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Background: Acute myeloid leukemia (AML) is a hematologic tumor with poor

prognosis and significant clinical heterogeneity. By integrating transcriptomic

data, single-cell RNA sequencing data and independently collected RNA

sequencing data this study aims to identify key genes in AML and establish a

prognostic assessment model to improve the accuracy of prognostic prediction.

Materials and methods: We analyzed RNA-seq data from AML patients and

combined it with single-cell RNA sequencing data to identify genes associated

with AML prognosis. Key genes were screened by bioinformatics methods, and a

prognostic assessment model was established based on these genes to validate

their accuracy.

Results: The study identified eight key genes significantly associated with AML

prognosis: SPATS2L, SPINK2, AREG, CLEC11A, HGF, IRF8, ARHGAP5, and CD34.

The prognostic model constructed on the basis of these genes effectively

differentiated between high-risk and low-risk patients and revealed differences

in immune function and metabolic pathways of AML cells.

Conclusion: This study provides a new approach to AML prognostic assessment

and reveals the role of key genes in AML. These genes may become new

biomarkers and therapeutic targets that can help improve prognostic

prediction and personalized treatment of AML.
KEYWORDS

acute myeloid leukemia, prognostic biomarkers, immune escape, personalized
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1 Introduction

AML is a highly heterogeneous hematologic malignancy

characterized by clonal proliferation of myeloid precursor cells

leading to impaired differentiation and accumulation of immature

primitive cells in the bone marrow and peripheral blood (1–3). AML

accounts for approximately 80% of adult acute leukemia cases and

carries a poor prognosis, especially in elderly patients (4, 5). Despite

advances in therapeutic strategies, including chemotherapy,

hematopoietic stem cell transplantation, and targeted therapies,

overall survival in AML remains poor, with a 5-year survival rate

of only 25% to 30% (6). An important reason for this poor prognosis

is the high degree of heterogeneity in the biological and clinical

manifestations of AML, which highlights the importance of searching

for reliable prognostic biomarkers in order to predict the patient’s

prognosis and develop a personalized treatment plan (7, 8).

Over the past decade, many studies have been devoted to

unraveling the molecular features of AML in an attempt to improve

AML therapeutic approaches by identifying gene mutations,

chromosomal abnormalities, and gene expression profiles that are

associated with disease progression and prognosis (9). For example,

AMLwith NPM1 andCEBPAmutations usually has a better prognosis,

whereas AML with FLT3 mutations has a worse prognosis. These

differences are critical for the choice of treatment strategies. High-

throughput sequencing technologies, particularly RNA sequencing

(RNA-seq), have revealed a variety of genes and abnormal signaling

pathways that are frequently mutated in AML, providing valuable clues

for understanding the pathogenesis of the disease. However, despite

these advances, a comprehensive understanding of the molecular

mechanisms affecting AML prognosis is still lacking, and the search

for reliable prognostic biomarkers remains challenging (10, 11).

In this study, we adopted an integrated multi-omics approach to

systematically identify and screen for possible prognostic

biomarkers using transcriptomic and epigenetic data from public

AML datasets. We performed survival analysis, gene expression

analysis, and pathway enrichment analysis to mine genes that may

be associated with AML prognosis. In addition, to validate our

findings, we performed RNA-seq sequencing from bone marrow

samples of 10 AML patients and 10 healthy donors to assess the

expression levels of the screened candidate genes.

The main goal of this study was to provide a comprehensive

prognostic biomarker analysis of AML, providing insight into the

molecular mechanisms behind AML progression. By integrating

RNA-seq data from public databases and our own patient cohort, we

aim to identify gene signatures that are not only associated with clinical

prognosis, but also hope to provide potential targets for the development

of personalized treatment strategies. Ultimately, our findings are

expected to improve risk stratification in AML and provide a basis for

future therapeutic development targeting these prognostic genes.
2 Materials and methods

2.1 Sample source and collection

A total of 20 bone marrow samples were collected for this study,

consisting of 10 bone marrow samples from patients with acute
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myeloid leukemia (AML) (AML group) and 10 bone marrow

samples from healthy individuals (control group). All AML

patients were diagnosed by bone marrow smear morphology and

cytogenetic testing, and individuals in the healthy control group

underwent a thorough physical examination to exclude any history

of blood disorders and tumors. The samples were collected from

2023 to 2024 at Zhongshan Campus of Southwest Medical

University Hospital and stored in liquid nitrogen for further

processing. All subjects signed an informed consent form, and the

study was approved by the Ethics Committee of the Affiliated

Hospital of Southwest Medical University (Ethics Approval

No. KY2024070).
2.2 RNA extraction and sequencing

Total RNA was extracted from frozen bone marrow samples

using TRIzol reagent (Thermo Fisher Scientific, USA) for RNA

extraction according to the manufacturer’s instructions. The quality

of extracted RNA was assessed by Agilent 2100 Bioanalyzer to

ensure that the RNA Integrity Index (RIN) was greater than 7.0, and

the RNA concentration was quantified using Qubit 2.0 (Thermo

Fisher Scientific) to ensure that it met the requirements for

sequencing. The RNA libraries were constructed using the

Illumina TruSeq RNA Library Prep Kit (Illumina, USA) and

library quality control was performed by Qubit and Bioanalyzer.

All samples were bipartite sequenced on the Illumina NovaSeq 6000

platform with a read length of 150 bp and a target sequencing depth

of 50M reads per sample.
2.3 Public data sources

The single cell sequencing data used in this study were obtained

from the dataset GSE116256 in the GEO database (12). This dataset

includes 16 patients at the time of AML diagnosis, 19 patients

during treatment, and 5 healthy control donors. Considering our

primary focus on the disease pathogenesis of AML, we selected

three high-quality samples from each of the patients at the time of

AML diagnosis and healthy control donors, excluding the

interference of drug treatment. The RNA-seq data for AML were

obtained from datasets GSE12417 and GSE71014 in the GEO

database, containing 405 and 104 samples, respectively (13). The

GSE12417 data was used as a training set during the construction of

the prognostic model, while the GSE71014 data was used as an

external validation set to evaluate the performance of the model.
2.4 Single-cell sequencing data processing
and cell type identification

After reading single-cell sequencing data from three AML

patients and three normal bone marrow samples, we used the

Seurat package to perform initial processing of the data, including

quality control, dimensionality reduction clustering, and

visualization (14). To ensure that subsequent analyses were based
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on high-quality sequencing data, we performed stringent quality

control criteria on the cells, removing those with fewer than 500 or

more than 5000 genes measured, as well as those with a proportion

of mitochondrial genes greater than 15%, and avoiding the

interference of empty droplets, doublets, and senescent cells. After

data standardization and normalization, we performed PCA

downscaling analysis. Based on the PCA downscaling results, a

batch effect correction was performed using the “harmony”

package. Next, we selected the top 20 principal components for

cluster analysis, and the cluster resolution was set to 0.3, resulting in

10 cell clusters, which were visualized by UMAP. We performed

preliminary cell type annotation for each population with the help

of common cell marker genes and “FindAllMarkers” function, and

finally identified myeloid precursor cells, monocytes, T cells,

erythrocytes, NK cells and B cells.
2.5 Cellular communication analysis and
pseudo-time analysis

In analyzing cell-cell interactions in the AML tumor

microenvironment, we used the “CellChat” package for cellular

communication network analysis, which simulates and analyzes

cell-cell communication patterns by combining gene expression

data with information on known signaling pathways, including

ligand, receptor, and cofactor interactions. communication patterns

(15). To further explore the developmental trajectories of different

cell types in the tumor microenvironment and their dynamics

during tumor progression, we used the Monocle R package to

perform pseudo-temporal analyses of single-cell RNA sequencing

data to reveal key transitions during cell development (16–18). We

also used the Slingshot package for pseudo-temporal analysis to

further explore the developmental trajectories of cells in single-cell

RNA sequencing data. Slingshot is a powerful tool that can

efficiently handle data with complex branching structures, helping

us to gain a deeper understanding of the changes in the cellular state

at the single-cell level (19). With these two analyses, we were able to

paint a comprehensive picture of cellular developmental pathways

and their dynamic behaviors in the AML tumor microenvironment.
2.6 Enrichment analysis

To explore the biological characteristics of myeloid precursor

cells, we performed GSEA (Gene Set Enrichment Analysis). The

gene sets used for enrichment analysis are differentially expressed

genes identified by the “FindAllMarkers” function. We performed

enrichment analysis of myeloid precursor cells using the KEGG

gene set to identify pathways related to their biological functions. In

addition, we performed GO and KEGG enrichment analyses on

patients in the high-risk and low-risk groups. The set of genes used

for enrichment analysis was derived from genes up regulated for

expression in the high-risk group. To facilitate the retrieval of gene

sets in the GO and KEGG databases, we used the “clusterProfiler”
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package and visualized the results of the analyses using this package

(20). These analyses helped us to gain a deeper understanding of the

biology of myeloid precursor cells and patients in different

risk groups.
2.7 Construction of myeloid precursor cell
marker genes and prognostic models

We screened myeloid precursor cells for marker genes using the

“FindMarkers” function with a log2FC threshold of 0.25. Then,

univariate Cox regression analyses were performed to initially

screen out genes with prognostic value from the marker genes.

Subsequently, we built multiple prognostic models using the

GSE12417 and GSE71014 datasets in combination with 101

algorithm combinations and calculated the average C-index of

each model across all cohorts to assess its predictive power. The

analysis showed that the model combining the GBM (Gradient

Booster) and Lasso (Least Absolute Shrinkage and Selection

Operator) algorithms had the highest average C-index and was

selected as the final model. The Lasso algorithm was used to identify

the most prognostic genes while the GBM algorithm was used to

build the final prognostic model, which consisted of 8 genes (21,

22). Finally, we plotted the Kaplan-Meier (K-M) survival curves for

each gene as well as the K-M survival curves for the high- and low-

risk groups using the “survival” and “survminer” packages to assess

the model’s prognostic performance.
2.8 Analysis of immune infiltration in high
and low risk groups

To gain insight into the relationship between the prognostic impact

of myeloid precursor cells and the immune microenvironment, we

used the CIBERSORT tool to analyze samples for immune infiltration.

Specifically, we performed quantitative assessment of immune cell

composition for single gene grouped and risk grouped samples.

CIBERSORT utilizes transcriptomic data to make inferences about

the relative abundance of immune cell subpopulations, thereby

revealing the infiltration status and characterization of immune cells

in different risk groups. We also performed immune checkpoint

analysis to assess the expression levels of immune checkpoint

molecules and their differences in high and low risk groups. The

expression of immune checkpoint molecules plays a key role in the

suppression and activation of the immune system, and changes in them

may affect the immune escape mechanisms of tumors.We analyzed the

expression patterns of common immune checkpoints, including PD-1,

PD-L1, and CTLA-4, and explored their correlation with high and low

risk groups. In addition, we performed an immune function analysis to

further reveal the functional status of the immune system in different

risk groups by assessing the enrichment of immune-related pathways

and functions. This analysis helped us to understand the dynamics of

immune function in the tumor microenvironment and its potential

impact on disease progression.
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2.9 Statistical analysis

Statistical analyses were performed using R 4.2.2 64-bit version

and its supporting software packages. For continuous variables, the

nonparametric Wilcoxon rank sum test was used to assess the

relationship between the two groups. The Sperman correlation

analysis was used to test the correlation coefficients. All statistical

analyses were performed at a level of significance of P<0.05.
3 Results

3.1 Single-cell data dimensionality
reduction clustering and cell
type identification

We obtained bone marrow aspiration single cell sequencing

data from the GSE116256 dataset for three acute myeloid leukemia

patients and three healthy individuals, with samples in the AML

group coming from unmedicated patients. We processed the single-

cell data using the Seurat package. To remove senescent and low-

quality cells, we performed quality control on the cells (Figure 1A).

After going through a series of steps of normalization, finding

highly variable genes, and normalizing the expression matrix, a

dimensionality reduction clustering step was performed. After PCA

dimensionality reduction, we briefly observed the distribution of

sample cells and the contribution of dimensions (Figures 1B, C) and

selected the top 20 PCs for further dimensionality reduction

clustering, and we clustered the cells into a total of 10 cell clusters

(Figure 1D). We obtained relevant cell marker genes from the

CellMarker website (http://xteam.xbio.top/CellMarker/index.jsp)

and utilized the expression of these marker genes in the cell

clusters for cell type identification (Figures 1E, F). Eventually we

identified myeloid precursor cells, monocytes, erythrocytes, T cells,

NK cells, and B cells (Figure 1G). Based on cell types, we observed

the general spectrum of cells using the proposed temporal trajectory

analysis (Figures 1H, I), which verified the accuracy of the myeloid

precursor cells we identified. Meanwhile, we also utilized violin

plots and heat maps to demonstrate the expression of marker genes

in each cell type (Figures 1J, M). By comparing the number and

distribution of cells in the normal and AML groups, we found that

myeloid precursor cells were significantly increased in the AML

group (Figures 1K, L).
3.2 Analysis of cellular communication in
the AML tumor microenvironment

To understand the cellular communication between various cell

types in the AML tumor microenvironment, we performed cellular

communication inference using the CellChat package. Interaction

between myeloid precursor cells and NK cells was relatively

significant in the tumor microenvironment, and additionally,

communication between monocytes in immune cells was also

very active (Figures 2A, F, G). Because both myeloid precursor
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cells and monocytes belong to the myeloid lineage, their patterns of

autocrine and paracrine communication were similar (Figure 2B).

However, myeloid precursor cells send signals with higher intensity

than monocytes and are the most active presence in the tumor

microenvironment. In contrast, myeloid precursor cells received

signals at a lower intensity, which may suggest their unregulated

presence in the context of AML disease (Figure 2C). In addition we

observed that the macrophage migration inhibitory factor (MIF)

signaling pathway played an important role in the cellular

communication process of myeloid precursor cells, which may be

related to the large proliferation of myeloid precursor cells

(Figures 2D, E) (23–25). We also resolved the communication

patterns in the tumor microenvironment by NMF analysis, which

also helped us to identify the specificity of myeloid precursor cells in

communication (Figures 2H, I).The MIF pathway played multiple

roles in the communication process of myeloid precursor cells,

through which myeloid cells mainly communicated with monocytes

and B-cells, and the cellular expression of MIF, CD74 and CD44

genes MIF, CD74 and CD44 genes were expressed at high levels in

the cells and were the main ligand receptors mediating the

communication through this pathway (Figures 2J–L).
3.3 Pseudo-time analysis and enrichment
of myeloid precursor cells

To further understand the developmental trajectories and

lineages in the tumor microenvironment, we performed a

proposed-time analysis using the monocle2 package, and the

trajectory results presented three distinct nodes and three

branches (Figures 3A–C). Among them, monocytes, a cell type

already present in the tumor microenvironment, underwent

extensive proliferative development of myeloid precursor cells on

the proposed temporal trajectory, and their peak numbers appeared

in the middle and late stages of the proposed time (Figures 3D, E).

We also observed a number of genes that were significantly

differentially expressed at the proposed time, including genes such

as AHSP and CA1 that functioned at a late stage, but also genes such

as THBS1, CD14, S100A9, and FCN1 that functioned at an early

stage of development (Figure 3F). By enrichment analysis of

myeloid precursor cells, we observed apical enrichment for acute

myeloid leukemia (Figures 3G–J).
3.4 Screening of myeloid precursor cell-
related prognostic genes

Abnormal proliferation and dysregulated differentiation of

myeloid precursor cells contribute to the onset and progression of

AML, and we wish to screen genes with prognostic value based on

myeloid precursor cells for AML patients (26, 27). We used the

marker genes of myeloid precursor cells from single-cell data and

modeled them by a combination of ten machine learning

algorithms, and the results showed that the combination of Lasso

and GBM was the most effective (Figure 4A). The Lasso and GBM
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FIGURE 1

Single-cell data processing and cell type identification. (A) Violin plots of sample characteristics after quality control of single-cell data, showing the
distribution of gene counts, total counts, mitochondrial ratio, and red blood cell ratio. (B) Visualization of cell distribution from different samples in
the principal component analysis (PCA) space. (C) Elbow plot for dimension selection, used to determine the optimal number of dimensions in the
dimensionality reduction process. (D) t-SNE dimensionality reduction clustering plot, showing the result of cells being divided into 10 clusters.
(E) Bubble chart of marker gene expression, displaying the expression levels of marker genes across different cell populations. (F) Feature plot of
marker gene expression, presenting the distribution of specific marker genes within cell populations. (G) t-SNE plot showing the results of cell type
identification, displaying the distribution of cell types in two-dimensional space. (H, I) Pseudo-time trajectory plots, respectively showing the
developmental trajectory of cells in pseudo-time analysis. (J) Violin plot of marker gene expression, describing the expression distribution of specific
marker genes across different cell populations. (K) Cell type identification result display, showing the distribution and quantity of cell types by
different groups. (L) Bar chart of cell proportions, displaying the proportion of different cell types within the total cell population. (M) Heatmap of cell
marker gene expression, showing the expression levels of marker genes within various cell populations.
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algorithms resulted in eight signature genes, SPATS2L, SPINK2,

AREG, CLEC11A, HGF, IRF8, ARHGAP5, CD34, and their

correlation was demonstrated by heatmap (Figure 4B). We

plotted the K-M curves for each characterized gene using the

corresponding overall survival data (Figure 4C).
Frontiers in Immunology 06
3.5 Construction of prognostic models

We screened the characterized genes with p-value less than 0.05

as myeloid precursor cell-associated prognostic genes, which were

SPATS2L, SPINK2, AREG,CLEC11A, HGF, IRF8, ARHGAP5. we
FIGURE 2

Analysis of cellular communication in the tumor microenvironment. (A) Cellular communication chord diagram, where the thickness of the lines
represents the frequency of communication between different cells, reflecting the strength of cell interactions. (B) Hierarchical diagram of cellular
communication, showing the communication relationships and hierarchical structure among cells. (C) Scatter plot of signal emission and reception
intensity, displaying the distribution of signal emission and reception strength among different cells. (D, E) Bubble charts of ligand-receptor
communication intensity, respectively showing the communication strength between ligands and receptors. The size and color of the bubbles
indicate the strength and frequency of communication. (F, G) Chord diagrams of signal emission and reception by myeloid precursor cells,
respectively showing the communication patterns of myeloid precursor cells when emitting and receiving signals. (H) Heatmap of cellular
communication patterns, displaying the communication patterns and intensities between different cell types. (I) Sankey diagram of cellular
communication patterns, showing the distribution of communication patterns across various cell types. (J) Heatmap of role preferences during
cellular communication via MIF communication family ligand receptors in different cell types. (K) Chordal plot of cellular communication via MIF
family ligand receptors. (L) Violin plot of MIF family ligand receptor gene expression in various cell types.
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demonstrated the p-value and HR value of each gene by forest plot

(Figure 5A). We categorized patients into high and low risk groups

based on the expression of myeloid precursor cells (Figure 5B). The

prognostic model demonstrated good discrimination and

prognostic value in both the training group data and the

validation group data (Figures 5C, D). We constructed prognostic

column-line plots by combining the risk score with age and gender,

thereby predicting the likelihood of patient survival at 1, 3, and 5

years from the composite score (Figure 5E). The calibration curves

demonstrated the accuracy of the model in predicting the likelihood

of survival at 1, 3, and 5 years (Figure 6A).The AUC scores of the

ROC demonstrated the reliability of our risk model and the

column-line diagrams (Figure 6B).
3.6 High and low risk group
enrichment analysis

To explore the characteristics of patients in the high- and low-risk

groups under the myeloid precursor cell prognostic model, we
Frontiers in Immunology 07
performed KEGG and GO enrichment analyses. the KEGG results

showed that immune-related pathways were less enriched in the

high-risk group, while metabolic and signaling pathways were higher

(Figure 6C). For example, Natural Killer Cell Mediated Cytotoxicity,

the pathway showed low enrichment in the high-risk group. Natural

killer cells are an important part of the innate immune system,

responsible for recognizing and destroying cancerous or virally

infected cells. reduced NK cell activity may imply that immune

surveillance is impaired in the high-risk group, making it easier for

leukemia cells to evade clearance by the immune system, further

exacerbating the disease (28–30). The T Cell Receptor Signaling

Pathway, a pathway that is also higher in the high-risk group, was

also found to be less active in the high-risk group (Figure 6C). T

cells are at the core of the adaptive immune response, recognizing

antigens and activating the immune response through the T cell

receptor (TCR), and the low enrichment of the T cell signaling

pathway suggests that patients in the high-risk group may be

immunosuppressed and unable to effectively initiate an immune

response against leukemia cells, which may be related to the

immune escape mechanism of the leukemia cells (31). The results
FIGURE 3

Pseudo-time analysis and enrichment analysis. (A) Display of cell clustering results, showing the distribution and quantity of cell types in different
groups. (B, C) Pseudo-time developmental trajectory plots. (D) Distribution of different cell types on the pseudo-time trajectory, with a
developmental trajectory dendrogram on the right. (E) Cell count peak plot. (F) Heatmap of differentially expressed genes in pseudo-time. (G–J)
Results of GSEA enrichment analysis for myeloid precursor cells.
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of the enrichment of GO function showed that patients in the high-

risk group had impaired immune surveillance function, making it

easier for leukemia cells to evade the immune system and further

exacerbate the disease. results showed that the high-risk group was

enriched for more functions related to transcriptional regulation and

metabolism, while the low-risk group exhibited more functions
Frontiers in Immunology 08
related to development and differentiation (Figures 6D, E). From

the results of these enrichment analyses, there were significant

differences in immune system function, cellular differentiation, and

metabolic regulation between patients in the AML high- and low-risk

groups. Patients in the high-risk group exhibited suppressed immune

function, activation of metabolic pathways (e.g., GPI-anchored
FIGURE 4

Prognostic gene selection. (A) Consensus model construction diagram. An illustration of the consensus model built using 101 different algorithm
combinations, showing the different algorithm combinations and their consistency assessment results during the model construction process.
(B) Heatmap of prognostic gene correlations. It displays the correlations between the selected prognostic genes. The color intensity in the heatmap
indicates the strength of gene correlations, helping to identify key prognostic genes and their interrelationships. (C) K-M survival curves for gene
expression high and low groups. Kaplan-Meier survival curves are plotted after grouping samples into high and low expression groups based on
gene expression levels. The curves show differences in survival rates between gene expression level groups to assess their role in prognosis.
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synthesis, proteasome pathway), and abnormalities in gene

transcriptional activation (e.g., increased activity of transcription

factors, increased activity of histone methylation), which may

contribute to the proliferation and survival of leukemic cells. In
Frontiers in Immunology 09
contrast, patients in the low-risk group were more enriched for

functions related to cell differentiation, immune regulation, and

developmental processes, suggesting that these patients may have

more normal hematopoietic functions and immune responses.
FIGURE 5

Construction of the prognostic model. (A) Meta-analysis diagram of univariate Cox survival analysis. It shows the results of meta-analysis of
univariate Cox regression analysis for different prognostic factors to assess the correlation of each factor with survival time. The diagram includes the
HR and 95% confidence interval for each factor. (B) PCA diagram of high-risk and low-risk groups. It compares the data distribution after dividing
samples into high-risk and low-risk groups based on risk scores. The PCA diagram shows the distribution difference of the two groups on the
principal components. (C, D) K-M survival curves. (C) shows the survival curves of high-risk and low-risk groups in the training set; (D) shows the
survival curves of the corresponding groups in the validation set. Both diagrams are used to compare survival differences between different risk
groups and to assess the prognostic predictive ability of the model. (E) Bar chart of comprehensive risk scores and clinical characteristics. It shows
the association between comprehensive risk scores and clinical features, with the bar chart indicating the weight of each clinical characteristic in the
comprehensive risk score and its predictive value for prognosis. *** indicates that the factor is statistically significant for disease prognosis with a p-
value of less than 0.001.
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3.7 Immune infiltration analysis

We first performed immune infiltration analyses on subgroups

of patients with the eight myeloid precursor cell signature genes,

thus observing the consistency and differences in their effects on the
Frontiers in Immunology 10
tumor microenvironment (Figures 7A–H). Immune infiltration

analyses were also performed on the high- and low-risk groups,

and the high-risk group had higher levels of monocyte and

macrophage M0-type infiltration. This may imply that

macrophage polarization in the tumor microenvironment is
FIGURE 6

Predictive efficacy and functional enrichment analysis of the prognostic model. (A) Calibration curve of the prognostic model’s predictive efficacy. It
shows the match between the model’s predicted risk scores and actual observed results, assessing the model’s predictive accuracy. (B) ROC curve
of the prognostic model’s efficacy. It displays the receiver operating characteristic (ROC) curve of the model and the AUC, used to assess the
model’s classification ability. (C) KEGG pathway enrichment analysis heatmap. It shows the enrichment of prognostic genes in KEGG pathways,
helping to identify key biological pathways. (D) GO enrichment analysis bubble chart. It shows the enrichment of prognostic genes in GO categories,
with the bubble chart displaying the relationships and enrichment levels of different GO terms. (E) GO enrichment analysis bar chart. It shows the
enrichment levels of prognostic genes in different GO categories, with the bar chart reflecting the significance of each GO category.
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associated with the progression of AML, and that M0-type

macrophages are in an unpolarized state, where they may not yet

have fully exerted their antitumor effects in the tumor

microenvironment, and may even contribute to the growth of

leukemic cells. The low-risk group showed a higher proportion of

activated natural killer cells and activated mast cells, which may
Frontiers in Immunology 11
suggest that anti-tumor immune surveillance mechanisms are still

more active in low-risk patients. Regulatory T cells were in higher

proportion in the high-risk group. By suppressing the immune

response, regulatory T cells may help leukemia cells to evade the

attack of the immune system and further promote disease

progression. The results of immune checkpoint analysis showed
FIGURE 7

Immune infiltration analysis. (A–H) Results of immune infiltration analysis based on the expression levels of prognostic marker genes, grouped into
different groups. Each subfigure shows the immune cell infiltration between different groups, comparing the immune infiltration levels between high
and low expression groups of prognostic marker genes. “*” represents a p-value less than 0.05, “**” represent a p-value less than 0.01, and “***”
represent a p-value less than 0.001.
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that the expression of classical immune checkpoint molecules, such

as PDCD1, CD274, and CTLA4, was significantly elevated in the

high-risk group. This suggests that leukemia cells in high-risk

patients may inhibit the activity of the immune system through

these checkpoint molecules, allowing tumor immune escape and

thus promoting disease progression. The expression of the novel

immune checkpoints, such as LAG3, TIM3, and TIGIT, was

likewise higher in the high-risk group, suggesting that these

molecules may play a key role in immunosuppression in high-risk

AML patients. LAG3 and TIM3, in particular, have been recognized

as potential therapeutic targets in recent years and may be closely

related to immune escape mechanisms. The lower expression levels

of these immune checkpoints in the low-risk group may reflect the

relatively more active immune system of these patients, which is

capable of recognizing and clearing leukemia cells more effectively.

The results of the immune function score analysis showed that APC

co-inhibition and Check-point scored higher in the high-risk group,

suggesting that the activity of antigen-presenting cells was

suppressed in high-risk patients and that the immune system may

have difficulty in effectively initiating an anti-leukemia response. In

addition, increased immune checkpoint activity implies activation

of immunosuppressive pathways, further suppressing T-cell

function. Inflammation-promoting scored higher in the high-risk

group, which may be related to the chronic inflammatory state in

the tumor microenvironment. Chronic inflammation may promote

cancer cell survival and proliferation in some cases. Type I IFN

response and Type II IFN response scored higher in the low-risk

group, suggesting that low-risk patients may have stronger antiviral

and antitumor immune responses. Together, these analyses reveal

that there are significant differences in the immune environments of

high- and low-risk AML patients, that immunosuppression is an

important mechanism of disease progression in the high-risk group,

and that immunotherapies (e.g., checkpoint inhibitors) may have a

positive therapeutic effect in these patients (Figures 8A–C).
3.8 Prognostic marker gene expression
validation and enrichment analysis

We validated the expression of prognostic marker genes using

the AML-BM RNA-seq Cohort with the aim of confirming the

differences in the expression of these genes between acute myeloid

leukemia (AML) patients and normal controls. By comparing the

data from the AML group with that of the normal group, we used an

independent samples t-test to statistically analyze the gene

expression. The results showed that seven prognostic marker

genes showed significant expression differences between the AML

and normal groups (Figure 9A). We performed gene differential

expression analysis using normal and disease samples from the

AML-BM RNA-seq cohort and demonstrated the top thirty and

bottom thirty differentially expressed genes by heatmap (Figure 9B).

Then based on the differentially expressed genes, we performed GO

enrichment analysis and demonstrated the enriched active

pathways by bar graph (Figure 9C).
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4 Discussion

In this study, we comprehensively analyzed the tumor

microenvironment and prognosis-related genes in acute myeloid

leukemia (AML) and constructed a prognostic model for AML

patients based on single-cell RNA sequencing (scRNA-seq) and

RNA-seq data. Our study revealed the abnormal proliferation and

dysregulated differentiation of myeloid precursor cells in AML,

elucidating the important role of this cell type in the tumor

microenvironment and its potential as a potential therapeutic

target for AML. Through systematic cell communication analysis,

mimetic timing analysis and enrichment analysis, we not only

deeply explored the function and developmental trajectory of

myeloid precursor cells, but also screened out genes that are

closely related to patient prognosis.

Firstly, we successfully identified myeloid precursor cells and

other major cell types through dimensionality reduction clustering

and cell type identification of single-cell data. Myeloid precursor

cells are significantly more prevalent in AML patients, a finding that

suggests their critical role in the pathological process of AML.

Abnormal proliferation of these cells may be closely related to the

development of AML, especially their abnormal activity in the

tumor microenvironment (32, 33). Mimetic time-series analysis

further validated the developmental trajectory of myeloid precursor

cells, showing their extensive proliferation in AML and peaking in

the late stage of the disease. Combined with the results of

enrichment analysis, the gene expression profile of myeloid

precursor cells revealed their specific functions in AML, especially

the activation of the MIF signaling pathway, which may be related

to the proliferation and autocrine regulation of myeloid precursor

cells (34, 35).

Cell communication analysis also revealed for us the complex

interactions between myeloid precursor cells and other cell types in

the AML tumor microenvironment. We found that myeloid

precursor cells interacted with NK cells and monocytes

particularly in the AML microenvironment. the role of NK cells

was significantly reduced in the high-risk group, possibly suggesting

that the immune system of these patients was significantly

suppressed. This was further verified in our analysis of immune

infiltration in the high- and low-risk groups, which demonstrated

suppression of immune function with activation of immune escape

mechanisms in the high-risk group (36). These findings emphasize

the association between immune microenvironment characteristics

and disease progression in AML patients and provide a theoretical

basis for targeted immunotherapy (37).

Based on the marker gene screening of myeloid precursor cells,

we constructed a prognostic model for AML and selected a

combined model of Lasso and GBM by comparing multiple

machine learning algorithms. The final 8 characterized genes

(SPATS2L, SPINK2, AREG, CLEC11A, HGF, IRF8, ARHGAP5,

CD34) showed significant prognostic value in patients’ survival

analysis. These genes may not only help predict the prognosis of

AML patients but may also serve as potential targets for future

therapy (38–40). For example, high expression of SPINK2 and
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AREG is closely associated with malignant progression of AML,

suggesting their role in disease regulation. By K-M curves and Cox

regression analysis, we further validated the expression differences

of these genes in patients of high and low risk groups, and the good

performance of the prognostic model was further supported by the

data from the training and validation groups (41).

To further validate the expression patterns of these marker

genes and their actual roles in AML patients, we collected bone

marrow samples from 10 AML patients and 10 healthy individuals

and performed RNA-seq sequencing analysis. The results showed

that some of the prognosis-related genes screened in this paper were
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significantly highly expressed in bone marrow samples from AML

patients and were statistically significant compared with normal

individuals (42). This result is consistent with our findings obtained

from publicly available databases and bioinformatics analyses,

further enhancing the reliability of these genes as potential

prognostic markers for AML. In addition, the gene expression

data revealed that certain genes may play key regulatory roles in

the development of AML, providing direction for subsequent

mechanistic studies (43).

In addition, our immunoassays revealed significant features of

high-risk AML patients in terms of immune escape, especially the high
FIGURE 8

(A) Bar chart of immune infiltration analysis results for high-risk and low-risk patients, showing the infiltration levels of immune cells in different risk
groups. (B) Bar chart comparing the expression levels of immune checkpoint genes, showing differences in the expression of major immune
checkpoint genes between high-risk and low-risk groups. (C) Bar chart of immune function score results, comparing the immune function scores of
high-risk and low-risk patients. “*” represents a p-value less than 0.05, “**” represent a p-value less than 0.01, and “***” represent a p-value less than
0.001, indicating the statistical significance of differences between groups.
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expression of classical immune checkpoint molecules (e.g., PDCD1,

CTLA4), which further suggests that these patients may escape from

the attack of the immune system through immune checkpoint

inhibition mechanisms (44–46). Patients in the high-risk group had

higher levels of M0-type macrophage infiltration, whereas the low-risk

group showed greater immune surveillance. This suggests that the role

of the immune system in the progression of AML patients is crucial,

and future treatment in combination with immune checkpoint

inhibitors or other immunotherapies may be needed to improve the

prognosis of patients in the high-risk group (47, 48).

In summary, this study constructed a prognostic model of AML

by systematic single-cell analysis and machine learning modelling

and revealed the critical role of myeloid precursor cells in the

pathological process of AML. Future studies should further validate

the prognostic value of these genes in independent cohorts and
Frontiers in Immunology 14
explore myeloid precursor cell-based therapeutic interventions,

thus providing new ideas for individualized treatment of

AML patients.
5 Conclusion

In this study, the cellular heterogeneity and potential molecular

mechanisms in the tumor microenvironment of acute myeloid

leukemia (AML) were deeply resolved by integrating single-scRNA-

seq and bulk RNA-seq data. The aberrant proliferation of myeloid

precursor cells and their critical role in AML development were

revealed by cellular communication, mimetic time-series analysis,

and screening of prognosis-related genes. The AML prognostic

model constructed based on survival analysis identified a variety of
FIGURE 9

Expression of prognostic marker genes and GO enrichment analysis. (A) It shows the expression of 8 prognostic marker genes in the AML-BM RNA-
seq Cohort. The figure displays the expression levels of these genes in samples, revealing their expression characteristics in AML bone marrow
samples. (B) Heatmap of differentially expressed genes in the normal and disease groups, showing 30 genes each that are up- and down-regulated.
Red represents up-regulated expression and blue represents down-regulated expression. (C) Bar chart of GO enrichment analysis results.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1494106
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2024.1494106
prognostic-related genes and demonstrated their potential

application value in survival prediction of AML patients. In

addition, this study revealed features related to immunosuppression

and tumor immune escape, which provided new ideas and potential

targets for personalized treatment of AML.
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