
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Gaurisankar Sa,
Bose Institute, India

REVIEWED BY

Ali Roghanian,
University of Southampton, United Kingdom
Shuvasree Sengupta,
University of Michigan, United States
Christina Cho,
Yale University, United States

*CORRESPONDENCE

David Entenberg

david.entenberg@einsteinmed.edu

RECEIVED 10 September 2024

ACCEPTED 15 October 2024
PUBLISHED 01 November 2024

CITATION

Friedman-DeLuca M, Karagiannis GS,
Condeelis JS, Oktay MH and Entenberg D
(2024) Macrophages in tumor cell migration
and metastasis.
Front. Immunol. 15:1494462.
doi: 10.3389/fimmu.2024.1494462

COPYRIGHT

© 2024 Friedman-DeLuca, Karagiannis,
Condeelis, Oktay and Entenberg. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 01 November 2024

DOI 10.3389/fimmu.2024.1494462
Macrophages in tumor cell
migration and metastasis
Madeline Friedman-DeLuca1,2,3,4,5, George S. Karagiannis1,3,4,5,6,7,
John S. Condeelis1,3,4,5,8,9, Maja H. Oktay1,2,3,4,5,8

and David Entenberg1,2,3,4,5*

1Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore
Medical Center, Bronx, NY, United States, 2Department of Pathology, Albert Einstein College of
Medicine/Montefiore Medical Center, Bronx, NY, United States, 3Montefiore Einstein Comprehensive
Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United
States, 4Cancer Dormancy Institute, Albert Einstein College of Medicine/Montefiore Medical Center,
Bronx, NY, United States, 5Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/
Montefiore Medical Center, Bronx, NY, United States, 6Department of Microbiology and Immunology,
Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States, 7Marilyn and
Stanley M. Katz Institute for Immunotherapy of Cancer and Inflammatory Disorders, Albert Einstein
College of Medicine/Montefiore Medical Center, Bronx, NY, United States, 8Department of Surgery,
Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, United States,
9Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx,
NY, United States
Tumor-associated macrophages (TAMs) are a phenotypically diverse, highly

plastic population of cells in the tumor microenvironment (TME) that have long

been known to promote cancer progression. In this review, we summarize TAM

ontogeny and polarization, and then explore how TAMs enhance tumor cell

migration through the TME, thus facilitating metastasis. We also discuss how

chemotherapy and host factors including diet, obesity, and race, impact TAM

phenotype and cancer progression. In brief, TAMs induce epithelial-

mesenchymal transition (EMT) in tumor cells, giving them a migratory

phenotype. They promote extracellular matrix (ECM) remodeling, allowing

tumor cells to migrate more easily. TAMs also provide chemotactic signals that

promote tumor cell directional migration towards blood vessels, and then

participate in the signaling cascade at the blood vessel that allows tumor cells

to intravasate and disseminate throughout the body. Furthermore, while

chemotherapy can repolarize TAMs to induce an anti-tumor response, these

cytotoxic drugs can also lead to macrophage-mediated tumor relapse and

metastasis. Patient response to chemotherapy may be dependent on patient-

specific factors such as diet, obesity, and race, as these factors have been shown

to alter macrophage phenotype and affect cancer-related outcomes. More

research on how chemotherapy and patient-specific factors impact TAMs and

cancer progression is needed to refine treatment strategies for cancer patients.
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1 Introduction

Metastasis – the systemic spread of cancer – causes the majority

of cancer-related deaths (1). To metastasize, cancer cells must be

able to migrate through the tumor microenvironment (TME) and

intravasate. Though not all tumor cells are inherently capable of

such feats, the migratory and invasive phenotypes needed to

accomplish these tasks can be induced through interactions with

other types of cells in the TME, including endothelial cells, immune

cells, and fibroblasts. Of the cellular components within the TME,

macrophages are key players in the induction of pro-metastatic

phenotypes in cancer cells. In this review, we provide an

introduction to macrophages and their origin, discuss

macrophage polarizat ion, and then review the latest

understanding of the role of macrophages in tumor cell migration

and metastasis, including the promotion of 1) epithelial-

mesenchymal transition (EMT), 2) pro-tumoral extracellular

matrix (ECM) remodeling, 3) tumor cell chemotaxis towards

blood vessels, and 4) tumor cell intravasation. We also explore

the impact of chemotherapy and host factors including diet, obesity,

and race on tumor-associated macrophages (TAMs). Overall, we

attempt here to summarize recent studies, discuss these new

findings in the context of what is already known about the role of

TAMs in tumor cell migration and metastasis, and highlight new

potential avenues for refining therapeutic interventions.
1.1 Macrophage ontogeny

Macrophages have two distinct ontogenies. The first of these is

monocyte-derived macrophages (MDMs) which originate from

progenitors in the bone marrow and other hematopoietic niches

(2), progress through several stages of differentiation, and enter the

systemic circulation as monocytes. Circulating monocytes are

recruited to tissues in response to locally released chemo-

attractants where they differentiate into macrophages (3). Once

inside the tissue, MDMs may be short- or long-lived, and their

population is maintained through recruitment of new circulating

monocytes as well as proliferation of pre-existing MDMs (4, 5). The

second group, known as tissue-resident macrophages, arise early in

embryonic development, migrating from the yolk sac or fetal liver

into developing organs where they differentiate into tissue-specific

macrophages, including Kupffer cells (liver), osteoclasts (bone), and

microglia (brain) (5). In adults, these macrophages self-renew

largely independently of the bone marrow (6, 7). Macrophages in

the TME are referred to as tumor-associated macrophages (TAMs).

While most TAMs are monocyte-derived, tissue-resident

macrophages make up a considerable percentage of TAMs in

some tumor types (8–10).
1.2 Macrophage polarization

Once inside the tumor, macrophages take on various

phenotypes and functions in response to stimuli in the

microenvironment. These phenotypes are referred to as
Frontiers in Immunology 02
“polarization states.” There is a wide spectrum of macrophage

polarization states ranging from pro-inflammatory (M1) to anti-

inflammatory (M2).

M1 macrophages (historically called “classically activated”), are

pro-inflammatory cells that participate in the host immune

response against pathogens and can have anti-tumor activity. As

such, environmental factors associated with infection and

inflammation (including interferon (IFN)-g , bacterial

lipopolysaccharide (LPS), and granulocyte-macrophage colony

stimulating factor (GM-CSF)) promote M1 polarization (11).

These signals cause macrophages to express surface proteins

related to antigen presentation and T cell activation (including

HLA-DR, CD80, and CD86) (11–14), and secrete inflammatory

cytokines such as tumor necrosis factor (TNF)-a and interleukin

(IL)-1b to further enhance the immune response (11). M1

macrophages promote tumor cell killing through strong antigen

presentation and effective activation of the innate and adaptive

immune responses (15). Indeed, high M1 macrophage infiltration is

correlated with positive outcome in cancer patients (16, 17).

M2 (or “alternatively activated”) macrophages, are anti-

inflammatory cells that are involved in tissue repair and immune

suppression. While these cells are essential in maintaining

homeostasis in healthy tissues, they can also promote tumor

growth and metastasis in the TME. M2 macrophages are induced

by anti-inflammatory cytokines in the microenvironment,

including IL-4 and IL-10 (11). These signals cause macrophages

to express surface proteins such as CD163 and CD206, which are

involved in tissue “clean-up” and homeostasis, and to secrete

additional anti-inflammatory factors, such as IL-10 and

transforming growth factor (TGF)-b, which further suppress the

immune response (11, 18, 19). M2 macrophages also express high

levels of vascular endothelial growth factor (VEGF), which

promotes tumor vascularization, enhancing the delivery of oxygen

and nutrients to the tumor (11). M2 macrophages are poor antigen

presenters and suppress both innate and adaptive anti-tumor

immunity (15). Furthermore, M2 macrophages are implicated in

chemoresistance and metastasis, and high M2 infiltration is

associated with poor prognosis in cancer patients (20–26).

Though macrophage polarization is a spectrum with M1 and

M2 on opposing ends, it is common in the literature to oversimplify

this state and treat macrophage polarization as a dichotomy (M1 or

M2). Given that many “anti-inflammatory” macrophages also

participate in inflammatory signaling and vice versa, the terms

“M1” and “M2” should merely give a sense of how a macrophage is

predominantly functioning in a particular environment. It is also

important to note that macrophage phenotype is highly plastic.

Similar to other components of the innate immune system,

macrophage phenotype can quickly change in response to

environmental cues (27). Indeed, in vitro and in vivo studies

confirm that macrophages may repolarize in response to

particular stimuli (28–30), an effect that has been leveraged in

several immunotherapy clinical trials (31). Promising macrophage-

targeting therapies and the challenges associated with their

development are reviewed elsewhere (32–37). Given their

significant, plastic, and diverse roles in cancer progression,

understanding the mechanisms behind macrophage-mediated
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cancer progression and the effects of chemotherapy and host factors

is crucial to refining cancer treatment strategies.
2 TAMs in EMT

Epithelial-mesenchymal transition (EMT) is the process by

which epithelial cells lose their characteristic apical-basal polarity

and tight cell-cell junctions, and gain features associated with

mesenchymal cells, including the ability to migrate and invade

surrounding tissue (38, 39). In healthy tissues, EMT is used in

critical processes such as embryonic development and wound

healing. However, cancer cells hijack this program to gain

migratory and invasive phenotypes. Cells that have undergone

EMT are characterized by the loss of E-cadherin and the increase

in N-cadherin and vimentin. E-cadherin, often used as an epithelial

cell marker, is an important cell-cell adhesion protein involved in

contact-mediated inhibition of cell growth (40). During EMT, the

transcription factor SNAIL directly represses E-cadherin

transcription and is thus crucial in EMT regulation (41). As E-

cadherin decreases, the mesenchymal cell markers N-cadherin and

vimentin increase and support tumor cell survival and migration

(42, 43). During this process, tumor cells pass through a series of

epithelial/mesenchymal (E/M) hybrid states that reflect varying

degrees of plasticity and metastatic potential (44). Tumor-
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associated macrophages have long been known to play a role in

EMT induction (45, 46), and more recent evidence shows that

TAMs also promote progression to later E/M hybrid states (44). A

number of recent studies have further elucidated the mechanisms

behind this relationship, pointing to feedback loops in which tumor

cells undergoing EMT attract and polarize macrophages, which

then secrete factors that further promote EMT in tumor cells (45–

47) (Figure 1).

Macrophages can induce EMT in cancer cells by secreting various

factors, including TGF-b (48), CCL2 (49), and IL-6 (50), all of which

ultimately lead to SNAIL upregulation and subsequent EMT in

tumor cells. For instance, IL-6 activates the JAK2/STAT3 pathway

upon binding the IL-6 receptor (47, 50, 51) (Figure 1A). The JAK2/

STAT3 axis is a critical signal transduction pathway that participates

in many cellular functions including proliferation, differentiation, and

survival, and components of this pathway are hyperactivated in many

cancers (52, 53). After IL-6 receptor activation, STAT3 inhibits the

transcription of tumor suppressor microRNAs including miR-34a

(50, 51). MiR-34a suppresses SNAIL, and loss of miR-34a leads to

SNAIL upregulation and subsequent EMT (54, 55), as well as tumor

cell proliferation and migration (50, 56) (Figure 1B). Macrophage-

induced mesenchymal-like tumor cells then secrete increased

amounts of CCL2, which recruits macrophages (47), and IL-6,

which leads to M2 polarization (51, 57) (Figure 1C), further

propagating EMT in a positive feedback loop.
FIGURE 1

(A) Macrophages secrete IL-6, which binds to the IL-6 receptor on tumor cells, activating the JAK2/STAT3 pathway. After IL-6 receptor activation,
STAT3 translocates to the nucleus and suppresses transcription of miR-34a, which leads to SNAIL upregulation. (B) The increase in SNAIL leads to
loss of E-cadherin, and EMT programs become active and increase the expression of N-cadherin and vimentin. The tumor cell takes on a
mesenchymal-like phenotype, which affords enhanced migration capacity. (C) Mesenchymal-like tumor cells secrete factors that recruit
macrophages to the TME (e.g. CCL2, CCL5, and CXCL2) and that promote M2 polarization (e.g. IL-6). M2 polarization is characterized by the
expression of surface markers such as CD163 and CD206. Figure created with BioRender.com.
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These studies reveal several therapeutic targets with the

potential to reduce the co-induction of EMT and M2

polarization. Inhibiting IL-6 signaling by targeting IL-6 itself, or

its receptor (with anti-IL-6R monoclonal antibodies like

tocilizumab), reduces EMT, decreases M2 polarization and

increases M1 polarization (51). The tumor suppressor miR-34a is

also a potential target. MiR-34a suppresses SNAIL and reinstates an

epithelial phenotype in mesenchymal-like cancer cells (55). MiR-

34a expression in tumor cells also promotes macrophage M1

polarization, demonstrating that the microRNA can favorably

modify both the tumor cells and the immune microenvironment

(51). Indeed, nanoparticle-delivered miR-34a has shown promise in

treating several types of cancers (58, 59).In addition to promoting

EMT in cancer cells, SNAIL is also involved in macrophage

recruitment. SNAIL expression in tumor cells increases their

secretion of CCL2, CCL5, and CXCL2, all of which attract

macrophages to the TME (60–62) (Figure 1C). Indeed, SNAIL-

overexpressing tumors show a significant increase in macrophage

infiltration, M2 polarization, and metastasis (60, 62).

Finally, in addition to cytokines and chemokines, more recent

evidence has revealed that exosomes can also mediate macrophage-

tumor cell feedback loops related to EMT and M2 polarization.

Tumor cells that have undergone EMT secrete exosomes containing

microRNAs that are taken up by macrophages and induce M2

polarization (63). For example, it was shown that tumor cell derived

exosomes contain miR-106b-5p, which upon uptake by

macrophages, activates the PI3Kg/AKT/mTOR signaling pathway

to induce M2 polarization by downregulating the pathway inhibitor

PDCD4 (63). Similarly, SNAIL expression directly upregulates the

transcription of miR-21 in tumor cells. This microRNA is then

transferred to macrophages through exosomes and also targets

macrophage PDCD4, leading to M2 polarization (64).

Exosomal microRNAs can be transmitted from macrophages to

tumor cells as well (65). Tumor cell uptake of M2 macrophage-

derived exosomes leads to downregulation of E-cadherin and

upregulation of N-cadherin and vimentin (65). Lu et al. found

that these exosomes contain miR-23a-3p, which downregulates the

tumor suppressor PTEN (65) – a known regulator of EMT (66). In a

positive feedback loop, tumor cells treated with M2 macrophage-

derived exosomes express higher levels of CCL2, leading to

increased macrophage recruitment and M2 polarization (65).

In summary, tumor cell EMT and macrophage recruitment and

polarization are intimately connected and co-regulated by several

molecular mechanisms.
3 TAMs in extracellular
matrix remodeling

3.1 TAMs in matrix stiffness

Macrophages also promote tumor cell migration and invasion

through ECM remodeling. The ECM of non-cancerous soft tissue is

characterized by “curly,” non-dense collagen fibers that lay parallel

to the epithelium (67). This soft ECM is involved in maintaining an

epithelial phenotype, and matrix stiffening has been shown to play a
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direct role in promoting EMT (68, 69). Indeed, clinical conditions

characterized by a stiff ECM – including cirrhosis of the liver (70),

pulmonary fibrosis (71), and mammographically dense breast tissue

(72) – are associated with a higher incidence of cancer in the

respective tissues. In tumors, collagen deposition increases, and

fibers become stiff, cross-linked and linearized – a process known as

desmoplasia that has been associated with immune evasion and

metastasis (67, 73–76). Indeed, tumors have been shown to be stiffer

than healthy tissue in breast (77), pancreas (78), bladder (79), and

ovarian (80) cancers. The stiffened matrix of tumors promotes

malignant transformation, proliferation, and invasion of tumor

cells, and acts as a “highway,” guiding tumor cells towards the

vasculature, where they further invade and intravasate (67, 69, 76,

77, 81–85). Recent work sheds light on the mechanistic role of

TAMs in pro-tumoral matrix stiffening.

Macrophages promote matrix deposition and stiffening in both

cancerous and healthy tissue (86, 87). In pancreatic cancer,

macrophages foster desmoplasia indirectly by activating

pancreatic stellate cells. Mechanistically, macrophages internalize

and degrade surrounding collagen, which leads to an increase in

inducible nitric oxide synthase (iNOS) and the production of

reactive nitrogen species (RNS). RNS then activate pancreatic

stellate cells leading to increased collagen deposition and

desmoplasia (87).

In the desmoplastic reaction, excessive ECM deposition is followed

by cross-linking, which confers increased stiffness to the TME. ECM

crosslinking is mediated primarily by lysyl oxidase (LOX) and lysyl

oxidase-like (LOXL) proteins, which are expressed by a variety of cells

in the TME (88). In pancreatic cancer, LOXL2 expression is positively

associated with tumor burden and metastasis (89). Macrophages both

express their own LOXL2 and promote its expression in tumor cells

(89, 90). Alonso-Nocelo et al. recently demonstrated that macrophage

depletion leads to a significant decrease in LOXL2, collagen fibril

orientation, and metastasis in mice, indicating that macrophages

promote matrix stiffness (89). In a positive feedback loop, the

stiffened matrix then promotes macrophage infiltration and M2

polarization (89). Mechanistically, macrophages increase matrix

stiffness by secreting oncostatin M (OSM), which upregulates LOXL2

in tumor cells (89). In turn, the stiffened matrix activates integrin b5 in
macrophages, leading to FAK/MEK/ERK activation and LOXL2

upregulation, further supporting ECM crosslinking in the TME (90).

In addition to promoting tumor cell migration, stiffened matrices cause

macrophages to take on a more immunosuppressive phenotype (89,

91). Indeed, macrophages cultured on stiff matrices recruit cytotoxic T

cells less efficiently than those cultured on softer matrices (91).

Together, these studies indicate that macrophages support the

development of a stiff ECM through direct and indirect

mechanisms. In turn, the stiff ECM promotes macrophage

recruitment, M2 polarization, tumor cell migration, and metastasis.
3.2 TAMs in matrix degradation

Equally as important as matrix stiffness for cancer progression

is matr ix degradat ion, which is mediated by matrix

metalloproteinases (MMPs). MMPs are a group of zinc-
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containing proteolytic enzymes responsible for degrading the

extracellular matrix (92). MMPs are upregulated in nearly every

type of cancer, and their activity has been shown to facilitate

angiogenesis, tumor cell immune evasion, migration, and

metastasis (92, 93). MMPs are expressed by a variety of stromal,

immune, and tumor cells, and a growing body of evidence reveals

the role of MMPs in the dynamic pro-metastatic interplay between

macrophages and tumor cells.

MMP production can be induced through several major signal

transduction pathways including STAT3, ERK, and NF-kB (94–

102). Evidence shows that macrophages provide multiple ligands

for these pathways that cooperate to promote MMP expression. For

example, macrophages secrete AEG-1, TGF-b, and IL-6, which all

increase MMP-9 expression in tumor cells by activating STAT3 (94,

95, 97). Indeed, inhibiting STAT3 in tumor cells, or its activators in

macrophages, causes a significant decrease in MMP expression and

migration in tumor cells (95, 97). Macrophages also secrete TNF-a
and IL-1b, which activate the NF-kB pathway. Yamanaka et al.

found that IL-1b activates NF-kB in gastric cancer cells, and this

leads to increased MMP-9 expression and tumor cell invasion (103).

Furthermore, tumor cells cultured in M2 macrophage-conditioned

media express significantly increased levels of MMP-9 (98). This

effect can be seen to a lesser (but still significant) extent when tumor

cells are stimulated with TNF-a alone, suggesting that macrophages

provide multiple ligands that stimulate MMP production (98).

MMPs expressed by macrophages also play a significant role in

tumor cell invasion and metastasis. Macrophage – but not tumor

cell – expression of MMP-11 is a negative prognostic marker in

breast cancer (104). MMP-11-overexpressing macrophages secrete

increased amounts of CCL2. CCL2 then activates MAPK signaling

in tumor cells and increases tumor cell migration and MMP-9

expression (104). In Wilms’ tumor and gastric cancer, MMP-9 is

upregulated in M2 macrophages, and MMP-9 initiates EMT and

increases tumor cell invasion (105, 106). Mechanistically,

macrophage-derived MMP-9 activates the PI3K/AKT pathway in

tumor cells leading to the upregulation of SNAIL and subsequent

EMT (105, 106). These studies identify MMP-9 as a promising

therapeutic target. Indeed, MMP-9 inhibition increased the efficacy

of chemotherapy and decreased metastasis to the lungs in a

mouse model of gastric cancer (106). Together, these studies

identify macrophages as important regulators of tumor cell

MMP production.
4 TAMs in tumor cell chemotaxis

Beyond promoting a mesenchymal phenotype in cancer

cells, TAMs also supply ligands and chemotactic factors that

support tumor cell migration and invasion in the tumor

microenvironment (Figure 2).

In vitro and in vivo migration assays and intravital imaging

show that tumor cells and macrophages migrate through the TME

together using a CSF1/EGF paracrine loop that leads to invasion

and metastasis (107–110) (Figure 2A). High levels of CSF1 (111–

113) and the EGF receptor (114–117) are correlated with metastasis

and poor prognosis in a number of solid tumors. CSF1 secreted by
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tumor cel ls both recruits macrophages to the tumor

microenvironment and promotes macrophage expression of EGF

(108). TAM-derived EGF then binds to the EGF receptor on tumor

cells, leading to increased CSF1 production and activation of

pathways associated with migration (107, 108, 118) (Figure 2A).

Using this paracrine loop, macrophages and tumor cells migrate

together along fibronectin-collagen I ECM fibers towards

chemotactic gradients. Leung et al. found that in the TME, the

primary chemo-attractant for the macrophage-tumor cell pair is

hepatocyte growth factor (HGF), which is secreted by endothelial

cells (119) (Figure 2). Within 500 mm of a blood vessel, tumor cells

may perform sustained directional migration towards HGF

gradients with or without macrophages. However, tumor cells at

greater distances can only move towards blood vessels by co-

migrating with a macrophage (119). Thus, while tumor cells may

chemotax along these HGF gradients alone, co-migrating with

macrophages greatly supports their ability for sustained

directional migration and extends the chemoattractive influence

of the blood vessels.

In addition to participating in tumor cell chemotaxis,

macrophages support tumor cell migration by both promoting the

formation of tumor cell invadopodia and prolonging their activity

(Figure 2). Invadopodia are F-actin-rich protrusions with MMP

activity used to degrade the ECM and create new physical pathways

through the tumor (120, 121). TAMs promote the formation of

invadopodia by secreting EGF, which activates the EGF receptor in

tumor cells. EGF receptor activation initiates the assembly of

invadopodial precursors through the recruitment of actin regulatory

proteins such as cortactin, Arp2/3, and cofilin (118, 120, 122, 123)

(Figure 2A). Phosphorylation of cortactin activates actin

polymerization and leads to maturation of a precursor. The actin

regulatory protein Mena (encoded by the ENAH gene) supports this

polymerization by localizing to the barbed ends of polymerizing actin

filaments and temporarily interfering with the capping proteins that

block polymerization (124, 125). In non-invasive tumor cells,

invadopodia can form, but do not mature, as cortactin is rapidly

dephosphorylated by the tyrosine phosphatase PTP1B that is

constitutively bound to Mena. This lack of maturation dramatically

limits the invasive capacity of invadopodia by limiting the amount of

matrix they can degrade (126).

Macrophages also play a role in promoting invadopodium

maturation (thus increasing degradative activity) by stimulating

the expression of a splice variant of Mena called MenaINV

(Figure 2B). MenaINV prolongs the degradative activity of

invadopodia by sequestering PTP1B and preventing the

dephosphorylation/deactivation of cortactin and the subsequent

disassembly of actin filaments (127, 128). The MenaINV-

stabilized invadopodium then degrades the ECM in its path,

facilitating tumor cell migration towards blood vessels

(Figure 2C). Macrophages promote the alternative splicing of

Mena through cooperative Notch1/NF-kB signaling (129, 130)

(Figure 2B). Mechanistically, macrophages secrete TNFa, which
activates the NF-kB pathway in tumor cells, leading to p65 nuclear

translocation. Inside the nucleus, p65 binds to the kB binding sites

on the ENAH promoter, initiating ENAH transcription.

Macrophages also express the Notch1 ligand Jagged1, which
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1494462
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Friedman-DeLuca et al. 10.3389/fimmu.2024.1494462
engages the Notch1 receptor on tumor cells, causing nuclear

translocation of the Notch1 intracellular domain (NICD). Nuclear

NICD enhances the nuclear retention of p65, leading to sustained

ENAH transcription and to alternative splicing (130). Prior work

has shown that this alternative splicing is the switch that turns non-

invasive tumor cells into invasive tumor cells (131).

In summary, macrophages partner with tumor cells to enhance

directional migration and metastasis by guiding tumor cells towards

blood vessels and promoting the assembly and invasion capacity of

tumor cell invadopodia.
5 TAMs in tumor cell intravasation

Intravasation – the process by which tumor cells enter the

vasculature – represents a key step in the metastatic cascade.

Macrophages not only assist with tumor cell intravasation but are

crucial for the process.

Breast cancer cells disseminate from the primary tumor through

tumor microenvironment of metastasis (TMEM) doorways (132,
Frontiers in Immunology 06
133). TMEM doorways are stable, tri-cellular structures (occurring

primarily at vascular branch points) composed of a Mena-

expressing tumor cell, a perivascular Tie2High macrophage, and an

endothelial cell in direct physical contact (132, 134–137). TMEM

doorway density (hereafter referred to as TMEM doorway score) in

the primary breast tumor is a clinically validated prognostic marker

of distant metastasis (136, 138). Arwert et al. investigated the

process of TMEM doorway assembly by systemically depleting

macrophages and then tracking the fate of newly-recruited

monocytes in the TME (139). They found that upon

extravasation into the TME, monocytes become motile TAMs

that begin to express CXCR4 and are then recruited back to the

perivascular space by CXCL12-expressing perivascular fibroblasts.

Once at the blood vessel, these motile TAMs become sessile,

forming TMEM doorways with adjacent tumor and endothelial

cells (139). Signaling between the three TMEM doorway cells results

in the release of vascular endothelial growth factor-A (VEGFA)

(132). The secreted VEGFA leads to the dissociation of local

vascular endothelial cell-cell junctions, which causes a transient,

localized vascular permeability event. Harney et al. used real-time
FIGURE 2

Macrophages and tumor cells co-migrate through the TME along fibronectin-collagen I ECM fibers towards HGF gradients secreted by endothelial
cells using an EGF/CSF1 paracrine loop. (A) Macrophage-derived EGF activates the EGF receptor on the tumor cell, leading to the upregulation of
genes associated with cell migration and invadopodium formation. (B) Cooperative Notch1/NF-kB signaling between the macrophage and tumor
cell leads to an increase in MenaINV expression, which enhances invadopodium stability and degradative activity. (C) The invadopodium degrades
ECM in its path, facilitating tumor cell migration towards the blood vessel. Figure created with BioRender.com.
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multiphoton intravital imaging of a murine mouse model of breast

cancer to show that these transient vascular permeability events are

regulated and occur concurrent with tumor cell intravasation (132).

Neither transient vascular permeability nor tumor cell intravasation

occurs away from TMEM doorways (132). Furthermore, TMEM

doorway score increases concomitantly with circulating tumor cells,

and macrophage depletion leads to a significant reduction in

TMEM doorways, vascular permeability, and circulating tumor

cells, highlighting the essential role of TMEM doorway-associated

macrophages in tumor cell intravasation (132, 133).

In vitro and in vivo studies confirm that invadopodia formation

is necessary for tumor cell intravasation (140–143). In addition to

initiating invadopodium formation through paracrine EGF

signaling, macrophages can also initiate this process through

direct contact (129, 140). In TMEM doorways, contact between

the TMEM doorway-associated macrophage and tumor cell induces

invadopodium formation in the tumor cell (129, 140). The

invadopodium then degrades the basement membrane

surrounding the vascular endothelium and functionally “holds the

door open” for other migratory tumor cells to enter the blood

stream (129, 140). Mechanistically, macrophage-tumor cell contact

activates RhoA signaling in tumor cells, which initiates

invadopodium formation in the tumor cell (140, 144). Indeed,

RhoA knockdown reduces tumor cell invadopodium formation,

matrix degradation, and intravasation (140, 144).

Important ly , target ing TMEM doorway-associated

macrophages with the Tie2 inhibitor rebastinib has shown

therapeutic promise by decreasing TMEM doorway function and

metastasis in preclinical studies of breast cancer and pancreatic

neuroendocrine tumors (133, 145). Mice treated with rebastinib

have significantly reduced TMEM doorway activity, circulating

tumor cells, and metastases compared to mice treated with

vehicle control (133, 145).

Together, these studies identify macrophages as key mediators

of tumor cell intravasation and demonstrate that blocking crucial

macrophage signaling pathways may be a strategy to block tumor

cell dissemination in patients.
6 TAMs in response to chemotherapy

Cytotoxic chemotherapies are characterized by their ability to

directly prevent proliferation and promote apoptosis of dividing

cells. Chemotherapeutic agents, including anthracyclines,

platinum-based drugs, and other alkylating agents induce

apoptosis by damaging DNA and preventing DNA replication

and repair (146). Taxanes and vinca alkaloids prevent cell

division by interfering with the mitotic spindle, and

antimetabolites – structural analogs of nitrogenous bases –

prevent DNA synthesis by getting fraudulently inserted into

replicating DNA, as well as by preventing the synthesis of proper

bases (146). Increasing evidence suggests that many of these drugs

also exert indirect effects by modulating the immune

microenvironment. While many of these indirect effects support

tumor cell killing, some promote drug resistance and metastasis. In
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this section, we review the current understanding of how common

chemotherapies affect macrophages in anti- and pro-tumoral ways.
6.1 Anti-tumor TAM response
to chemotherapy

Paclitaxel – a microtubule stabilizing agent in the taxane group

– has been shown to increase the immune response and tumoricidal

activity of murine macrophages. In mice, paclitaxel treatment leads

to a robust increase in macrophage expression of TNFa and IL-1b,
pro-inflammatory cytokines associated with the M1 phenotype

(147–149). Paclitaxel also increases macrophage expression of IL-

12, a Th1-type cytokine involved in activating the innate and

adaptive immune response (148, 150). As a LPS mimetic,

paclitaxel activates toll-like receptor (TLR) 4 on murine

macrophages leading to NF-kB activation and increased

production of pro-inflammatory signals (148). Though some

studies show that paclitaxel also activates TLR4 in human cells

(151–153), others show that species-specific differences in the TLR4

accessory protein, myeloid differentiation factor 2 (MD-2), do not

allow this activation (154–159). Interestingly, some studies indicate

that docetaxel – another taxane – has more potent effects on human

macrophages than paclitaxel. Millrud et al. found that docetaxel, but

not paclitaxel, promoted an M1 phenotype in human monocytes

(160). Furthermore, a clinical study assessing immune responses to

taxanes in breast cancer patients showed that, while both docetaxel

and paclitaxel lead to an increase in serum M1-associated markers

(including IL-6, GM-CSF, and IFN-g), the effects were significantly
more pronounced in patients who received docetaxel (161). The

effects of taxanes on macrophages are also highly context

dependent. For instance, IFN-g has been shown to “prime”

macrophages for tumoricidal activity, and paclitaxel affords

macrophages increased cytotoxicity after macrophage exposure to

IFN-g (162). While the exact mechanisms have yet to be elucidated,

these studies indicate that taxanes can promote anti-tumor M1

polarization in a context-dependent manner.

In addition to taxanes, platinum-based drugs, antimetabolites,

and alkylating agents have also been shown to promote M1

macrophage polarization. The combination of platinum-based

agents with antimetabolites is a common first-line treatment for

gastric cancer (163). In studies analyzing the TME of matched pre-

and post-treatment biopsies from gastric cancer patients, post-

treatment samples harbored significantly more M1-polarized

macrophages, and this increase was associated with a favorable

response to treatment (164, 165). Furthermore, when given at high

doses, the alkylating agent cyclophosphamide is highly

immunosuppressive. However, lower doses of the drug strikingly

improve anti-tumor immunity (166). This has led to the

development and use of metronomic schedules of administration,

in which low doses of the drug are administered more frequently

(166). In line with observations that low-dose cyclophosphamide

improves anti-tumor immunity, several studies show that low-dose,

metronomic cyclophosphamide increases macrophage M1

polarization and decreases tumor burden (167–169).
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Leukemia and lymphoma are often treated with monoclonal

antibodies. While these treatments are largely effective at targeting

cancer cells in many niches, cancer cells often become resistant to

such antibodies in the bone marrow (170–172). Several studies

found that combining antibody therapy with cyclophosphamide

prevented antibody therapy resistance in the bone marrow in part

by promoting macrophage phagocytosis of antibody-targeted

cancer cells (170–172).

In summary, these studies show that in some circumstances,

chemotherapy reprograms macrophages to increase anti-

tumor activity.
6.2 Pro-tumor TAM response
to chemotherapy

The macrophage response to chemotherapy is a double-edged

sword. While some studies show that chemotherapy promotes the

anti-tumor activity of macrophages, others show that chemotherapy

causes a macrophage-mediated pro-tumoral response.

Chemotherapy causes tumor cell death and tissue damage

followed by a cytokine storm that promotes the release of

endothelial and immune progenitor cells from the bone marrow

(173–175). In response to this tissue damage, cells in the TME

initiate a wound healing response by increasing their secretion of

CSF1, CXCL12, and other chemokines that recruit these circulating

progenitor cells to the tumor (176, 177). One result of this response

is that perivascular TAMs increase following chemotherapy (133,

177). These newly recruited perivascular TAMs express high levels

of VEGFA and the angiopoietin receptor Tie2, which have been

shown to promote relapse and metastasis following chemotherapy

(132, 133, 177–180). Several studies show how chemotherapy

induces a macrophage-mediated pro-tumoral effect that can be

abrogated by targeting macrophages.

Hughes et al. used mouse models of breast cancer to show that

treatment with cyclophosphamide causes an increase in CXCR4-

expressing perivascular macrophages, which promote tumor

revascularization and regrowth via VEGFA signaling (177).

Blocking CXCR4 signaling prevents the accumulation of

perivascular macrophages and delays tumor regrowth (177).

In neuroblastoma, chemotherapy leads to the selective

expansion of CCL2-expressing mesenchymal-like tumor cells and

macrophage infiltration in patients, which promotes relapse and

chemo-resistance (181). In mouse models, combining

chemotherapy with CSF1R inhibition prevents macrophage

infiltration and tumor regrowth (181).

Furthermore, while chemotherapy increases the infiltration of

Tie2+ macrophages, Tie2 inhibitors have been shown to work

synergistically with chemotherapy to delay tumor growth (145)

and relapse (182).

In addition to promoting tumor relapse, macrophages can also

increase tumor cell dissemination following chemotherapy. We

have previously shown that treatment with paclitaxel causes a

robust, macrophage-dependent increase in MenaINV expression,

which promotes tumor cell migration, intravasation, and metastasis

(130, 133). This indicates that paclitaxel causes a macrophage-
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mediated increase in metastasis-competent tumor cells, though the

exact mechanism behind this effect remains unknown.

Furthermore, chemotherapy significantly increases the

assembly and function of TMEM doorways, which are portals for

tumor cell intravasation. Indeed, circulating tumor cells and lung

metastases are more prevalent in mice treated with paclitaxel

compared to vehicle control (133). Concerningly, TMEM

doorway assembly is also increased in patients with ER+/HER2-

breast cancer following neoadjuvant chemotherapy (133), thus

increasing their risk of distant metastasis (136). As mentioned in

Section 5, targeting TMEM doorway-associated macrophages with

the Tie2 inhibitor rebastinib dramatically decreases the pro-

metastatic effects of chemotherapy in pre-clinical studies,

indicating that Tie2 inhibition in combination with a cytotoxic

agent may improve patient outcomes (133, 145).

Another mechanism by which TAMs promote metastasis in

response to chemotherapy is by upregulating the enzyme

heparanase. Heparanase cleaves heparan sulfate, which is an

important structural component of the ECM (183). Similarly to

MMPs, this matrix-degrading enzyme is upregulated in many

cancers and correlates with increased metastasis and poor

prognosis (184). Unfortunately, heparanase has been shown to

increase in some patients following chemotherapy (185).

Mechanistically, treatment with chemotherapy leads to an

increase in VEGFR3-expressing TAMs which secrete cathepsins

that activate heparanase and promote ECM remodeling,

lymphangiogenesis, and metastasis (186). Notably, blocking

VEGFC/VEGFR3 signaling inhibits chemotherapy-induced

lymphangiogenesis and metastasis (186).

In summary, chemotherapy can act on macrophages to

promote relapse and metastasis in a variety of ways. Recent pre-

clinical studies show that targeting macrophage recruitment or

function is a promising approach to optimize cancer treatment.

Indeed, there has been a 3-fold increase in clinical trials on

macrophage-targeted therapies in the past 10 years (31).

However, due to the diversity of patients, chemotherapies, and

macrophage phenotypes, more research is needed to clarify the

exact mechanisms of chemotherapy-induced cancer progression to

refine treatment strategies and determine biomarkers that can

identify good – and bad – candidates for different treatments.
7 Host factors governing TAMs

7.1 Diet and natural compounds

Evidence supporting the role of a healthy diet in cancer

prevention and treatment is ever-increasing (187, 188). While

natural compounds are known to have a profound role in

regulating EMT in cancer cells (189, 190), numerous recent

studies have also shed light on how dietary agents and natural

compounds target tumor-associated macrophages.

7.1.1 Antioxidants
Perhaps the most well-known dietary anti-cancer agents are

antioxidants – compounds that neutralize free radicals that would
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otherwise damage DNA and other cellular structures and lead to

carcinogenesis. Foods high in antioxidants include berries, fruits,

vegetables, walnuts, and pecans (191). Recently, Latronico et al.

demonstrated that dietary antioxidants act on macrophages and

inhibit the expression and activity of macrophage-derived MMP-2

and MMP-9, which have pro-tumor ECM remodeling activity (see

Section 3.2) (192). Macrophages mediate the production of reactive

oxygen species (ROS) in the TME (193), and there is an established

relationship between ROS and MMP production (194, 195). The

authors posit that dietary antioxidants prevent MMP production by

removing ROS in the microenvironment (192).

Propolis, a natural resin produced by honeybees, also has

antioxidative properties (196–198). It is widely used as a natural

additive in both ingestible (i.e. capsules, throat lozenges, food) and

topical (i.e. lotions, cosmetics) products. Propolis induces the

depolarization and repolarization of M2 macrophages to M0- and

M1-like states, respectively. M2-polarized macrophages treated

with propolis also express decreased levels of IL-8, IL-10, CCL2,

VEGF, and MMP-9 (199). Consistent with this shift of M2 to M1

macrophages, propolis significantly decreases EMT and tumor cell

migration and invasion (199).

For centuries, cloves have been used not only as a spice, but also

as an herbal remedy due to their antimicrobial and antioxidative

properties (200). Kumatakenin, a flavonoid isolated from cloves,

has recently shown significant anti-cancer effects by acting on both

tumor cells and tumor-associated macrophages (201). In addition to

inducing apoptosis in human ovarian cancer cells, kumatakenin

reduces tumor cell expression of CCL2 and CCL5 – both

implicated in macrophage recruitment, cancer progression and

metastasis (201–203). Kumatakenin also prevents M2 polarization

and macrophage expression of IL-10, VEGF, MMP-2, and

MMP-9 (201).

Together, these studies implicate antioxidants in reducing

macrophage-mediated pro-tumoral effects including immunosuppression,

angiogenesis, and pro-tumoral ECM remodeling.

7.1.2 Vitamin D and omega-3 poly-unsaturated
fatty acids

Vitamin D is a steroid hormone precursor that can come from

the diet or be endogenously synthesized in the skin upon exposure

to UV radiation (204). Vitamin D exerts its effects by binding to the

vitamin D receptor and is primarily responsible for regulating

calcium and phosphate levels in the body (205, 206). Though

there is no clear consensus on the impact of vitamin D on cancer,

a recent study showed that vitamin D may exert anti-cancer effects

through macrophages. In vitro studies showed that vitamin D

reverses M2 polarization, decreases macrophage secretion of

TGF-b1 and MMP-9, and reduces the macrophage-induced

proliferation and migration of ovarian cancer cells (207).

Omega-3 poly-unsaturated fatty acids (w-3 PUFAs) – long

lauded for their anti-inflammatory properties – also exhibit anti-

cancer effects on tumor-associated macrophages (208). Studies on

mouse models of castrate resistant prostate cancer show that a diet

rich in w-3 (vs. w-6) PUFAs significantly delays tumor progression,

decreases M2 polarization, and increases M1 polarization and

infiltration of CD4+ T cells. M2 macrophages from tumors in
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mice fed a high w-3 diet also show a significant decrease in MMP-9

and VEGF expression (208).

Together, these studies have begun to reveal the mechanisms by

which a healthy diet can induce anti-cancer changes in

macrophages and the TME more broadly.
7.2 Obesity

Obesity is a fast-growing global health crisis that is associated

with an increased risk of cancer, as well as general morbidity and

mortality (209, 210). In fact, women with obesity who are diagnosed

with breast cancer have an increased risk of distant metastasis and are

less likely to respond to some cancer treatments (211–214).

Unsurprisingly, adipose tissue macrophages are thought to play a

key role in creating a pro-tumorigenic microenvironment (86). CCL2

expression is significantly increased in the adipose tissue of obese

compared to lean mice (215) which leads to the accumulation of

macrophages. Indeed, it is estimated that macrophages make up

<10% of cells in the adipose tissue of lean individuals and nearly 40%

of cells in the adipose tissue of obese individuals (216). These

recruited macrophages surround dead and dying adipocytes,

forming crown-like structures (CLS) that are characteristic of

adipose tissue inflammation (217). Overweight and obese patients

(BMI ≥ 25 kg/m2) with breast cancer are more likely to have CLS

compared to patients at a healthy weight (BMI < 25 kg/m2), and BMI

≥ 25 kg/m2 is associated with a shift in CLS macrophage phenotype

that may be indicative of metabolic dysfunction and poor treatment

outcomes under some conditions (218). These macrophages also

interact with pre-adipocytes and prevent their differentiation, instead

causing them to take on a fibroblastic phenotype and enhance the

synthesis and deposition of ECM components (219, 220). This

indicates that macrophages cause increased ECM density in obese

adipose tissue, including in the breast where ECM density is a

significant risk factor for cancer (72, 221). Further implicating

adipose tissue macrophages in breast tumor development, a study

on transgenic mice that overexpress CCL2 in the mammary

epithelium showed that CCL2 overexpression causes increased

macrophage density, stromal density, and ECM crosslinking

enzyme LOX compared to non-transgenic controls (222). CCL2-

overexpressing mice also had an increased susceptibility to DMBA-

induced mammary tumors, demonstrating a relationship between

macrophages, ECM density, and cancer risk (222).

Though much is still unknown about how obesity shapes cancer

development, these studies suggest that obesity promotes

macrophage-mediated ECM stiffening that is known to support

tumorigenesis (see section 3.1).
7.3 Race

There are widespread racial disparities in the diagnosis,

treatment, and outcome of cancer patients (223–226). While

some of these disparities are due to systemic racism in the

medical field, some studies identify biological differences that

could be contributing to this effect (227). Indeed, Black men and
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women with prostate and breast cancer, respectively, have

significantly worse outcomes than their white counterparts even

after socioeconomic and other mediating factors are accounted for

(228, 229). We previously evaluated distant recurrence-free survival

(DRFS) in breast cancer patients following neoadjuvant (NAC)

versus adjuvant (AC) chemotherapy and found that treatment type

had no impact on DRFS for white women (230). However, Black

women had significantly worse DRFS when treated with NAC

(230). Differences in TAMs may contribute to this. Black breast

cancer patients have significantly increased macrophage infiltration

and M2 polarization compared to white patients, and this is

prognostic of progression-free survival (231, 232). Black,

compared to white women treated with neoadjuvant

chemotherapy for ER+/HER2- breast cancer also have a higher

TMEM doorway score and macrophage density in the residual

tumor tissue, which may contribute to poorer outcomes (223). In

summary, racial disparities in cancer development and outcome

may be mediated in part by macrophage infiltration and activity.
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The diversity and complexity of tumor-associated macrophages

leaves their functions highly context-dependent and variable.

Despite this complexity, a consensus is emerging in the literature

that tumor-associated macrophages support tumor cell migration

and metastasis in many ways (Figure 3). TAMs confer migratory

abilities in tumor cells by activating EMT. They remodel the ECM

to facilitate tumor cell migration and provide ligands to promote

invadopodium formation and chemotaxis. Finally, TAMs

participate in the signaling cascade that opens TMEM doorways

and allows tumor cells to intravasate and disseminate.

The plastic nature of TAMs means that their phenotypes and

functions can dramatically change in response to environmental

factors, including controllable factors such as chemotherapy, diet,

and obesity and immutable factors such as race. Future research

elucidating just how these factors play a role in macrophage function

and cancer progression are crucial for refining treatment strategies.
FIGURE 3

Macrophages support tumor cell migration and metastasis in many ways. (A) Macrophages promote EMT in tumor cells, which confers a migratory
phenotype. They regulate ECM remodeling by enhancing both ECM stiffness (desmoplasia) (B) and degradation (C), which supports tumor cell
migration and metastasis. Macrophages also provide signals that promote tumor cell invadopodium formation and directional migration towards
blood vessels (D). Finally, macrophages participate in TMEM doorway-mediated tumor cell intravasation (E), which allows tumor cells to disseminate
throughout the body. Figure created with BioRender.com.
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