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diagnosis identifies a classical
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Introduction: Myeloid cells trafficking from the periphery to the central nervous

system are key players in multiple sclerosis (MS) through antigen presentation,

cytokine secretion and repair processes.

Methods: Combination of mass cytometry on blood cells from 60 MS patients at

diagnosis and 29 healthy controls, along with single cell RNA sequencing on

paired blood and cerebrospinal fluid (CSF) samples from 5 MS patients were used

for myeloid cells detailing.
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Results: Myeloid compartment study demonstrated an enrichment of a peculiar

classical monocyte population in 22% of MS patients at the time of diagnosis.

Notably, this patients’ subgroup exhibited a more aggressive disease phenotype

two years post-diagnosis. This monocytic population, detected in both the CSF

and blood, was characterized by CD206, CD209, CCR5 and CCR2 expression,

and was found to be more frequent in MS patients carrying the HLA-DRB1*15:01

allele. Furthermore, pathways analysis predicted that these cells had antigen

presentation capabilities coupled with pro-inflammatory phenotype.

Discussion: Altogether, these results point toward the amplification of a specific

and pathogenic myeloid cell subset in MS patients with genetic susceptibilities.
KEYWORDS

multiple sclerosis, cerebrospinal fluid, classical monocyte, disability, antigen
presentation
GRAPHICAL ABSTRACT

Multiple sclerosis patients were included at diagnosis, for mass cytometry or single-cell RNA sequencing studies (scRNA-seq). Differential abundance
analysis on cytof data indicated the exclusive blood enrichment in circulating myeloid cells co-expressing CD14, CCR5, CD206, and CD209 in a
group of MS patients. Characterization of these patients demonstrated a significantly higher proportion of HLA-DRB1*15-01 patients allotype and a
worsen outcome after 2 years follow up compared to other patients. scRNA-seq analysis confirmed the pathogenic potential of this monocyte sub-
set through their definition as antigen presenting pro-inflammatory cells.
Introduction

Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating

autoimmune disease characterized by chronic inflammation of the

central nervous system (CNS). A complex interplay between immune

cells both outside (1–3) and locally within the CNS (4, 5) dictates

immune cells’ capacity to infiltrate the CNS and to polarize them into

pathogenic pro-inflammatory cells. This is well illustrated with blood

myeloid cells infiltrating the CNS and especially monocytes.

Monocyte is a heterogeneous subset usually defined by CD14 and

CD16 surface molecule expression comprising CD14++

CD16−classical monocytes (cMo), CD14++ CD16++ intermediate
02
monocytes (intMo), and CD14− CD16++ non-classical monocytes

(ncMo). All these subsets can traffic to tissue lesions (6, 7) while

microglial cells and the border-associated macrophages (BAMs) are

associated with tissue-derived myeloid cells in human CSF (8).

Infiltrating monocytes can acquire the dendritic cell marker CD209

following transmigration across a blood-brain barrier (BBB) model

(9). Although data about human monocytes fate in MS CNS are

limited, they are more abundant in the experimental autoimmune

encephalomyelitis (EAE) mice model of MS. Beyond subsets

mentioned earlier, tissue-infiltrating monocytes were demonstrated

to alternatively differentiate in monocyte-derived dendritic cells

(moDC) (10), macrophages (moMac) (11, 12), or monocytic
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myeloid-derived suppressor cells (m-MDSC) (13) once reaching the

CNS, having either a detrimental (14) or protective role (15). There,

the capacity of monocyte-derived cells to impact disease course lay on

their antigen presentation propensity, their secretome profile, and

phagocytic capacity (11, 16, 17), making them a valuable therapeutic

target. In line, the blockade of myeloid cells trafficking from the

periphery to the CNS, specifically through targeting Ninjurin-1 or

more broadly through anti-VLA-4 usage, demonstrated efficacy in

controlling EAE and RRMS CNS inflammation (18, 19).

Given the demonstrated role of monocytes in RRMS and their

peripheral origin, many have tried to study them by standard flow

cytometry within peripheral blood mononuclear cells (PBMCs).

Although most studies report an increase in cMo frequency in

RRMS patients, it is more controversial concerning ncMo (20–24).

These discrepancies may be related to the cohorts used, the markers

assessed, and/or the analysis method, pointing to the lack of robust

and exhaustive characterization of the peripheral myeloid

compartment in RRMS patients. Finally, although m-MDSCs

abundance and monocyte/lymphocyte ratios in patients at

diagnosis were correlated to higher disability overtime (25, 26)

few carefully assessed the link between myeloid compartment

composition at the early disease stage and individual outcome.

In this study, we took advantage of a highly characterized cohort

of RRMS patients to perform mass cytometry on PBMCs sampled at

diagnosis. Unsupervised analysis on the myeloid compartment

allowed us to identify a specific population of classical monocytes

expressing CD209 and CD206 enriched in some MS patients. This

increased frequency defined a patient’s subgroup highly enriched in

HLA-DRB1*15:01 individuals who displayed a poorer outcome 2

years post-diagnosis. Characterization of an equivalent monocytic

population by scRNA-seq on paired CSF and blood cells from

unrelated MS patients together with pathway enrichment analysis

indicated that these cells are present in both CSF and blood, have a

proinflammatory profile, and have a higher propensity to process and

present antigens compared to other classical monocytes.
Material and methods

Cohorts

This study was registered and approved by the Ethics Committee

of Rennes Hospital (notice n° 20.05). MS patients included in this

work were extracted from the OFSEP (Observatoire Français de la

Sclérose en Plaques) MS French registry (27–30), www.ofsep.org. All

participants provide written informed consent for participation. In

accordance with the French legislation, OFSEP was approved by

both the French data protection agency (Commission Nationale de l’

Informatique et des Liberteś [CNIL]; authorization request

914066v3) and a French ethical committee (Comite ́ de Protection

des Personnes [CPP]: reference 2019-A03066-51), and the present

study was declared compliant to the MR-004 (Met́hodologie de

reference 004) of the CNIL.

Participating centers were Rennes, Lille, Nancy, Nimes, and

Bordeaux. Inclusion criteria were: (i) age > 18 years old, (ii) MS

diagnosis according to McDonald 2017 criteria at the last visit (31),
Frontiers in Immunology 03
(iii) sampled during their first neurological episode, and (iv) with at

least one visit/year during the follow-up. Progressive MS patients

were excluded. At the time of PBMC or CSF sampling, all MS

patients included were drug-naïve and so had never been treated by

disease-modifying therapy (DMT). Blood samples were obtained

from 65 early RRMS patients and 29 age- and sex-paired healthy

controls (HCs).

Clinical details of patients enrolled in mass cytometry cohort or of

the scRNA-seq study are summarized in Tables 1, 2, respectively.
Blood samples processing

Blood was collected in heparin tubes for a total of 30 to 50 mL.

The same volume of phosphate buffered saline (PBS) was added to

the blood and diluted blood was then gently deposited on 20 mL

Lymphoprep (Eurobio scientific, Ref: CMSMSL01-0U), followed by

20 min centrifugation at 1000 g with no brakes. Lymphocytes ring

was then collected, washed, plaquettes were removed (two

centrifugations 10 min, 200 g, 4°C with no brakes), and red blood

cells were lysed by the use of Easylyse (Dako) (10 min at room

temperature). Peripheral blood mononuclear cells (PBMCs) were

then counted and viability assessed by trypan blue staining. An

average of 40 million cells was obtained per donor and banked in

Foetal Calf Serum (FCS) 10% dimethylsulfoxide in two cryovials

containing 20 million cells each and stored in liquid nitrogen for

subsequent usage. When PBMC samples were thawed for

experimentation purposes, cell viability and cell count were

obtained by the use of a Nucelocounter NC-200 (Chemotec, 3450

Allerod, Denmark) device. Cell viability ranged from 85% to 96%.
Plasma collection

Heparin blood tubes were pooled, and 20 mL of blood was used

to get plasma. Blood was centrifugated (680 g, 5 min) and plasma

collected for banking at −80°C.
CSF samples processing

Five milliliter of CSF was obtained by lumbar puncture; samples

were immediately processed by centrifugation (450 g, 5 min), and

the supernatant was stored at −80°C while cells were counted and

cell viability assessed by trypan blue staining. Cell viability ranged

from 90% to 98%. On average, 25,000 cells were obtained per donor.

Cells were then immediately used for scRNA-seq experiments.
Mass cytometry

Frozen PBMCs fromMS patients and sex- and age-matched HC

were processed for cytofin staining as previously described (32, 33).

A minimum of 2 million cells were used for staining. Antibodies

used for cell staining and listed in Supplementary Table S1 were

purchased in either metal-labeled (Fludigm antibodies) or
frontiersin.org
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uncoupled format. Antibody conjugation to a metal with the

Maxpar Antibody Labeling Kit (Fluidigm) and subsequent

titration were done prior to the staining procedure and according

to manufacturer protocol. Briefly, cells from frozen PBMCs were

counted, and Cisplatin cell ID staining was done to assess cell

viability. In the next step, membrane markers of interest were

labeled with a cocktail of dedicated antibodies, while subsequent
Frontiers in Immunology 04
cell fixation and permeabilization with Fix Perm Buffer (Miltenyi

Ref: 130093142) allowed the assessment of intracellular marker

expression. Intra-cellular staining was therefore done, followed by

iridium labeling to discriminate singlets from doublets during

analysis. Finally, suspensions of fixed cells were banked at −80°C

until acquisition on the Helios™ System (Fluidigm) from the CyPS

plateform (Paris Pitié Salpêtrière).
TABLE 1 Detailed clinical parameters from healthy controls and multiple sclerosis cohorts: (HC) healthy controls, (MS) multiple sclerosis, (EDSS)
expanded disability status scale, (Gd) gadolinium lesions positivity, (SC) spinal cord lesions, (CIS) clinically isolated syndrome, (CSF) cerebrospinal fluid.

Baseline variable HC MS

Total % Total % MS wo CD206hi

CD209hi Mo
(CD206hi CD209hi

Mo < 1%)

MS w CD206hi

CD209hi

Mo (CD206hi

CD209hi Mo
≥ 1%)

p-value*

N % N %

Total 29 60 47 78.3 13 21.7

Sex 0.947

Men 10 34.5 19 31.6 15 31.9 4 44.4

Women 19 65.5 41 68.4 32 68.1 9 55.6

Age [median (Q1–Q3)] 0.829

30 [25.5–45.5] 31 [24–37.7] 31 [24–40] 31 [24–35.5]

Delay relapse onset/sampling (days) 0.869

Mean ± SD NA NA 60.9 ± 56 58.6 ± 55 69.1 ± 60.9

Median [Q1–Q3] NA NA 42.5 [14.2–93.7] 40 [15–82] 56 [5–133]

EDSS 0.869

Mean ± SD NA NA 1.3 ± 1.3 1.3 ± 1.1 1.5 ± 1.4

Median [Q1–Q3] NA NA 1.5 [0–2] 1 [0–2] 1.5 [0–2.5]

T2 lesions number ≥ 9 0.527

Yes NA NA 35 58.3 26 55.3 9 69.2

No NA NA 25 41.7 21 44.7 4 30.8

Gd lesions 0.7582

Yes NA NA 31 51.7 25 53.2 6 46.1

No NA NA 29 48.3 22 46.8 7 53.85

SC lesions 0.758

Yes NA NA 39 65 30 63.8 9 69.2

No NA NA 21 35 17 36.2 4 30.8

CIS type 0.737

Motor-Brainstem NA NA 19 31.6 14 29.8 5 38.5

Sensitive-optical nerve NA NA 41 68.4 33 70.2 8 62.5

CSF oligoclonal bands (15NA) 45 33 12 0.741

Yes NA NA 40 88.9 29 87.9 11 91.6

No NA NA 5 11.1 4 12.1 1 8.4
fr
When indicated, the mean and standard deviations (SD) are displayed as well as the median with Q1-Q3 interquartile in brackets. *p-values: correspond to Mann-Whitney statistical test p-value.
NA, not applicable. Percentage are in italic and values in bold.
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Cytof data analysis

FCS files obtained from the platform were first processed for

bead-based normalization on EQ-Beads (Fluidigm) through the use

of the R package premessa (https://github.com/ParkerICI/

premessa). Such normalized FCS then served as input for sample

cleaning from debris and doublets (DNA1 vs. DNA2), from dead

cells (DNA1 vs. Cisplatin), and beads (Ce140D1 vs. DNA1) within

the Cytobank cloud-based platform (Cytobank, Inc). Dimensional

reduction was performed on each file separately according to the

viSNE algorithm and settings defined previously (34) (perplexity =
Frontiers in Immunology 05
30; iterations = 5000; theta = 0.45). Clusters corresponding to

myeloid cells were delineated based on lineage marker expression

(CD45+CD3-CD19-CD36+HLA-DR+) and then exported for deep

analysis with the help of the Catalyst package on R (https://rdrr.io/

bioc/CATALYST). In total, more than 11 million myeloid cells were

analyzed, ranging from 278 to 312,260 cells retrieved per patient.

The cell clustering process was done with all markers except those

used for lineage discrimination through the FlowSOM algorithm

and with the following parameters: self-organizing map = 20 × 20

and maxK = 30 (maximum number of meta clusters to evaluate).

Each FlowSOM-defined cluster was evaluated and either kept

untouched for further analysis, merged with phenotypically

similar clusters, or removed when related to other cell lineage

residual contamination. Retained clusters were highlighted on

UMAP dimensional reduction based on the same markers as

those used for FlowSOM clustering. Differential frequencies of

major monocyte subsets were assessed through the Mann and

Whitney test. Clusters’ differential abundances between individual

groups were analyzed through a generalized linear mixed model

(GLMM) and Benjamini-Hochberg adjustment, while differential

marker expression between HC, CD206hi, and CD209hi cMo-

enriched patients and not-enriched patients was tested with

multiple ANOVA and a Tukey post hoc test. Results were

considered significant when adj p < 0.05.
scRNA-seq sequencing

Paired CSF and blood collected from MS patients at their first

neurological episode were used for scRNA-seq experiments.

Although CSF cells were processed freshly, PBMCs get a freezing/

thawing cycle before use. A mean of 25,000 cells from CSF

(corresponding to all cells) and the equivalent amount of paired

PBMCs were loaded in the Chromium 10× (10× Genomics,

Pleasanton, CA, USA) for single-cell capture and barcoding.

Libraries were prepared according to the manufacturer’s protocol

with the 10× 5’ kit (Chromium Next Gem Single Cell 5’ reagent kit

v1.1). Libraries were processed using NovaSeq 6000 (Illumina, San

Diego, CA), with a depth of 50,000 reads/cell and a paired sequencing

of 28 nucleotides in R1 and 91 in R2. Sequenced were then aligned

with Cellranger v6.1.1 in intron inclusion mode on the Human

GRCh38 scRNA-seq optimized transcriptomic reference v1.0 as in

Pool et al. (35) The median number of genes retrieved per cell ranged

from 1.651 to 1.981 in CSF while it varied from 812 to 3,014 in

peripheral blood. Quality controls were done on each sample

individually, and cells displaying either several genes lower than

400 or higher than 4,000, several UMI over 15,000, a mitochondrial

cell read ratio higher than 10%, or a ribosomal gene’s frequency lower

than 8% were filtered out, as clusters predicted to comprise mainly

doublets through singleCellTK package v2.8.0.
scRNA-seq data processing

Filtered datasets from each sample were merged and log

normalized before data integration with the FindIntegrationAnchors
TABLE 2 Detailed clinical parameters from scRNAseq cohort: (HC)
healthy controls, (MS) multiple sclerosis, (EDSS) expanded disability
status scale, (Gd) gadolinium lesions positivity, (SC) spinal cord lesions,
(CIS) clinically isolated syndrome, (CSF) cerebrospinal fluid.

Baseline variable RRMS

Total %

Total 5

Sex

Men 1 20

Women 4 80

Age [median (Q1-Q3)]

35 [24–43]

Delay relapse onset/sampling (days)

Mean ± SD 56.8 ± 32.76

Median [Q1–Q3] 45 [28.5–91]

EDSS

Mean ± SD 1.5 ± 0.58

Median [Q1–Q3] 1.5 [1–2]

T2 lesions number ≥ 9

Yes 2 40

No 3 60

Gd lesions

Yes 4 80

No 1 20

SC lesions (1NA)

Yes 2 50

No 2 50

CIS type

Motor-Brainstem 2 40

Sensitive-Optical nerve 3 60

CSF oligoclonal bands

Yes 5 100

No 0 0
When indicated, the mean and standard deviations (SDs) are displayed as well as the median
with Q1–Q3 interquartile in brackets. Percentage are in italic and values in bold.
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and IntegrateData functions from Seurat v4.3.0 on the first 20

correlation components. Immunoglobulin and T-cell receptor genes

were removed for the integration step only. PCA analysis was then

done on an integrated dataset and used for UMAP processing and cell

clustering (20 nearest neighbors, resolution 0.4). Cell subset labeling

resulted from the concordance between several analyses. Briefly,

differentially expressed genes between clusters were obtained through

the FindAllMarkers function from the Seurat package with test.use set

to “wilcox.” These lists were then used in EnrichR to predict cell type.

In addition, gene signature characteristics from cell lineage and

obtained from literature (36) were used to assess the enrichment

score of these signatures in all clusters previously defined via the

ModuleScore function from Seurat. Finally, SingleR v2.0.0 was used to

automatically assign labels to either cells or clusters based on

signatures managed by celldex package v1.8.0. Reference index

tested were HumanPrimaryCellAtlasData, BlueprintEncodeData,

DatabaseImmuneCellExpressionData, MonacoImmuneData and

NovershternHematopoieticData. The same strategy was used to label

clusters at any step.

Once cell lineage subsets were defined, myeloid cells were sorted,

and the newly generated dataset was integrated according to the

Harmony algorithm from the Harmony package v0.1.1. Newly

defined clusters (15 nearest neighbors, resolution = 0.15), were then

labeled as previously detailed, and this whole process was repeated to

retrieve classical monocyte populations (15 nearest neighbors,

resolution = 0.5). CD206hi CD209hi cMo signature scoring resulted

from Module Score function processing. To decipher specific

pathways characterizing the different clusters comprised among

classical monocytes, pathways from MSigDB Hallmark and Kegg

were used to assess specific pathway enrichment at the single cell level

with the use of the AUCell and GSEABase packages v1.20.2 and

1.60.0, respectively. Differential enrichments in gene signatures were

appreciated following a comparison of CSF and blood compartments.

Finally, an interactome study was done on CSF cell subsets through

the use of CellChat package v1.6.1.
Genotyping, imputation, and scoring

DNA was extracted from PBMCs obtained from 50 patients

from the mass cytometry cohort. The samples underwent

genotyping using the Affymetrix PMRA chip array. Standard

quality controls on individuals and SNPs were performed using

Plink (37). From 852,860 SNPs, quality control resulted in a

remainder of 414,387 SNPs. SNPs were excluded based on the

following criteria: non-autosomal (N = 34,049), deviation

from Hardy-Weinberg equilibrium (N = 1,800), low genotyping

(N = 11,848), and low frequency [minor allele frequency (MAF) <

0.01, N = 344,210]. Some SNPs were below both genotyping and

frequency thresholds. We then performed SNP imputation. First,

we converted plink files into vcf files using bcftools (38), next, we

used Topmed to impute our dataset using default parameters

(imputation.biodatacatalyst.nhlbi.nih.gov) (39). We obtained

9,073,739 high-confidence (>0.8) SNPs after imputation.

From these imputed SNPs, we calculated the MSGB

(MS Genetic Burden) (40). This polygenic MS risk score follows a
Frontiers in Immunology 06
log-additive model: . MSGB was calculated with 195 SNPs extracted

from the latest published GWAS on MS (41).

In addition, we performed HLA imputation using the HIBAG R

package (42) and our in-house reference panel built with the 1000

Genomes projects data (43, 44). This allowed us to determine which

patient carried the HLA-DRB1*15:01 allele.
Global age-related multiple
sclerosis severity

gARMMS was calculated through EDSS scores ranking based

on the patient’s age at the time of assessment (45), in this study: 24

months following diagnosis. The frequency of patients with a

gARMSS score higher than 5 was calculated among the patient’s

groups. Mann-Whitney test was done to assess significant

differences between patients’ groups.
Neurofilaments, cytokines,
and chemokines

Neurofilament light chain (R-PLEX F217X-3), sIL2RA, IL-15,

CXCL10, CCL2, CCL20, and CXCL12 (U-PLEX biomarkers group

1 custom) content in plasma samples was assessed with a QuickPlex

SQ 120MM Reader (Society Meso Scale Discovery, Rockville, MD).

Undiluted samples were deposited on dedicated coated plates, and

the standard procedure was followed according to the

manufacturers’ protocol. Mann-Whitney test was done to assess

significant differences between patients’ groups.
Statistical analysis

Unless specified, statistical analyses were done using GraphPad

Prism software, version 8.4. A two-tailed Mann-Whitney test was

performed to compare two independent groups or more than two

independent groups. P-values ≤ 0.05 were considered significant. A

Fisher exact test was used to test proportional differences; p-values ≤

0.05 were considered significant.
Data accessibility

Data are deposited on EGA on accession number:

EGA50000000296.
Results

Blood of RRMS patients is enriched in a
specific subset of myeloid cells

To explore patients’myeloid phenotypes, PBMCs from 60 highly

characterized RRMS patients (MS) sampled at diagnosis together

with 29 samples from age- and sex-matched HCs were processed for
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mass cytometry and unsupervised analysis (Table 1). viSNE

visualization of high-dimensional single-cell data based on the t-

Distributed Stochastic Neighbor Embedding (t-SNE) algorithm of

each sample eased the delineation of myeloid cells among circulating

cells based on lineage markers CD19, CD16, CD36, and CD3

expression (Supplementary Figure S1A). From these, no differences

in frequencies of CD3 T, B lymphocytes, or myeloid cells were

observed between MS and HC donors (Supplementary Figure S1B).

To further detail myeloid population composition, a myeloid subset

from each sample was isolated and processed with FlowSOM

algorithm to cluster these cells, and then specific identities were

assigned to each cluster based on their associated cell phenotype.

Eight clusters were considered using this strategy and plotted on

Uniform Manifold Approximation and Projection (UMAP)

(Figure 1A). Among these clusters and according to their respective

CD14/CD16 expression (Figure 1B), cMo, intMo, and ncMo were

identified. Interestingly, in addition to these prototypical phenotypes,

we highlighted two subsets of monocytes: CD206hi CD209hi Mo and

CD206int CD209int Mo that expressed CD14 but not CD16 and

clustered separately from cMo due to their strong expression of

specific markers (Figure 1B). In addition, conventional dendritic cells

(cDC) were defined through the expression of CD11c in the absence

of CD14 and CD16 expression, plasmacytoid dendritic cells (pDC)

were distinguished by high CD123 expression, while remaining cells

(others) were characterized through the poor expression of most of

the markers assessed but intermediate levels of CD11c, CD11b, and

high levels of PD-L1. When frequencies of the different monocytic

clusters were compared between HC and MS patients, significant

differences were observed with a decreased intMo frequency in MS

patients (mean HC vs. MS: 5.74% ± 3.23 vs. 3.6% ± 2.52, p = 0.027),

while CD206hi CD209hi Mo (mean HC vs. MS: 0.06% ± 0.16 vs.

4.52% ± 12.1, p = 0.01) and CD206int CD209int Mo (meanHC vs. MS:

0.21% ± 0.51 vs. 2.79% ± 12.1, p = 0.0014) were increased (Figure 1C).
Enriched myeloid cells display
characteristics of activated and tissue-
trafficking classical monocyte

To confirm CD206hi CD209hi Mo enrichment in MS patients,

differential myeloid cluster abundance was tested by a generalized

linear mixed model. In line with frequencies analysis, CD206hi

CD209hi Mo abundancy was significantly associated with MS status

(p = 8.7e-07) as CD206int CD209int Mo to a lesser extent (p = 1.6e-

03), while intMo were more abundant in HC (p = 0.035) (Figure 2A).

A closer look at CD206hi CD209hi Mo frequency indicated that such

enrichment was occurring in only a part of MS patients while being

virtually absent from HC (Figure 2A). Accordingly, a 1% threshold of

CD206hi CD209hi Mo frequency among myeloid cells allowed to

discriminate HC from MS patients, and among MS patients, those

with CD206hi CD209hi Mo enrichment: frequency ≥ 1% (MS wo

CD206hi CD209hi Mo) from those with no enrichment: frequency <

1% (MS wo CD206hi CD209hi Mo) (Figure 1C, lower left panel:

dashed line illustrates the 1% threshold and Supplementary Figure
Frontiers in Immunology 07
S2A: illustrative myeloid composition according to the donors’

status). To get insights about CD206hi CD209hi Mo enrichment in

MS patients regarding the other myeloid subsets, we performed a

correlation analysis on myeloid population frequencies in HC and

MS patients. Correlation matrix patterns between HC andMS donors

were found to be highly different, with a strong and significant anti-

correlation between CD206hi CD209hi Mo and cMo frequencies in

MS patients that was absent from HC (Figure 2B), suggesting that

cMo and CD206hi CD209hi Mo subsets were intimately related.

Further, the high HLA-DR, CD86, and CD45RA expression by

CD206hi CD209hi Mo together with high levels of CCR5, CCR2,

and CD106 markers compared to cMo cells (Figure 1B) pointed out

an active pro-inflammatory profile (46, 47) associated with trafficking

abilities toward inflamed tissues (3, 7). In addition to these markers,

CD206hi CD209hi Mo cells intriguingly expressed CD206 (MMR/

MRC1) and CD209 (DC-SIGN), while these molecules are more

classically found on monocyte-derived tissue resident cells (9, 48). To

ascertain the co-expression of these markers, we assessed the

percentage of cells expressing these discriminating molecules within

their related cluster and confirmed that CD206hi and CD209hi Mo

cells were a pure population co-expressing CD206 and CD209

together with the mentioned markers (Supplementary Figure S2B).

Altogether, these results demonstrated that CD206hi CD209hi Mo are

monocytes that differed from the classical monocyte archetypical

phenotype via the upregulation of inflammatory and trafficking

markers. Therefore, whether CD206hi CD209hi Mo amplification

reflects a shift of monocytic cell phenotype or a disease-linked

expansion of this subset remained to be determined since no

significant increase in cMo frequency was observed (mean =

82.92% ± 9.31 vs. 86.55% ± 8.17, p = 0.0673) (Supplementary

Figure S3A). To know whether this phenotypic change was

associated with the modulation of plasmatic cytokines/chemokines

concentrations, we seek for differences in sIL2RA, IL-15, CXCL10,

CCL2, CCL20, and CXCL12 plasmatic content between MS patients

with CD206hi CD209hi Mo and MS patients without CD206hi

CD209hi Mo. No significant differences were found between MS

groups (Supplementary Figure S3B).
MS patients with CD206hi CD209hi Mo
cells present a poorer prognosis

Next, considering that only 22% of our MS cohort displayed

an enrichment in CD206hi CD209hi Mo cell frequency, we decided

to study patients’ profiles according to CD206hi CD209hi Mo cell

enrichment. At baseline, no significant differences on clinical and

demographical variables were observed between MS patients with

CD206hi CD209hi Mo and MS patients with CD206hi CD209hi Mo

(Table 1). However, after 2 years of follow-up, a significantly

higher percentage of MS patients with CD206hi CD209hi Mo

experienced inflammatory activity (relapses and/or new T2

lesions on magnetic resonance imaging) compared to MS

patients wo CD206hi CD209hi Mo (71% vs. 88%; p < 0.01)

(Figure 3A), and significantly more MS patients with CD206hi
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CD209hi Mo presented an EDSS score ≥2 compared to MS

patients wo CD206hi CD209hi Mo (32% vs. 55%; p < 0.01)

(Figure 3B, left). Corroborating these results, we found a

significantly higher proportion of patients displaying an age-

related multiple sclerosis severity (ARMSS) (45) score higher

than five among MS patients with CD206hi CD209hi Mo two

years following diagnosis (p = 0.018) (Figure 3B, right), while no

correlation between CD206hi CD209hi Mo frequency and donor

age was observed (Supplementary Figure S3C). Further, although

no differences were noticed between groups in plasmatic
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neurofilament light chain (Nfl) concentration (Supplementary

Figure S4), nor in patients’ burden in genes at risk (MSGB),

using the most recent associated SNPs set from the International

Multiple Sclerosis Genetics Consortium (41) (Figure 3C, left), we

found that 75% of MS patients with CD206hi CD209hi Mo carry

either HLA-DRB1*15:01 and/or HLA-DQB1*06:02 compared to

45% in MS patients with CD206hi CD209hi Mo (p < 0.001)

(Figure 3C, right). Altogether, these results point out a potential

role of these cells in disease severity and a potential role of HLA-

DRB1*15:01 haplotype in CD206hi CD209hi Mo higher frequency.
FIGURE 1

(A) UMAPs illustrating the myeloid clusters retrieved following FlowSOM unsupervised analysis in HC (left) and MS donors (right). (B) Heatmap
summarizing markers expression scaled by row among clusters defined through unsupervised analysis. (C) Dotplots illustrating myeloid subsets
frequencies among myeloid cells. Mann-Whitney test was used to determine statistical differences with ns: not significant, **p < 0.01.
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CD206hi CD209hi Mo-like cells infiltrate
RRMS patients’ CSF at diagnosis

In an attempt to get further insights into CD206hi CD209hi Mo

cell specificities and potential role in MS pathogenicity, we explored

data from paired CSF and blood scRNA-seq from RRMS patients

sampled at diagnosis (n = 5) (Table 2). More than 55,000 cells were

recovered and analyzed for gene expression. Cell clustering based

on differential gene expression allowed to discriminate major cell

lineages and annotate them based on characteristic gene expression,

supported by SingleR-assisted labeling while cells with an undefined

identity were not represented (Figure 4A). This strategy allowed us

to isolate myeloid cells from other circulating cells and to retrieve

2232 and 7840 myeloid cells from CSF and blood, respectively

(Figure 4B). In line with literature (49–51), the myelocytic

composition of CSF differed from the blood one, with a

differential enrichment when comparing median frequencies in

both cDC (22.24% of myeloid CSF cells retrieved vs. 2.18% of

blood myeloid cells), pDC (18.42% vs. 1.44%), as well as in ncMo

expressing CD16 (21.41% in CSF vs. 11.21% in the blood) in CSF
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concomitant to a decreased frequency of CD14 expressing cMo cells

(29.02% in CSF vs. 84.2% in the blood) (Figure 4C). Considering

that CD206hi CD209hi Mo cells express CD14 but not CD16, we

first isolated cMo from other myeloid cells and performed a subset

clustering. Two (cMo2 and cMo3) out of the three clusters

recapitulating the cMo population were found in both CSF and

blood, while the cMo1 subset was observed in the blood

compartment only (Figure 4D, upper panels). To identify

CD206hi CD209hi Mo among clusters, we then looked for events

co-expressing the two discriminating markers: CD206 and CD209

(MRC1 and DC-SIGN, respectively) at the transcript level. Although

few events were strictly co-expressing MRC1 and DC-SIGN

(Figure 4D middle and lower panels), cMo clustering indicated

that they were found almost exclusively in one CSF cluster: cMo3.

Importantly, such events were observed in four out of five CSF

samples (Supplementary Figure S5), avoiding individual bias. To

exclude microglial contamination and confirm the monocytic

identity of detected CD206hi CD209hi Mo-like cells, we tested

through gene set enrichment analysis their transcriptomic

proximity with human CNS myeloid cell subsets as defined in
FIGURE 2

Enriched myeloid cells display characteristics of activated and tissue resident classical monocyte. (A) Heatmap figuring cluster differential abundance
between HC and MS donors, with each bar within a cluster representing a donor and color is depending on differential enrichment. Differential
abundance significance was tested through generalized linear mixed model and p-values for each cluster are indicated on the right. (B) Correlation
matrix depicting correlation between myeloid subsets frequencies among HC donors (left) and MS patients (right).
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literature (8). CD206hi CD209hi Mo-like cells were found enriched

in genes belonging to monocytic lineage (adjusted p-value =

9,78E-23) rather than BAMs (EMP3, adjusted p-value = 1.39E-

11) or microglial cells (MG TREM2: negative enrichment score or

MG CCL2, MG CX3CR1: adjusted p-value > 0.05) (Figure 4E).

They were also discriminated from CD1c mDC considering CD14

expression by CD206hi CD209hi Mo-like cells. Therefore, CD206hi

CD209hi Mo-like cells are predicted as originating from

circulating rather than resident myeloid cells from the CNS, in

line with their presence in the peripheral bloodstream. To better

quantify CD206hi CD209hi Mo-like cell frequency in the different

compartments and to refine their identification at the RNA level

despite transcript drop-out, we selected, among the best-expressed

transcripts, CCR5 as an additional CD206hi CD209hi Mo marker

to the CD206hi CD209hi Mo-like gene signature (MRC1, DC-

SIGN, CCR5). Signature scores for each event plotted on the

UMAPs were retrieved, and the number of cells with positive

scores (Figure 4F UMAPs dark dots) was assessed. A significant

enrichment in our dataset of CD206hi CD209hi Mo-like cells was

highlighted in CSF while few events were found in peripheral
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blood (Figure 4F higher panels), indicating that CD206hi CD209hi

Mo-like cells can be observed in both CSF and blood. The

presence of CD206hi CD209hi Mo in both blood and CSF

compartments was additionally assessed in two publicly

available datasets (50, 51) following the same strategy. In line

with our findings, although cMo frequency was strongly decreased

in CSF compared to blood in these other datasets (Figure 4F

middle panels: Esaulova et al. dataset, lower panels: Ramesh et al.

dataset), CD206hi CD209hi Mo-like can be identified in both

compartments. Nevertheless, CD206hi CD209hi Mo-like cell

frequency was found higher in CSF than in blood, similarly in

all the datasets tested (Figure 4F right panels). Altogether, these

demonstrated that cells with close similarities to CD206hi CD209hi

Mo cells as CD14, MRC1, DC-SIGN, and CCR5 transcript

expression can be found in both peripheral blood and CSF from

RRMS patients by scRNA-seq data. These are enriched in a

specific monocyte cluster, and their higher frequency in CSF

may suggest either (i) their higher migration capacities, (ii) their

better retention/survival in CSF, (iii) and/or an increased

monocyte polarization in CSF.
FIGURE 3

MS patients w CD206hi CD209hi Mo have a peculiar profile. (A) Histogram plot illustrating radio-clinic activity in patients displaying low (MS wo
CD206hi CD209hi Mo) or high (MS w CD206hi CD209hi Mo) CD206hi CD209hi Mo cells frequency. Significance is based on Mann and Whitney test
with **p < 0.01. (B) percentage of patients with EDSS ≥2 at 2 years (left). Significance is based on Mann and Whitney test with *p <0.05 and **p <
0.01. Histogram plot depicting ARMSS score ≥5 frequency among MS wo CD206hi CD209hi Mo and MS w CD206hi CD209hi Mo, 2 years following
diagnosis (right). Significance is based on Fisher’s exact test with p = 0.0178. (C) Boxplot indicating MSGB patients’ score. Mann and Whitney test
demonstrated no significant differences between groups (ns) (left). Histogram plot illustrating the frequency of patients HLA-DRB1*15:01 and HLA-
DQB1*06:02 genes (right). Fisher’s exact test demonstrated highly significant difference with ***p < 0.001.
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FIGURE 4

CD206hi CD209hi Mo-like cells can be found in RRMS CSF at diagnosis. (A) UMAPs representing immune cells retrieved and analyzed from scRNA-
seq cohort in blood and CSF of MS patients following integration and unidentified cells removal. Clusters are labeled with cell identities according to
genes expression. (B) UMAPS illustrating myeloid cell compartment in both CSF and blood with cluster labeling according to genes signatures.
(C) Circle diagram displaying cell subset proportions among myeloid cells in CSF and blood with bars as median. (D) UMAPs depicting classical
monocytes major clusters (upper panels). UMAPs illustrating MRC1/DC-SIGN co-expressing events in CSF and blood (middle panels). UMAPs figuring
classical monocytes events expression of MRC1/CD206 (red) and DC-SIGN/CD209 (blue) transcripts in CSF and blood (lower panels). (E) Circle
diagram displaying CD206hi CD209hi Mo-like cell proximity to the related myeloid subset gene signatures through GSEA. Circle color depicts
normalized enrichment score and circle size: CD206hi CD209hi Mo-like cells/associated subset signatures overlap. (F) (left panels) UMAPs figuring
CD206hi CD209hi Mo signature scoring (CCR5, MRC1, DC-SIGN) among classical monocyte events from our dataset (up), Esaulova dataset (middle),
Ramesh dataset (lower). (Right panels) UMAP associated histogram plots depicting CD206hi CD209hi Mo signature positive cells frequency among
classical monocytes in CSF and PB. Significance is based on Mann and Whitney test with **p < 0.01, ***p < 0.001, ****p < 0.001.
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CD206hi CD209hi Mo-like cells’ phenotypic
characterization at the transcriptomic level

To decipher CD206hi CD209hi Mo-like cells’ properties, we first

considered this population defined at the cluster level according to

Figure 4D and sought for their specifically active pathways in

comparison to the other classical monocyte clusters. Cluster

analysis indicated that cMo3, the cluster comprising CD206hi

CD209hi Mo-like events, was characterized by cells displaying high

HLA molecule expression together with higher CD74 (Figure 5A).

Querying events displaying antigen processing and presentation
Frontiers in Immunology 12
properties according to the Kegg database confirmed that the cMo3

cluster had a greater propensity to process and present antigens

(Figure 5B, Kegg database signature-enriched events plotted in red).

This capacity was also found to be significantly higher (p = 0.0004)

when we performed prospective gene set enrichment analysis

comparing the CSF cMo3 cluster to its peripheral blood

counterpart (Figure 5C), supported by significantly higher HLA

expression in the CSF cluster compared to the blood one

(Figure 5D). In addition, pathways related to immune cell

activation (Figure 5C, red labels) were found overactivated in CSF

migrating cells compared to their blood counterpart, reflecting their
FIGURE 5

CD206hi CD209hi classical monocyte-like cells phenotypic characterization at the gene level. (A) Heatmap depicting differentially expressed genes
characterizing classical monocytes major clusters defined in Figure 4D upper panels. (B) UMAPs illustrating cells enriched in the genes signature
belonging to the antigen processing and presentation pathway from the Kegg database. Enriched cells are figured as red dots in CSF (left) and blood
(right). (C) Circle diagram illustrating CSF cMo3 cluster comparison to its peripheral blood counterpart through GSEA analysis. Enriched pathways are
depicted, with signature overlap with cMo3 CSF versus blood differentially upregulated genes illustrated through circle size and p-value as color
gradient. Pathways related to immune cells activation are labeled in red. (D) Heatmap displaying differentially expressed genes between CSF cMo3
cluster and its peripheral blood counterpart. (E) Heatmap displaying top regulated genes among CD206hi CD209hi Mo-like cells with CD206hi

CD209hi Mo-like cells defined by MRC1/CD209 expression in comparison to previously defined classical monocyte clusters cMo1, cMo2, and cMo3.
(F) UMAPs illustrating CCR2 expression among classical monocytic cells.
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proinflammatory phenotype. These data therefore suggest that the

cMo3 cluster corresponds to a monocyte subset with antigen

presentation with enhanced proinflammatory properties once in

the CSF. To strengthen our findings and regarding that cMo3

cluster may comprise CD206hi CD209hi Mo unrelated cells, we

looked at CD206hi CD209hi Mo-like cells strictly defined through

their gene co-expression and assessed their differential gene

expression regarding other CSF monocyte clusters (Figure 5E,

mean expression of most differentially expressed genes). This

confirmed the proinflammatory polarization of CD206hi CD209hi

Mo-like cells, illustrated by higher expression of related markers such

as IL18 and CCR2, with CCR2 cells being highly predominant in the

CNS (Figure 5F) as previously described in EAE model (7).

Altogether, these data indicated that CD206hi CD209hi Mo-like

cells, once reaching the CNS, may have a pathogenic role partly

through antigen presentation, fueling local inflammation.
Discussion

Myeloid cells play a key role in the MS course. Although their

infiltration inside the CNS contributes to inflammation, some

protective subsets have also been described. Using mass

cytometry and scRNA-seq analysis, we highlighted here an

enrichment of a peculiar classical monocyte subset (i.e., CD206hi

CD209hi Mo cells) in some RRMS patients’ blood at diagnosis,

defining a patients’ subgroup displaying a poorer prognosis 2 years

following diagnosis. Single-cell RNA-seq analysis pointed out the

potential pathological role of this myeloid subset through their CSF

enrichment, underlying specific trafficking, and their propensity to

process and present antigen.

CD206hi CD209hi Mo cells can be distinguished from other

classical monocytes through their high expression of CD206 and

CD209, two markers classically expressed by tissue-infiltrating

monocyte-derived cells. CD206 and CD209 markers strict co-

expression was not described previously in circulating cells;

however, monocyte-derived macrophages treated with IL-3

demonstrate an upregulation of Dectin-1, CD206, and in 10% of

them, CD209 (52). This phenotype was associated with an increased

phagocytosis capacity. Phagocytosis is an important process for

antigen processing and presentation to CD4 T cells; in lymph

nodes, monocytic cells expressing CD14, CD206, and CD209 have

been described as specifically located in the T-cell area and display

antigen presentation capacities (53). This is in line with the CD206hi

CD209hi Mo-like cell phenotype described in our scRNA-seq dataset,

with a high propensity to process and present antigens. Focusing on

CD209-expressing CD14 monocytes, it was demonstrated that they

are enriched within an inflamed microenvironment where they

participate in MS disease activity by supporting CD4 T-cell

activation (9) and in rheumatoid arthritis and psoriatic arthritis

patients through secretion of pro-inflammatory cytokines (54).

On the other hand, CD206-expressing monocytic cells are

classically associated with an anti-inflammatory phenotype, as

described for in vitro differentiated regulatory macrophages (55)

or infiltrating CD14+ CD206+ tumor monocytes, which specifically

express Arginase-1, IL-10, and TGFb (56). Importantly, it was
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demonstrated that macrophages found at the center of MS brain

demyelinating lesions can express both CD206 and the pro-

inflammatory marker iNOS. In their settings, iNOS/CD206 co-

expression may represent cells transiting from a pro-inflammatory

to a non-inflammatory phenotype (48). Recruitment of CD206/

iNOS co-expressing macrophages was also described in the lungs of

patients with chronic obstructive pulmonary disease, and these cells

are associated with disease severity (57). In the same way, blood

circulating CD206-expressing CD14 monocytes are observed in

patients with more severe idiopathic membranous nephropathy

(58). These apparently conflicting results about the polarization of

CD206 monocytes highlight their highly plastic phenotype, which

may be controlled by environmental cues and interacting cells. In

both murine models and in vitro experiments, it was observed that

polarization of endothelial cells from the BBB may regulate iNOS

and Arginase-1 expression in interacting macrophages. Specifically,

inflamed barriers were found to trigger the expression of iNOS (59).

Our data suggest potential interactions between CD206hi CD209hi

Mo and BBB endothelial cells, illustrated by the presence of CD206hi

CD209hi Mo-like cells in the CSF, along with elevated expression of

both VCAM-1 and CCR5 expression. Even if VCAM-1 expression is

poorly described on monocytes, its upregulation by blood classical

monocytes in co-culture with endothelial cells has been reported (60),

supporting CD206hi CD209hi Mo interaction with the BBB. Further,

CCR5 is found to be expressed by 70% of CD14+ monocytic cells

infiltrating the CSF regardless of CNS pathology, while only 20% of

blood circulating monocytes are expressing it (61). The CCR5/CCL5

axis has also been demonstrated critical in the recruitment of

pathological monocytes within the CNS of EAE mice model (3).

Importantly, although CNS microenvironment imprinting was

observed about CSF CD206hi CD209hi Mo-like cells (CX3CR1,

CLEC10A), these were found transcriptionally closer to monocytes

than to BAMs, while being highly different from microglial subsets,

indicating that CD206hi CD209hi Mo-like cells are from

peripheral origin.

Therefore, considering (i) CD206hi CD209hi Mo cells blood

enrichment at diagnosis in patients with a worse outcome, (ii)

CD206hi CD209hi Mo-like cells’ peripheral origin and presence in

CSF, (iii) CD206hi CD209hi Mo and CD206hi CD209hi Mo-like

cells expression of proteins and transcripts involved in antigen

presentation and cell co-stimulation, and (iv) CD206hi CD209hi

Mo expression of pro-inflammatory and trafficking markers at

the protein (CD45RA (47), VCAM-1, CCR2, CCR5) and

transcripts level (CCR2, IL18)—prompted us to suggest that

CD206hi CD209hi Mo cells represent an activated and

pathogenic subset of classical monocyte population that had

experienced tissue trafficking. Whether these cells observed by

mass cytometry indeed represent a blood recirculating fraction

defining CD206hi CD209hi Mo enriched patients nevertheless still

has to be confirmed.

Interestingly, we found that patients carrying the MS-associated

susceptibility alleles HLA-DRB1*15:01 and HLA-DQB1*06:02 were

more frequent among CD206hi and CD209hi Mo patients. The

frequency of the HLA-DRB1*15:01 haplotype in MS patients

compared to the general population has already been shown to be

overrepresented among the MS population (50,48% vs. 24.14% in
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controls) (62). Although we found several HLA-DRB1*15:01

positive individuals among the MS patients wo CD206hi CD209hi

Mo in line with literature regarding the MS population (45%), we

observed that 75% of MS patients w CD206hi CD209hi Mo carry this

susceptibility gene. We may therefore wonder whether this specific

haplotype favors CD206hi CD209hi Mo proliferation and/or

survival, partly explaining their specific enrichment in MS.

Although B cells and myeloid cells share an overlapping

immunopeptidome, HLA-DRB1*15:01-derived self-peptides

presentation involved in autoreactive T-cell amplification seems

restricted to B cells (63). Nevertheless, CD206hi CD209hi Mo/T-cell

interaction through other myelin-derived peptide presentations

may participate in disease evolution/relapses as highlighted in

mice model (64) and in line with the higher propensity of CCR2

circulating myeloid cells to contact tissue lesions infiltrating T cells

in EAE mice (16). Over HLA-DRB1*15:01 expression in monocytes

compared to other haplotypes is linked to the specific

hypomethylation of the HLA-DRB1*15:01 exon 2 DNA sequence,

linking epigenetic HLA-DRB1*15:01 expression and MS risk (65).

Whether this mechanism is involved in monocyte/T-cell enhanced

interaction supporting T-cell pathological activity or whether

demethylation of this gene impacts related genes expression (66)

contributing to monocyte pathogenicity hence has to be studied.

Altogether, the combination of (i) leading-edge techniques such

as mass cytometry and scRNA-seq performed on (ii) a highly

detailed cohort of patients at diagnosis who (iii) benefit from a

cautious annual follow-up, allowed us to proceed to an

unprecedented description of a circulating myeloid population

associated to the patients ‘outcome. However, although the

number of patients was enough to draw robust conclusions, this

study was highly descriptive, and the lack of a validation cohort to

confirm our findings is a limitation of this work. Assessing more

patients and controls over a longer period should help in the

estimation of CD206hi CD209hi Mo’s contribution to patients’

outcomes, independently of treatments and other confounding

factors. A study of patients benefiting from anti-VLA4 treatment

would be of particular interest in this context. Further, many

conclusions are gene-based as the supportive role of CD206hi

CD209hi Mo cells toward T cells has thus to be specifically tested

on sorted cells as their potential contribution to pathogenesis

through cytokines production. We believe that getting more

insight into this cell subset, for example, by blocking their

polarization, their trafficking to the CNS, or their antigen

presentation process, should be considered as therapeutic strategies.
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neurologie, Besançon, France; Pierre Clavelou, MD, Centre

hospitalier universitaire de Clermont-Ferrand, Hôpital Gabriel-
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Hôpital Carémeau, Service de neurologie, Nım̂es, France; Olivier

Heinzlef, MD, Centre hospitalier intercommunal de Poissy Saint-

Germain-en-Laye, Service de neurologie, Poissy, France; Abdullatif

Al-Khedr, MD, Centre hospitalier universitaire d’Amiens Picardie,

Site sud, Service de neurologie, Amiens, France; Bertrand Bourre,

MD, Centre hospitalier universitaire Rouen Normandie, Hôpital
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