE207422 NSCLC cohort, the Oncobox signature has

demonstrated ROC AUC 0.76; for the lung adenocarcinoma

cohort, AUC was 0.8. Finally, for the squamous cell carcinoma

cohort, AUC 0.66 was registered.

To further validate the performance of our signature we

included two additional NSCLC validation datasets: GSE126044

(63) and GSE135222 (64). GSE126044 dataset includes gene

expression data for 16 samples obtained before anti-PD-1 therapy

(5 treatment responders and 11 non-responders). The clinical data

available was the RECIST response status of the patients enrolled.

The raw counts were processed in the same way as for the

experimental Oncobox dataset. The signature risk values

calculated showed AUC of 0.87 for the Oncobox signature, thus

confirming its strong predictive capacity (Figure 11F).
TABLE 3 The components and their multivariate regression logistic
coefficients used to calculate the ICI response diagnostic signature-
based risk score.

Biomarker component Regression
coefficient

CD3G gene expression -1.79

NCAM1 gene expression -2.33

Adrenergic signaling in cardiomyocytes pathway, PAL 1.22

Endothelins main pathway, PAL -3.95

Growth hormone signaling pathway (gene expression via
SRF, ELK1, STAT5B, CEBPD, STAT1, STAT3), PAL

-7.18
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The dataset GSE135222 included gene expression profiles for

samples obtained from 27 NSCLC patients before treatment with

anti PD-1/PD-L1 ICI drugs, annotated with PFS times. We

calculated signature risk values using transcript-per-million
Frontiers in Immunology 16
(TPM)-normalized gene expression data available and observed

non-significant HR 0.68 with p-value = 0.38, although an overall

trend was preserved (Figure 11G). We speculate that non-

significant results in the latter case may be due to outstandingly
FIGURE 9

Assessment of biomarker potential of the Oncobox gene signature as the PD(L)1 ICI response biomarker in the experimental NSCLC sampling.
(A) heatmap outlining normalized values of signature components, signature risk score, response statuses, and PFS times. (B, D) F, ROC AUC analysis
of RECIST response status assessed for the whole NSCLC cohort (B) and separately for the lung adenocarcinoma (D) and squamous cell lung
carcinoma (F) sub-cohorts. (C, E, G) Progression-free survival analysis in the experimental NSCLC sampling. The Kaplan-Meier plots are given for the
whole NSCLC (C) dataset, and separately for the lung adenocarcinoma (E) and squamous cell lung carcinoma (G) sub-datasets. “R” means treatment
responder, “NR” – non-responder. (H) Box-and-whisker plot for signature values in a whole experimental dataset and in sub-datasets of lung
adenocarcinoma and squamous cell carcinoma. p-values are presented for one-sided Mann-Whitney tests between responders (R) and non-
responders (NR).
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small PFS times assigned to the second validation dataset with a

median of only 2 months, whereas in the experimental cohort

median PFS was three times longer, 6 months.

Thus, we conclude that the Oncobox signature could also

distinguish between the PD-1 ICI treatment responders and non-

responders in the literature datasets GSE207422 and GSE126044. In

two literature and one experimental cohorts, the signature showed

high AUC above 0.7 for the whole NSCLC cohort (0.87, 0.76 and

0.73, respectively) and for the adenocarcinoma cohort (0.8 and

0.82). At the same time, borderline values were obtained for the

squamous cell carcinoma patients (0.66 and 0.69). However, in the

GSE135222 dataset with available PFS records no statistically

significant performance was demonstrated which may be

connected with the peculiarly short PFS times in the latter cohort.
Discussion

ICI therapy in lung cancer treatment has gained leading

positions along with the approved targeted, chemo-, and radiation

therapy methods (65, 66). However, the currently used ICI response

biomarkers remain contradictory (4). Thus, more international

studies on diverse lung cancer cohorts are needed to identify

reliable biomarkers that would be effective in different groups of

patients. However, there is a significant gap in the availability of

relevant molecular data deposited in the public domain. For

example, for this study we were able to find only a modest

amount of samples available from 3 datasets (62–64) totaling 67

patients overall, with PFS data available only for GSE126044.

Here we provide a collection of 61 new NSLC molecular profiles

clinically annotated by both RECIST response status and by PFS

times measured in a longitudinal prospective investigation in

relation to a success of treatment by PD-1 and PD-L1 specific ICI

therapeutics. The information was deposited to the GEO repository
Frontiers in Immunology 17
and is fully publicly accessible. All the samples were obtained before

the start of PD-(L)1-specific ICI treatment.

Tumor biosamples profiled here were obtained prior to ICI

treatment and profiled by whole exome and RNA sequencing. We

screened 403 putative biomarkers, including TMB and number of

cancer neoantigens, 131 specific HLA alleles, homozygous state of 11

HLA alleles and their superfamilies; four gene mutation biomarkers,

expression of 45 immune checkpoint genes and closely related genes

and 3 signatures; for the first time, activation levels of 188 molecular

pathways containing immune checkpoint genes and activation levels

of 19 pathways algorithmically generated using a human interactome

model centered around immune checkpoint genes.

We evaluated the potential of biomarkers based on PFS and

RECIST treatment response data. In our sample, 45 biomarkers

were statistically significantly associated with PFS and 44 with

response to treatment, of which eight were shared. Using five of

these intersected biomarkers we generated a signature termed

Oncobox that showed an AUC of 0.73 and HR of 0.27

(p=0.00034) on the entire experimental NSCLC cohort. This

signature was also reliable (AUC 0.76 and 0.87 respectively) for

the independent clinically annotated dataset GSE207422 and

GSE126044. In both experimental and literature datasets with

histotypes markdown available, the Oncobox signature worked

better for lung adenocarcinoma than for squamous cell LC.

Despite the solid success of response prediction, PFS prediction

on the test dataset GSE126044 had reached only modest statistical

parameters. However, this might be explained by possible technical

differences in PFS reporting as we discussed above.

In our experimental cohorts, 54 patients were treated with PD1-

specific and 7 patients with PD-L1-specific ICIs. The PD-1 specific

therapeutics were pembrolizumab, nivolumab, and tislelizumab

(Supplementary Table 1). The PD-L1 immunotherapeutic was

avelumab (Supplementary Table 1). This set of therapeutics may

seem heterogenous in their names, and this is one of the limitations
FIGURE 10

Characteristics of biosamples of the GSE207422 cohort. Sample IDs are given on the left. Color markers indicate availability of the RNAseq profiles;
tumor Histotypes established by pathologists; treatment with PD-1 ICI immunotherapeutics; availability of treatment response data (R means
treatment responder and NR – non-responder).
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FIGURE 11

Assessment of biomarker potential of the Oncobox gene signature as the PD-1 ICI response biomarker in the literature GSE207422, GSE126044 and
GSE135222 NSCLC cohort. (A) Heatmap outlining normalized values of signature components, signature risk score, and response statuses.
(B–D) ROC AUC analysis of PD-1 immunotherapy response status assessed for the whole GSE207422 NSCLC cohort (B), and separately for the lung
adenocarcinoma (C) and squamous cell lung carcinoma (D) sub-cohorts. “R” means treatment responder, “NR” – non-responder. (E) Box-and-
whisker plot for signature values in a whole test dataset and in sub-datasets of lung adenocarcinoma and squamous cell carcinoma of GSE207422
dataset. p-values are presented for one-sided Mann-Whitney tests between responders (R) and non-responders (NR) in GSE207422 dataset. (F) ROC
AUC analysis of PD-(L)1 immunotherapy response status assessed for the GSE126044 NSCLC cohort. (G) Progression-free survival analysis in the
GSE135222 dataset. The Kaplan-Meier plots are given for the whole NSCLC.
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of the current study. However, all of them have the same biological

nature (monoclonal humanized therapeutic antibodies), similar

molecular mechanism of action and the same FDA-approved

molecular biomarkers. Furthermore, this limitation is on the

other hand an advantage of the current study as it attempted to

uniformly assess molecular biomarkers targeted against the whole

PD-1 – PD-L1 signaling axis. Another possible limitation of our

study is the inclusion of 12 metastatic samples in the statistical

analysis. Theoretically, metastatic samples may preserve genetic

features of original tumors; on the other hand, their biology and

gene expression patterns can be dramatically different. Nevertheless,

we showed here that the exclusion of metastatic samples did not

negatively affect the signature performance.

Also, the treatment response status composition of our

experimental cohort is unbalanced, especially in the case of Lung

Adenocarcinoma subcohort, where among 20 patients only 3 were

assigned as the responders, all of these tree samples being of

metastatic origins. However, as we demonstrated here, our

signature showed good predictive capacity also on the two

independent validation datasets. Additional limitation of our

study is in the unavailability of protocol data for PD-L1

immunohistochemical status assessment.

More generally, in this study we were limited by the list of pre-

selected putative biomarkers and the experimental techniques used.

Thus, some putative biomarkers may be missing in our analysis.

However, the primary experimental data available here enable to the

research community to further explore genetic and transcriptomic

biomarkers of tumor ICI responsiveness.

In the future, repertoire of potential biomarkers integrated in

one study could be expanded to the simultaneous analysis of tumor

proteomic profiles, post-translational modifications, metabolome

(67), and the T- and B-cellular composition and receptor

repertoire (68).

We hope that the results obtained and the available clinically

annotated molecular data will be useful to the research community,

especially to those interested in the mechanisms of resistance to ICI

therapeutics, and in cancer biomarker research.
Conclusion

We provide a collection of 61 new NSLC molecular profiles

clinically annotated by both RECIST response status and by PFS

times measured in a longitudinal prospective investigation in

relation to a success of treatment by PD-1 and PD-L1 specific

immunotherapeutics. The information is fully publicly accessible.

Tumor biosamples were obtained prior to immunotherapy and

profiled by whole exome and RNA sequencing. We totally screened

403 putative molecular biomarkers and evaluated their potential

based on PFS and RECIST treatment response data. 45 biomarkers

were statistically significantly associated with PFS and 44 with

response to treatment, of which eight were shared. Using five of

these intersected biomarkers we generated a signature termed

Oncobox that showed an AUC of 0.73 and HR of 0.27
Frontiers in Immunology 19
(p=0.00034) on the entire experimental cohort and AUCs 0.76

and 0.87 on independent literature NSCLC cohorts GSE207422 and

GSE126044. For the independent dataset GSE126044 with PFS data

available our signature preserved the desirable trend yet

demonstrating insignificant predictive power. In both

experimental and literature datasets, the Oncobox signature

worked better for lung adenocarcinoma than for squamous cell LC.
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