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Geny: a genotyping tool for
allelic decomposition of killer
cell immunoglobulin-like
receptor genes
Qinghui Zhou1†, Mazyar Ghezelji 1†, Ananth Hari2,3,
Michael K. B. Ford3, Connor Holley1, S. Cenk Sahinalp3*

and Ibrahim Numanagić1*

1Department of Computer Science, University of Victoria, Victoria, BC, Canada, 2Department of
Electrical Engineering, University of Maryland, College Park, MD, United States, 3National Cancer
Institute, NIH, Bethesda, MD, United States
Introduction: Accurate genotyping of Killer cell Immunoglobulin-like Receptor

(KIR) genes plays a pivotal role in enhancing our understanding of innate immune

responses, disease correlations, and the advancement of personalized medicine.

However, due to the high variability of the KIR region and high level of sequence

similarity among different KIR genes, the generic genotyping workflows are

unable to accurately infer copy numbers and complete genotypes of individual

KIR genes from next-generation sequencing data. Thus, specialized genotyping

tools are needed to genotype this complex region.

Methods: Here, we introduce Geny, a new computational tool for precise

genotyping of KIR genes. Geny utilizes available KIR allele databases and

proposes a novel combination of expectation-maximization filtering schemes

and integer linear programming-based combinatorial optimization models to

resolve ambiguous reads, provide accurate copy number estimation, and

estimate the correct allele of each copy of genes within the KIR region.

Results & Discussion: We evaluated Geny on a large set of simulated short-read

datasets covering the known validated KIR region assemblies and a set of Illumina

short-read samples sequenced from 40 validated samples from the Human

Pangenome Reference Consortium collection and showed that it outperforms

the existing state-of-the-art KIR genotyping tools in terms of accuracy, precision,

and recall. We envision Geny becoming a valuable resource for understanding

immune system response and consequently advancing the field of patient-

centric medicine.
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1 Introduction
The natural killer (NK) cells are a critical component of the

human innate immune system, which is the first line of host defense

mechanisms against infections, viruses, and diseases. These cells are

responsible for rapid response to various pathological challenges,

such as viral-infected cells and cancerous cells (1–3). The NK cells

are regulated by cell surface receptors that interact with major

histocompatibility complex class I (MHC-I) molecules found on the

surface of various cells in the body (4). These receptors are, in turn,

encoded by Killer cell Immunoglobulin-like Receptor (KIR) genes,

located on the human chromosome 19 within a 150kb region of the

Leukocyte Receptor Complex (LRC), whose expression and

interactions are essential for distinguishing between healthy and

abnormal cells.

The KIR genes contribute to the wide array of immune

responses observed among individuals due to their vast genetic

diversity which also influences disease susceptibility (5). For that

reason, KIR genes belong to the family of highly polymorphic genes

and consequently harbor a myriad of known gene phases (also

known as alleles, or in some cases genotypes) that are present among

the human population (6). Importantly, this variation is not limited

only to the coding regions; it also encompasses the regulatory

regions that direct the expression of KIR genes. It has been

proposed that this vast genetic diversity likely stems from the

evolutionary pressures posed by constantly evolving viruses (7).

Such intricate genetic architecture means that fewer than 2% of

unrelated individuals share an identical KIR genotype (8).

The seventeen (17) KIR genes are named based on their

extracellular Immunoglobulin-like (lg-like) domains (designated

as 2D or 3D) and the lengths of their cytoplasmic tails (marked

as L for long cytoplasmic tails, S for short cytoplasmic tails, and P

for pseudogene). A general rule is that short-tailed KIRs are

activating receptors, while long-tailed KIRs are inhibitory

receptors. Based on these designations, the KIR genes can be

categorized as follows: (a) six (6) genes with two domains and

long cytoplasmic tails (KIR2DL1– KIR2DL5B), (b) five (5) genes

with two domains and a short cytoplasmic tail (KIR2DS1–

KIR2DS5), (c) three (3) genes with three domains and long tails

(KIR3DL1–KIR3DL3), (d) one (1) KIR3DS1 that is characterized by

having three domains and a short tail, and (e) two (2) pseudogenes

(KIR2DP1 and KIR3DP1) 1. The whole-region KIR haplotypes are

divided into two categories: group B (having one of KIR2DL5,

KIR2DS1, KIR2DS2, KIR2DS3, KIR2DS5 and KIR3DS1) and group

A (having none of these genes) (7) (Figure 1). Finally, names of

individual gene alleles, roughly follow the star-allele nomenclature

used for gene annotation (9, 10), where each allele is assigned a

number that indicates its function (8). The current known KIR

alleles have been assembled and cataloged within the IPD-KIR

database (11).

As different KIR alleles result in different immune responses, it

is necessary to precisely genotype and phase KIR genes to better

understand the role these genes play within the immune system.

One cost-effective way of doing that is by using high-throughput

sequencing (HTS) technologies that have been successfully used for
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large-scale genotyping (12). However, KIR genotyping cannot be

easily done through the established HTS genotyping pipelines, such

as GATK (13), primarily due to the high gene polymorphism of

individual KIR genes. Not only KIR genes harbor many variants,

but their alleles are defined by the whole gene phase—resolving this

phase necessitates both variant calling and phasing. Another reason

is that the copy number of each KIR gene varies significantly across

individuals: while the presence of some genes is relatively

uncommon (e.g., KIR2DS3), it is not rare to see some genes with

large copy numbers (e.g., KIR2DL4 or KIR3DP1), where each copy

may have a different allele. Finally, the sequence contents of many

KIR genes are mutually similar, which introduces high levels of

ambiguity during the alignment of short reads to the KIR region.

Such ambiguity is typically resolved in an arbitrary fashion, which

produces incorrect alignments and, in turn, incorrect variant and

allele calls. All these challenges are exacerbated by the reference

genome itself: the latest canonical version of the human genome

(GRCh38) does not include most of the KIR genes in the primary

assembly and has no consistent reference model of the whole

KIR region.

Some of these challenges have been previously encountered and

addressed within the context of pharmacogene genotyping (14–16).

Genes such as CYP2D6, CYP2A6, CYP2C19, and SLCO1B1, also

exhibit high levels of polymorphism and are subject to various copy

number and structural variation events, which makes them

incompatible with the standard genotyping pipelines. Thus, many

specialized genotyping tools specifically tailored for pharmacogenes

have been recently proposed. Of these tools, Aldy (17), Cypiripi

(18), PyPGx (19), StellarPGx (20), Stargazer (21), and Astrolabe

(22) . However , despi te their success in the field of

pharmacogenomics, these tools rely on the correct and precise

alignments to the target genes to make correct allele calls and

cannot handle complex regions such as KIR, where most of the read

alignments are ambiguous. While one of these tools, Aldy 4 (23),

provides some support for reads alignment within the CYP2D

region, it cannot handle the scale and complexity of 17 KIR genes.

One genomic region that shares similar ambiguous alignment

problems as KIR but has been successfully genotyped is the

immunoglobulin heavy chain locus. The variable genes (IGHV)

present in this locus are particularly challenging to genotype, with

high polymorphism rate, copy number variants, structural variants,

and homologous sequences (24). This problem has been addressed

by the ImmunoTyper-SR tool (25, 26), which uses a combinatorial

optimization approach to resolve read mapping and alignment

ambiguities. However, while IGHV genes are numerous (∼ 120

functional and non-functional copies per chromosome), they are

much shorter than KIR genes (∼ 280 bp vs 13.4 kbp), and the

resulting difference in scale means that this approach cannot be

utilized for KIR genotyping.

For these reasons, quite a few tools have been recently

developed to assess the KIR region itself. The first group of tools

solely focuses on annotating and genotyping KIR genes within

whole genome assemblies and includes SKIRT (27), Immuannot

(28) and BAKIR (29). These tools are, however, unable to handle

sequencing data unless such data is assembled first, which cannot be

done accurately with short-read sequencing data within complex
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regions such as KIR. The other group of tools, such as T1K (30),

PING (31, 32), KASS (33), KPI (34) and KIR*IMP (35), are

specifically designed for genotyping short-read sequencing data.

Some tools, such as KPI, only handle gene-level identification and

are unable to precisely call individual KIR alleles. KASS relies on de

novo assembly of error-corrected sequences from PacBio’s long-

read capture data that are annotated with KIR genes and exon/

intron locations. Finally, tools such as PING, KIR*IMP, and T1K

can identify individual alleles from the short-read sequencing data.

PING utilizes k-mer fingerprinting to call individual alleles but is

hard to run as it requires manual parameter estimation for each

input cohort, and it also overlooks specific genes that are highly

similar to each other, such as KIR3DL1 and KIR3DS1 (30). Another

approach, KIR*IMP, relies on a statistical SNP imputation to call

KIR alleles but is limited to high-quality SNPs and sufficiently large

reference panels. Finally, T1K utilizes an expectation maximization

strategy to rapidly identify KIR and HLA (Human Leukocyte

Antigen) genotypes from sequencing data. While T1K offers

speed and acceptable accuracy, it is currently not able to

determine the copy number of KIR genes. It is also worth noting

that many of these tools call alleles based solely on their sequence

similarity to the reference KIR alleles and thus sometimes fail to

distinguish alleles by their true functional impact, as sequence

similarity is not a perfect proxy for functional characterization

of sequences.

In order to address the outstanding challenges in analyzing and

genotyping the KIR region, we introduce Geny, a GENotYper for

KIR genes. This tool combines an expectation minimization-based

filtering scheme with a combinatorial optimization approach in the

form of integer linear programming [strategies inspired by Clever

(36), OptiType (37) and our own pharmacogenomics tool Aldy

(17)] to infer copy number and the exact allele of each present KIR

gene copy. Furthermore, it can detect and leverage all variant types

found in the KIR database and is able to distinguish between core,

allele-defining variants that define the allele’s functionality and the

silent variants that have no major impact on the overall

functionality. We show that Geny is fast and achieves better

precision and recall—up to 20%—over the existing KIR callers on

both simulated and real datasets and that it provides significantly

fewer miscalls than the other tools. As such, we hope that Geny lays

the groundwork for precise KIR genotyping algorithms and that it

will become a major part of future biomedical applications dealing

with human immune system behavior.
1 Note that the other data sources from the literature either (i) do not have

public WGS data available, (ii) are not assembled, or (iii) its KIR allele calls are

not independently validated.

2 We also attempted to evaluate Graph-KIR (38); however, we were unable

to get satisfactory results on our datasets. Hence, we excluded this tool from

the comparison.

3 The latest Singluarity workflow from the https://github.com/Hollenbach-
2 Results

We assessed the performance of Geny and other major tools,

T1K and PING, on two large datasets: simulated reads on top offifty

(50) completely assembled KIR regions from GenBank and on 40

whole genome Illuminasequenced HPRC samples. These samples

represent a comprehensive benchmark due to their diversity and the

presence of high-quality complete assemblies; as such, they became

an safe choice for benchmarking the performance of KIR

genotyping and annotating tools (28, 30).
1
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During the assessment of the performance of each tool, we

computed the number of differences between the ground truth call

and the inferred call, where the number of misses corresponds to the

number of false positives and false negatives. We also provide the

standard precision P (number of true positives divided by the number

of true and false positives), recall R (number of true positives divided

by the number of true positives and false negatives), and F1 scores

(2 PR
P+R ) for each tool. Each metric took into account the copy

numbers as well. Note that we limited ourselves only to functional

allele concordance (i.e., the first three-digit match of the allele name;

thus, allele *0010101 is treated as *001) for consistency across the

tools. Furthermore, we observed that many alleles in our datasets

were novel and did not exactly match any of the alleles in the

database, mostly due to the differing silent variants, and thus did not

have an established name. Finally, note that some tools, such as

PING, may output multiple possible solutions. In these cases, we

selected the allele option that is closest to the ground truth and

reported those as representative calls.

We compared Geny’s calls with T1K and PING, the only

comparable KIR genotyping tools that provide allele-level

genotype calls.2 However, we encounter several challenges when

attempting to apply PING. Firstly, PING by default assumed

samples from the same cohort. We also note that running PING

required a lot of manual intervention and manual parameter

inference, as the default set of parameters produced suboptimal

results (see Supplementary Materials for details); on the other hand,

both Geny and T1K required only input FASTQ or SAM/BAM/

CRAM files to operate. PING also seemed to be extremely sensitive

to the user-provided probe hit ratio thresholds for setting copy

numbers of each gene. Finally, PING assumes that only one copy of

KIR3DL3 is present per haplotype to normalize the number of k-

mer hits per gene in their copy number estimation stage. While they

suggest using KIR3DL2 to normalize the k-mer hit counts in case

KIR3DL3 is duplicated in a sample (39), it is unclear how to do so.

As our simulated dataset did not satisfy the first and third criteria

(cohort data and fixed KIR3DL3 copy number), we were not able to

apply PING to this dataset. On the HPRC dataset, we tried multiple

versions of PING [e.g (32),3] under different set of parameters and

selected the one that gave the best results (see Appendix C

for details).
lab/PING.
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2.1 Ground truth annotations

The ground truth for each sample was obtained by analyzing the

complete assemblies of the KIR region. The annotations were

generated using the BAKIR tool (29) which was developed

specifically for this application. Initially, the KIR allele database

was aligned to the assembly with minimap2 (40), followed by the

merging of all overlapping mappings to locate putative genes. The

gene type was identified by selecting the gene with the highest

number of alleles mapped. Subsequently, the wildtype of the

identified gene was re-mapped to the putative gene sequence to

refine its location again using minimap2. The refined putative gene

sequence was then aligned with the wildtype sequence via global

alignment using parasail (41), allowing for the calling of variants

and identification of functional variants. The closest allele to the

putative gene sequence was selected based on the allele with the

lowest functional variant Jaccard distance relative to the wildtype

sequence, employing non-functional Jaccard distance in cases of

ties. In other words, we prefer alleles that preserve their

functionality by (1) having all its core variants present (see

Methods for the exact definitions) and (2) not introducing novel

core variants. In the case of a tie, the allele with the smallest Jaccard

distance from the wildtype sequence was selected.

In some instances, the second condition could not be fulfilled

without breaking the first condition. Even if both conditions are

satisfied, the assembled sequence might still differ from the KIR-

IPD allele sequences due to the differences in silent variations. Both

cases point out that the sequenced allele is novel and is not yet

cataloged within the IPD-KIR database; in either case, we selected

the database allele that is closest to the observed allele as the

“ground truth” based on the above criteria.

Finally, we performed some manual interventions on top of

KIR-Annotator calls. In the case of GenBank assemblies, we used
Frontiers in Immunology 04
the existing GenBank allele annotations where possible to cross-

validate and correct our calls. We also manually checked the

presence of exon 1 deletion within KIR3DP1 region that KIR-

Annotator was unable to detect on its own.

To minimize potential annotation-based biases, we also

conducted cross-validations by comparing Geny’s performance

against T1K and PING with ground truth annotations produced

by SKIRT (27) and Immunanot (28) annotators on the

HPRC assemblies.
2.2 Simulated data

We collected 50 complete assemblies of the KIR region from the

GenBank (42), each corresponding to a distinct individual

(Supplementary Materials). These assemblies cover a diverse set of

KIR configurations, including cases with copy number variations,

alleles from haplotype classes A and B, non-identified alleles and so

on.Many of these assemblies already came with KIR allele annotations,

which we used as the ground truth; the aforementioned annotation

tools were used if the provided annotations were missing or out-of-

date. Once these sequences were annotated, each was independently

inserted within an assembly of chromosome 19 (at 54,724,235–

54,867,216) to replace the KIR locus and create a synthetic KIR

assembly sample. We then simulated perfect paired-end reads of size

100bp that cover this locus with the coverage of 20× for each synthetic

assembly. In order to create diploid samples, representing the 2 copies

of the KIR locus present in a human genome, we randomly selected

pairs of synthetic assemblies and combined their simulated reads to

create 21 synthetic diploid samples. The resulting samples

encompassed all 17 KIR genes and pseudogenes, and contained 828

true alleles spread across these genes. The allele count for each gene is

shown in Table 1.
TABLE 1 Comparison of Geny and T1K on simulated datasets from the 50 GenBank assemblies.

Gene Total

Geny T1K

Misses Precision Recall F1 Misses Precision Recall F1

KIR2DL1 66 4 98.4% 95.4% 0.97 10 91.0% 93.8% 0.92

KIR2DL2 29 5 89.7% 92.9% 0.91 6 89.3% 89.3% 0.89

KIR2DL3 55 0 100.0% 100.0% 1.00 5 96.3% 94.5% 0.95

KIR2DL4 81 0 100.0% 100.0% 1.00 5 100.0% 93.8% 0.97

KIR2DL5A 23 3 88.5% 100.0% 0.94 8 75.9% 95.7% 0.85

KIR2DL5B 13 5 100.0% 61.5% 0.76 70 13.6% 100.0% 0.24

KIR2DP1 68 5 94.0% 98.4% 0.96 9 91.0% 95.3% 0.93

KIR2DS1 26 3 96.0% 92.3% 0.94 4 95.8% 88.5% 0.92

KIR2DS2 28 4 87.1% 100.0% 0.93 8 80.0% 92.3% 0.86

KIR2DS3 16 0 100.0% 100.0% 1.00 40 27.8% 93.8% 0.43

KIR2DS4 62 3 96.7% 98.3% 0.98 14 83.3% 96.8% 0.90

KIR2DS5 18 0 100.0% 100.0% 1.00 0 100.0% 100.0% 1.00

(Continued)
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Geny has more than 200 fewer misses over T1K, as can be seen

in the results shown in Table 1. It also improves the precision by

20% and F1 score by 0.12. Geny outperformed T1K on all individual

genes as well. We note that T1K had a high false positive rate on

KIR2DL5B and KIR2DS3 (70 and 40, respectively). It also assumed

that the copy number of each gene does not exceed 2. Finally, it

struggled with the KIR3DL gene family. However, its recall was

competitively high, albeit slightly lower than Geny’s. We also note

that Geny also had issues with the KIR3DL family, particularly with

KIR3DP1 and KIR3DL3, where it often completely missed the

presence of these genes or exonic deletions that define some of

the core KIR3DP1 variants.

The cases where Geny misses the allele can be roughly explained

as follows: (1) novel or non-standard alleles that have a non-

standard combination of core variants or large exonic deletions

and, as such, get filtered out; (2) an “extended” solution where the

true allele mistakenly gets assigned an additional core variant due to

incorrectly resolved cross-gene read alignments; and (3) copy

number inconsistencies. While we plan to address cases (1) and
Frontiers in Immunology 05
(3) in the near future, we note that the second case is challenging to

handle because the wrong solution can be explained by the

observable reads based on the current model.
2.3 Real data

To evaluate the performance of Geny on real data, we

conducted a comparative analysis using 40 whole genome

samples sequenced by Illumina NovaSeq 6000 (read length

150bp) sourced from the 1000 Genomes Project (43). The ground

truth for this comparison was derived from multi-model assemblies

generated by the Human Pan Genome Consortium (44) and covers

diverse ethnicities. As such, this dataset ensures that the evaluation

reflects a highly realistic assessment of tools’ performance in real-

world scenarios.

As shown in Table 2, Geny demonstrated strong performance

relative to the other tools across various metrics, including

precision, recall, F1 score, and miss rate. For instance, Geny
TABLE 1 Continued

Gene Total

Geny T1K

Misses Precision Recall F1 Misses Precision Recall F1

KIR3DL1 61 4 100.0% 93.4% 0.97 11 88.5% 93.1% 0.91

KIR3DL2 87 5 98.8% 95.3% 0.97 33 69.7% 95.8% 0.81

KIR3DL3 82 12 89.7% 94.6% 0.92 33 68.0% 98.6% 0.80

KIR3DP1 89 16 88.4% 92.7% 0.90 26 84.1% 86.0% 0.85

KIR3DS1 24 0 100.0% 100.0% 1.00 6 87.0% 87.0% 0.87

All 828 69 95.4% 96.0% 0.96 288 75.5% 93.6% 0.84
Bold type indicates better results. Geny produces a significantly lower number of miscalls and outperforms T1K in all metrics, in some cases by a large margin (up to 20%).
TABLE 2 Comparison of Geny, PING and T1K on 40 HPRC samples.

Geny T1K PING

Gene Total Misses Precision Recall F1 Misses Precision Recall F1 Misses Precision Recall F1

KIR2DL1 68 13 85.9% 93.2% 0.89 20 87.5% 79.0% 0.83 46 50.0% 93.5% 0.65

KIR2DL2 19 1 94.7% 100.0% 0.97 2 89.5% 100.0% 0.94 5 93.3% 77.8% 0.85

KIR2DL3 60 7 93.0% 94.6% 0.94 12 96.1% 83.1% 0.89 15 90.0% 81.8% 0.86

KIR2DL4 78 1 100.0% 98.7% 0.99 24 88.5% 76.1% 0.82 14 82.1% 100.0% 0.90

KIR2DL5A 8 3 72.7% 100.0% 0.84 5 63.6% 87.5% 0.74 5 66.7% 75.0% 0.71

KIR2DL5B 14 4 100.0% 71.4% 0.83 6 68.8% 91.7% 0.79 3 91.7% 84.6% 0.88

KIR2DP1 69 9 93.8% 92.3% 0.93 13 96.6% 83.8% 0.90 35 50.0% 97.1% 0.66

KIR2DS1 14 0 100.0% 100.0% 1.00 2 100.0% 85.7% 0.92 12 100.0% 14.3% 0.25

KIR2DS2 17 1 94.1% 100.0% 0.97 1 100.0% 94.1% 0.97 3 82.4% 100.0% 0.90

KIR2DS3 8 1 100.0% 87.5% 0.93 2 87.5% 87.5% 0.88 0 100.0% 100.0% 1.00

KIR2DS4 66 5 95.4% 96.9% 0.96 12 100.0% 81.8% 0.90 9 86.6% 100.0% 0.93

(Continued)
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missed nearly half as many alleles as T1K and less than a third as

many as PING. It also performs well on individual KIR genes. The

sole exceptions is the KIR3DL3 gene, where PING produces the

overall best results. In general, it is KIR3DL3 and KIR3DP1 that

cause most of the trouble for T1K and Geny on this dataset; this is

not surprising, as KIR3DP1 has already been reported to pose

significant challenges for correct genotyping (31). T1K also suffers

from missing whole gene copies and wrong allele assignment

(regardless if the overall copy number is below or above 2).4 In

general, Geny’s misses follow the same patterns as observed on the

simulation datasets. We note that many assemblies point to the

existence of novel and uncatalogued KIR alleles; further work will be

necessary to validate and catalog them correctly.

To ensure that our findings are not biased by the selection of

ground truth annotator, we also compared all tools against the

ground truth annotations generated by SKIRT and Immunanot

(Appendices D, E). In both cases, we observe the same trends and

Geny still outperforms other tools. We note that these annotations

consistently yield larger number of miscalls among all tools; for that

reason, we opted to use BAKIR annotations as the “reference” as it

better matches the overall consensus.

On a final note, we note that Geny quickly infers KIR genotypes:

the current version of Geny typically takes from ten minutes to forty

minutes to genotype all genes within an HPRC sample; in total, it

needed around 18 hours to complete genotyping all samples (in

sequential order). T1K typically needed two hours per HPRC

sample (89 hours in total), while PING requires multiple samples

at the same time and needed around 22 hours to genotype 40 HPRC

samples. When possible, we used 8 threads to run a genotyping tool.

All experiments were conducted on Linux instances with at least 92

CPU cores and at least 512 GB of RAM.
4 We also ran T1K with the recently developed t1k-copynumber.py wrapper

that provides limited support for copy-number calling. We observed no

significant improvements; see Appendix F for more details.
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3 Discussion

The process of genotyping and phasing KIR genes is important

for a deeper understanding of the innate immune system and its

interactions. Here we have presented Geny, a new tool for

identification of KIR alleles within high-throughput sequencing

datasets. In our evaluations, Geny consistently outperformed the

current state-of-the-art methods for KIR genotyping across many

metrics on a diverse set of WGS samples. As we move toward

tailored medical treatments, the accuracy of tools like Geny in

identifying genes can shape the future of patient care.

There are still many areas left for improvement and further

study. The next major step will be adding support for other

sequencing technologies, such as long-read technologies (e.g.,

PacBio HiFi) or the targeted sequencing panels [e.g., TruSight

One or Norman et al. (39)]. Limited support for whole-exome

data (WES) is also considered; however, it should be noted that

WES data is not well suited for genes and regions subject to various

copy-number and structural events (45–47). Another is the

detection of novel major alleles—functional alleles that have not

been cataloged by the existing KIR databases. This also includes

calling of fusion alleles that have been observed in the wild (48). We

are also looking into incorporating more capable statistical models

that can offer better performance over the current combination of

the EM filtering algorithm and the ILP backbone. Finally, we are

looking to incorporate HLA calling as well into the Geny pipeline to

be able to study the complex interplay between KIR and HLA in

immune responses (49).

Another major future task consists of a comprehensive

evaluation of the quality of ground truth data and establishing

systematic criteria for measuring the quality of genotyping,

especially in the presence of novel alleles. The existing validated

datasets, such as the IHIWS (50) or UCLA Cell Exchange program

(51), primarily test for gene presence or absence data and often lack

the accessible allele-level ground truth calls. These datasets also do

not have public sequencing data available for download. Thus, they

are still insufficient for precise benchmarking of KIR genotyping

methods [a role that the GeT-RM project (52)] plays in the field of

pharmacogenomics). While the GenBank samples and HPRC

assemblies, together with the ensemble of KIR annotation tools,
TABLE 2 Continued

Geny T1K PING

Gene Total Misses Precision Recall F1 Misses Precision Recall F1 Misses Precision Recall F1

KIR2DS5 14 1 100.0% 92.9% 0.96 4 85.7% 85.7% 0.86 3 84.6% 91.7% 0.88

KIR3DL1 66 2 97.0% 100.0% 0.98 6 95.2% 95.2% 0.95 36 69.9% 78.5% 0.74

KIR3DL2 78 8 93.3% 95.9% 0.95 30 74.6% 79.4% 0.77 7 91.0% 100.0% 0.95

KIR3DL3 80 26 70.1% 94.7% 0.81 36 57.1% 93.6% 0.71 16 80.0% 100.0% 0.89

KIR3DP1 78 15 86.3% 92.6% 0.89 27 89.5% 70.8% 0.79 16 79.5% 100.0% 0.89

KIR3DS1 12 1 92.3% 100.0% 0.96 2 100.0% 83.3% 0.91 2 100.0% 83.3% 0.91

All 749 98 90.9% 95.3% 0.93 204 86.0% 83.2% 0.85 227 76.3% 91.8% 0.83
frontiers
Bold type indicates better results. Geny outperforms other tools in many of the metrics. The exceptions are the KIR3DL2–3 and KIR2DS3 genes, where PING does better than Geny and T1K.
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provide a solid basis for evaluation and may be sufficient for current

needs, it is important to acknowledge that future work may require

establishing consistent accuracy measurements and additional

benchmarking and wet lab validation on a broader range of

validated and accessible real-world samples.

Such an evaluation should also be accompanied by a systematic

comparison of WGS-based genotyping strategies with the existing

KIR-specific genotyping solutions (39, 53). These strategies are

reported to generate more accurate genotyping calls than those

observed for WGS data (especially in this study). Hence, studies

akin to GeT-RM’s CYP2C8–19 reconciliation (16) are sorely needed

to understand better the baseline of the various KIR genotyping

strategies (e.g., plain WGS versus the custom solutions) and

reconcile various conflicting reports in the literature regarding the

quality and accuracy of the proposed strategies.
4 Methods

4.1 Overview

The Geny pipeline consists of three major stages. The first stage

reads the short-read HTS data from a FASTQ or a SAM/BAM file

and computes all possible alignments to the reference KIR

sequences for each read found in the sample. The second stage

filters out unlikely KIR alleles and reads assignments by employing

both deterministic and statistical criteria to reduce the overall

search space and enhance the quality of the final calls. Finally, the

third stage solves the integer linear programming (ILP) model that

determines the correct copy number and the exact allele (phase) of

each present KIR gene.
4.2 Preliminaries: notation and
database preparation

Each Geny stage requires the annotated KIR allele database. We

use the latest version of the IPD-KIR database (11) (v2.12.0) that

contains the allelic sequences of currently known KIR alleles, as well

as the associated allele names that characterize their functionality.

Each name is a set of at most seven (7) digits, where the first three

digits indicate the allele functionality (typically defined by the non-

synonymous exonic changes), the next two digits indicate the

synonymous exonic changes, and the last two digits indicate all

other changes (2). In the rest of the section, we will utilize the

terminology from pharmacogenomics (23) and will refer to alleles

with different functionality as major alleles. For example,

KIR2DL2*0010101 and KIR2DL2*0010105 both encode the same

major allele (KIR2DL2*001) and thus the same protein, while only

differing by a couple of non-exonic variants.

Determination of the functional behavior of present KIR alleles

(in other words, major allele calling) is the key aspect of the KIR

genotyping process. The functional behavior is, in turn, defined by

the set of core variants: variants that distinguish the functionality of
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a given allele from the other alleles. While these variants are

typically functional (including both SNPs and indels of various

sizes), they can also include UTR variants, whole exon deletions,

and other variants that affect gene expression. All other variants that

do not impact the allele’s function are called silent variants.

Unlike pharmacogenomics databases such as PharmVar, the

KIR-IPD database contains only the allelic sequences for each allele

and does not provide a list of core variants that differentiate those

alleles from the reference (wildtype) allele (typically denoted as *001

or *0010101). Most of the available annotation tools, even when

annotating complete assemblies, only rely on a simple edit distance

score to compare allele sequences and oftentimes fail at properly

determining the correct allele calls because they do not distinguish

between core (functional) and silent variants. For example,

KIR2DS1*011 allele is defined by the core c.5812 G>A functional

variant that distinguishes its functionality from KIR2DS1*002 (the

reference allele). While many other variants also distinguish *011’s

sequence from *002’s, they are either silent or intronic and can be

ignored when testing for the presence of *011. However, if all

variants are considered the same (as they are in edit distance

calculation), the lack of a few silent variants will overcome the

concordance of a single core variant and might result in the wrong

major allele assignment. To avoid this issue, we developed a

PharmVar-like allele database for each KIR gene by aligning each

allele sequence from the KIR-IPD database to the reference allele

with parasail (41) and calculating the list of core variants that define

each allele. We also established the complete genomic sequence for

each allele: while the IPD-KIR database contains complete

sequences for most of its alleles, there are cases where it only

provides the coding sequence or a small exonic part that

differentiates the allele from the reference allele. Finally, based on

the existing literature [e.g., (54, 55)] and GenBank annotations, we

constructed a KIR locus reference sequence that contains all 17 KIR

genes and used it during the alignment step.

Formally, the final Geny database contains a set of KIR genes G =

G1,…,G17f g. Each gene Gg ∈ G harbors a list of variants Mg   =

mg ,1,mg ,2,…
� �

and a set of alleles Ag = Ag,1,Ag,2,…
� �

. The allele

Ag,1 is considered to be reference allele. Let A =∪g Ag . Each allele

Ag,i is in turn defined by a variantsMg,i ⊆Mg . Each variant mg ,j ∈
Mg is a tuple (lg,j,og,j) containing its location lg,j in the reference allele

Ag,1 and an operation og,j (SNP or an indel). For example, the

previously mentioned c.5812 G>A is encoded as (5812,GA). A

mutation mg ,j ∈ Mg is a core variant iff core(mg,j) = 1. A location l

in gene Gg is called core location if there is alleleAg,i ∈ Ag that has a

core variant at location l. Finally, each allele Ag,i is assigned ag,i that

corresponds to its genomic sequence. ag,i[l] indicates the l-th position

in such sequence.
4.3 Stage 1: alignment

The first step of Geny pipeline aligns the input reads R =

r1, r2,…f g to the allele sequences ag,i. Because many reads in the

KIR region can be aligned to many different alleles across many
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genes, Geny needs to compute all alignments from each read to each

KIR allele from the database. We use minimap2 (40) in all-to-all

mode that can handle short-reads (–dual=no -P –secondary=yes) to

achieve this. Following the alignment, Geny discards all alignments

that contradict the core variants for each allele, severely clipped

alignments, and those that have a low alignment score. Finally, we

end up with a set of alignments Hk ={hk,g1,i1,hk,g2,i2,…} for each read

rk ∈ R. Each alignment indicates the target allele sequence ag,i, as

well as the location on it and the edit operation needed to align the

read to it.

In order to be able to determine the copy number of each KIR

gene, we also align input reads to a copy number-neutral region in

the genome. By default, we use copy number-neutral COMT gene

region; other choices can be provided by the end user. Alignment to

the copy number-neutral region provides the expected coverage of

the sequencing data that is used later to call copy numbers

and alleles.
4.4 Stage 2: filtering

The large number of the KIR alleles—the current version of the

KIR-IPD database contains more than 1,500 known alleles among

17 KIR genes—adversely impacts the search space of the subsequent

combinatorial optimization step. Therefore, Geny attempts to limit

the number of valid alleles by filtering out those that are unlikely to

occur based on the alignment data.

In the first pass, Geny selects only those alleles whose core

variants are covered by a sufficient number of reads that are
Frontiers in Immunology 08
considered. By default, we set the minimum allowed read

coverage to 3. We also need to ensure that alleles that do not

harbor a core variant at a core variant site still have sufficient

coverage at that site to be considered.

4.4.1 Landmark generation
In addition to filtering out the unlikely alleles, it is also

important to filter out the spurious read alignments. Ideally, we

would like to consider only a small set of alignments that map to the

core locations of each allele remaining after the previous filtering

and discard other reads. However, as many reads that map to the

core locations also map to regions within other genes that contain

no core locations specific to that gene, we need to extend the set of

core locations to also include other locations that “mirror” the core

locations in other genes. Thus, we introduce the concept of

landmark locations that are projections of the valid core locations

to all alleles (of any gene) that, despite not harboring core variants,

still “catch” the reads that cover core variants in other alleles. The

objective of landmarks is to provide the opportunity for the reads to

be assigned to non-variant harboring alleles.

To infer landmarks, we construct an overlap graph Gg,i for each

candidate allele Ag ,i ∈ Ag to capture the relationships between the

alignments that cover the variants Mg ,i (Figure 2). We consider all

alignments hk,g,i which either cover a core location or for which

there is another alignment hk,g 0 ,i0 in another gene or allele that covers

a core location. Each such alignment hk,g,i corresponds to a node in

the graph. A graph edge is created between two alignments if they

overlap on ag,i. Constructing the overlap graph enables us to identify

the landmark regions in ag,i that harbor “interesting” reads; those
FIGURE 1

Illustration of the KIR gene positions on chromosome 19, showcasing the distinct structures of haplotype groups A and B.
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regions can be found by finding the strongly connected components

(SCCs) within each Gg,i. Once landmark regions are identified, we

establish landmark locations Lg = l1,l2,… for each gene Gg by

augmenting the set of gene’s core locations with an appropriate

number of other positions in Gg so that each alignment that covers a

landmark region also covers at least one landmark position. Finally,

we select all alignments that are covered by a landmark position and

discard the others.

4.4.2 Candidate allele selection
After obtaining a set of valid alleles and reads, Geny further

filters the set of valid alleles through the Expectation Maximization

(EM) algorithm (56) by identifying alleles with lower densities in

the input sample, thus reducing the solution space for the final

solver and improving specificity (57). The EM algorithm, in a

setting where the input data is partially known and the

parameters of the distribution function (model) that generated

the data are unknown, iteratively estimates the parameters of the

model to maximize the likelihood of the observed data. We perform

maximum likelihood estimation on the abundance of each allele

and the sequencing error rate in a similar fashion as in (58).

Let f denote the abundance of each of the n = Aj j candidate
alleles, L(q) the log-likelihood of the read set R consisting of m =

Rj j total reads given the parameter q,Zk the latent variable
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representing the allele which generates rk, and fi the density of

allele Ai ∈ A. Let the sequencing error rate be e. Consider there are
pik matching bases for mapping read rk ∈ R on Ai ∈ A with allele

length li. Let l
i
k be the number of bases read rk maps on allele Ai. To

account for multiple possible alignments of a read within a single

allele, we definemi
k as the count of valid alignments of rk inAi. Then:

P (rk j Zk = i) =
mi

ke
(lik−p

i
k)(1 − e)p

i
k

li
: (1)

We define the log-likelihood L(q) as follows:

L(q) = log P (R j q) =o
k

log o
i
P (rk j Zk = i) P (Zk = i;  q) : (2)

Following this, we obtain the EM update steps for parameters f
and e as follows (see Supplementary Materials for details). Let mi

k =

P (Zk = i | rk). Then:

f(t+1)
i = okm

i
k

m
,

e(t+1) = okoim
i
k(l

i
k − pik)

okoimi
kl
i
k

,  and 

q(t+1) = (f(t+1)
i ; e(t+1)) :
FIGURE 2

Diagram illustrating the process of landmark generation. Initially, all valid reads are collected as input. These reads are then utilized to construct a
graph that represents their overlap. Then, we identify strongly connected components (SCCs) of that graph, which represent groups of reads that
continually cover a region by overlapping each other. In the concluding step, we infer the landmarks based on the SCCs of the graph concerning
each candidate allele.
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Once the updated parameter values are obtained, we select all

alleles associated with components of non-trivial presence, where

f > g, for further refinement in the final stage and discard the others.

Unlike other methods that use EM to select the final solution, we set

g to a small value (10−3) and only use this step to filter out unlikely

candidates. This ensures that Geny avoids the common problem

with EM-based methods, where the final solution ends up being a

local maximum that is not relevant to the true call.
4.5 Stage 3: allele calling

For the final phase of allele calling, we aim to apply the Integer

Linear Programming model (ILP),which has been shown to be

effective on other highly polymorphic immune genes such as HLA

(37), to assign each read to a proper KIR allele that passed the

previous filtering stages and select the true alleles present in the

sample. The problem is set as follows.

For each read rk ∈ R and alleleAg ,i ∈ A, we introduce a binary

variableVk,g,i that is set if and only if hk,g,i is the best alignment among

all candidate alignments Hk
5. In other words, Vk,g,i indicates that the

read rk is assigned to Ag,i. We also allow the possibility of dropping

reads—i.e., not assigning it to either of the alleles—by introducing the

variable Dk = 1 −og,iVk,g,i. We associate a read drop cost b (0.08)

with dropping each read. Let us also introduce an integer variableAg,i

that is set to the number of times allele Ag ,i is selected in the final

solution. Let the constant x denote the expected coverage of a single

allele copy (determined via copy number-neutral region in Stage 1).

Denote the minimum and maximum average percent of coverage

with respect to expected coverage over landmarks ofAg ,i to be e (0.5
by default) and f (1.5 by default), respectively.

An integer linear program that selects a set of alleles among A

and assigns the reads to them to minimize the difference between the

observed coverage and the selected one can be formulated as follows:

Minimize :  o
g,i
o
l∈Lg

o
k : hk,g,i  covers l

Vk,g ,i − xAg ,i

�����
����� + go

g ,i
Ag,i + bo

k

Dk

Subject to :   fAg,ix Lg
�� �� ≥ o

l∈Lg
o

k : hk,g ,i  covers l

Vk,g,i ≥ eAg,ix Lg
�� ��,  ∀ k   ∀ g, i

Ag,i ≥ Vk,g,i,  ∀ k   ∀ g , i

o
k

Vk,g ,i ≥ Ag,i,  ∀ g, i

Lg is a set of landmarks for the gene G. A selection cost g is

associated with each selected allele, and a read drop cost b for

discarding each read.

By formulating the problem as an ILP and minimizing the total

absolute coverage error, we effectively optimize the assignment of

reads to alleles, resulting in more accurate and reliable allele
5 For the sake of explanation and to avoid notation abuse, we assume that

each read can only be aligned to a single location within a given allele; in

practice, this is not true but the overall model applies to this case as well.
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identification. We employed Gurobi as a reliable tool for solving

ILP problems in an efficient manner (59). Note that, unlike models

used in pharmacogenomics [e.g., Aldy 4 (23)], this model performs

read selection and is thus an order of magnitude more complex than

the previous models. Currently, the model deploys tens of

thousands of binary variables and hundreds of continuous variables.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors. Geny is available at

https://github.com/0xTCG/geny and also uploaded as a

Supplemental Code. The experimental procedure and results are

available at https://github.com/0xTCG/geny/tree/master/paper and

are also uploaded as Supplemental Notebook and Supplemental

Experiments, respectively.
Ethics statement

Ethical approval was not required for the studies on humans in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.

Author contributions

QZ: Formal analysis, Investigation, Methodology, Software,

Validation, Visualization, Writing – original draft, Writing –

review & editing. MG: Formal analysis, Investigation,

Methodology, Software, Validation, Visualization, Writing –

original draft, Writing – review & editing. AH: Data curation,

Software, Validation, Writing – original draft, Writing – review &

editing. MF: Formal analysis, Software, Validation, Writing –

original draft, Writing – review & editing. CH: Writing – original

draft, Writing – review & editing, Data curation, Software. SCS:

Investigation, Methodology, Project administration, Resources,

Supervision, Writing – original draft, Writing – review & editing,

Conceptualization. IN: Investigation, Methodology, Project

administration, Resources, Software, Supervision, Validation,

Writing – original draft, Writing – review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. QZ, MG,

and IN were supported by National Science and Engineering Council

of Canada (NSERC) Discovery Grant (RGPIN-04973), Canada

Research Chairs Program, Canada Foundation for Innovation’s

John R. Evans Leaders Fund (CFI JELF) and B.C. Knowledge

Development Fund (BCKDF). CH was supported by the BioTalent

SWPP program. AH, MF, and SCS were supported by funding from

the Intramural Research Programs of the National Cancer Institute

(NCI). AH is also funded by the NCI-UMD Partnership Program.
frontiersin.org

https://github.com/0xTCG/geny
https://github.com/0xTCG/geny/tree/master/paper
https://doi.org/10.3389/fimmu.2024.1494995
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2024.1494995
Acknowledgments

We thank Mary Carrington, Li Song, Lisa Mirabello, Stephen

Chanock and Paul Norman for their comments and suggestions

regarding Geny and the manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Frontiers in Immunology 11
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1494995/

full#supplementary-material
References
1. Boudreau JE, Hsu KC. Natural killer cell education and the response to infection
and cancer therapy: stay tuned. Trends Immunol. (2018) 39:222–39. doi: 10.1016/
j.it.2017.12.001

2. Middleton D, Gonzelez F. The extensive polymorphism of KIR genes.
Immunology. (2010) 129:8–19. doi: 10.1111/j.1365-2567.2009.03208.x

3. Parham P. MHC class I molecules and KIRs in human history, health and
survival. Nat Rev Immunol. (2005) 5:201–14. doi: 10.1038/nri1570

4. Boyington JC, Sun PD. A structural perspective on MHC class I recognition by
killer cell immunoglobulin-like receptors. Mol Immunol. (2002) 38:1007–21.
doi: 10.1016/S0161-5890(02)00030-5

5. Wende H, Colonna M, Ziegler A, Volz A. Organization of the leukocyte receptor
cluster (LRC) on human chromosome 19q13. 4. Mamm Genome. (1999) 10:154–60.
doi: 10.1007/s003359900961

6. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, et al. 1000
Genomes Project, et al. Diversity of human copy number variation and multicopy
genes. Science. (2010) 330:641–6. doi: 10.1126/science.1197005

7. Uhrberg M. The KIR gene family: Life in the fast lane of evolution. Eur J Immunol.
(2005) 35:10–5. doi: 10.1002/eji.200425743

8. Parham P. Immunogenetics of killer cell immunoglobulin-like receptors. Mol
Immunol. (2005) 42:459–62. doi: 10.1016/j.molimm.2004.07.027

9. Shows TB, Alper CA, Bootsma D, Dorf M, Douglas T, Huisman T, et al.
International system for human gene nomenclature (1979) isgn (1979). Cytogenetic
Genome Res. (1979) 25:96–116. doi: 10.1159/000131404

10. Robarge JD, Li L, Desta Z, Nguyen A, Flockhart DA. The star-allele
nomenclature: retooling for translational genomics. Clin Pharmacol Ther. (2007)
82:244–248. doi: 10.1038/sj.clpt.6100284

11. Robinson J, Halliwell JA, McWilliam H, Lopez R, Marsh SGE. IPD—the
immuno polymorphism database. Nucleic Acids Res. (2012) 41:D1234–40.
doi: 10.1093/nar/gks1140

12. 1000 Genomes Project Consortium. A map of human genome variation from
population scale sequencing. Nature. (2010) 467(7319):1061-73. doi: 10.1038/
nature09534

13. van der Auwera GA, O’Connor BD. Genomics in the cloud: using Docker, GATK,
and WDL in Terra. Sebastopol, CA, USA: O’Reilly Media (2020).

14. van der Lee M, Kriek M, Guchelaar H-J, Swen JJ. Technologies for
pharmacogenomics: a review. Genes. (2020) 11:1456. doi: 10.3390/genes11121456

15. Shugg T, Ly RC, Osei W, Rowe EJ, Granfield CA, Lynnes T, et al. Computational
pharmacogenotype extraction from clinical next-generation sequencing. Front Oncol.
(2023) 13. doi: 10.3389/fonc.2023.1199741

16. Gaedigk A, Boone EC, Scherer SE, Lee S-b, Numanagić I, Sahinalp C, et al.
CYP2C8, CYP2C9, and CYP2C19 characterization using next-generation sequencing
and haplotype analysis: A GeT-RM collaborative project. J Mol Diagnostics. (2022)
24:337–50. doi: 10.1016/j.jmoldx.2021.12.011

17. Numanagić I, Malikić S, Ford M, Qin X, Toji L, Radovich M, et al. Allelic
decomposition and exact genotyping of highly polymorphic and structurally variant
genes. Nat Commun. (2018) 9:828. doi: 10.1038/s41467-018-03273-1
18. Numanagić I, Malikić S, Pratt VM, Skaar TC, Flockhart DA, Sahinalp SC.
Cypiripi: exact genotyping of CYP2D6 using high-throughput sequencing data.
Bioinformatics. (2015) 31:i27–34. doi: 10.1093/bioinformatics/btv232

19. Lee S-b, Shin J-Y, Kwon N-J, Kim C, Seo J-S. ClinPharmSeq: A targeted
sequencing panel for clinical pharmacogenetics implementation. PloS One. (2022) 17:
e0272129. doi: 10.1371/journal.pone.0272129

20. Twesigomwe D, Drögemöller BI, Wright GEB, Siddiqui A, da Rocha J, Lombard
Z, et al. StellarPGx: a nextflow pipeline for calling star alleles in cytochrome P450 genes.
Clin Pharmacol Ther. (2021) 110:741–9. doi: 10.1002/cpt.2173

21. Lee S-b, Wheeler MM, Patterson K, McGee S, Dalton R, Woodahl EL, et al.
Stargazer: a software tool for calling star alleles from next-generation sequencing data
using CYP2D6 as amodel.Genet Med. (2019) 21:361–72. doi: 10.1038/s41436-018-0054-0

22. Twist GP, Gaedigk A, Miller NA, Farrow EG, Willig LK, Dinwiddie DL, et al.
Constellation: a tool for rapid, automated phenotype assignment of a highly
polymorphic pharmacogene, CYP2D6, from whole-genome sequences. NPJ genomic
Med. (2016) 1:1–10. doi: 10.1038/npjgenmed.2015.7

23. Hari A, Zhou Q, Gonzaludo N, Harting J, Scott SA, Qin X, et al. An efficient
genotyper and star-allele caller for pharmacogenomics. Genome Res. (2023) 33:61–70.
doi: 10.1101/gr.277075.122

24. Rodriguez OL, Gibson WS, Parks T, Emery M, Powell J, Strahl M, et al. A novel
framework for characterizing genomic haplotype diversity in the human
immunoglobulin heavy chain locus. Front Immunol. (2020) 11:2136. doi: 10.3389/
fimmu.2020.02136

25. Ford M, Haghshenas E, Watson CT, Sahinalp SC. Genotyping and copy number
analysis of immunoglobin heavy chain variable genes using long reads. Iscience. (2020)
23. doi: 10.1016/j.isci.2020.100883

26. Ford MKB, Hari A, Rodriguez O, Xu J, Lack J, Oguz C, et al. ImmunoTyper-SR:
A computational approach for genotyping immunoglobulin heavy chain variable genes
using short-read data. Cell Syst. (2022) 13:808–16. doi: 10.1016/j.cels.2022.08.008

27. Hung T-K, Liu W-C, Lai S-K, Chuang H-W, Lee Y-C, Lin H-Y, et al. Genetic
complexity of killer-cell immunoglobulin-like receptor genes in human pangenome
assemblies. Genome Res. (2024) 34(8):1211–23. doi: 10.1101/gr.278358.123

28. Zhou Y, Song L, Li H. Full-resolution HLA and KIR gene annotations for human
genome assemblies. Genome Res. (2024) 34(11):1931-41. doi: 10.1101/gr.278985.124

29. Ford MKB, Hari A, Zhou Q, Numanagić I, Sahinalp SC. Biologically-informed
killer cell immunoglobulin-like receptor gene annotation tool. Bioinformatics. (2024)
40(11):btae622. doi: 10.1093/bioinformatics/btae622

30. Song L, Bai G, Liu XS, Li B, Li H. Efficient and accurate KIR and HLA genotyping
with massively parallel sequencing data. Genome Res. (2023) 33(6):923–31.
doi: 10.1101/gr.277585.122

31. Marin WM, Dandekar R, Augusto DG, Yusufali T, Heyn B, Hofmann J, et al.
High-throughput interpretation of killer-cell immunoglobulin-like receptor short-read
sequencing data with PING. PloS Comput Biol. (2021) 17:e1008904. doi: 10.1371/
journal.pcbi.1008904

32. Marin WM, Hollenbach JA. Software update: Interpreting killer-cell
immunoglobulin-like receptors from whole genome sequence data with PING. HLA.
(2023) 101:441–8. doi: 10.1111/tan.v101.5
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1494995/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1494995/full#supplementary-material
https://doi.org/10.1016/j.it.2017.12.001
https://doi.org/10.1016/j.it.2017.12.001
https://doi.org/10.1111/j.1365-2567.2009.03208.x
https://doi.org/10.1038/nri1570
https://doi.org/10.1016/S0161-5890(02)00030-5
https://doi.org/10.1007/s003359900961
https://doi.org/10.1126/science.1197005
https://doi.org/10.1002/eji.200425743
https://doi.org/10.1016/j.molimm.2004.07.027
https://doi.org/10.1159/000131404
https://doi.org/10.1038/sj.clpt.6100284
https://doi.org/10.1093/nar/gks1140
https://doi.org/10.1038/nature09534
https://doi.org/10.1038/nature09534
https://doi.org/10.3390/genes11121456
https://doi.org/10.3389/fonc.2023.1199741
https://doi.org/10.1016/j.jmoldx.2021.12.011
https://doi.org/10.1038/s41467-018-03273-1
https://doi.org/10.1093/bioinformatics/btv232
https://doi.org/10.1371/journal.pone.0272129
https://doi.org/10.1002/cpt.2173
https://doi.org/10.1038/s41436-018-0054-0
https://doi.org/10.1038/npjgenmed.2015.7
https://doi.org/10.1101/gr.277075.122
https://doi.org/10.3389/fimmu.2020.02136
https://doi.org/10.3389/fimmu.2020.02136
https://doi.org/10.1016/j.isci.2020.100883
https://doi.org/10.1016/j.cels.2022.08.008
https://doi.org/10.1101/gr.278358.123
https://doi.org/10.1101/gr.278985.124
https://doi.org/10.1093/bioinformatics/btae622
https://doi.org/10.1101/gr.277585.122
https://doi.org/10.1371/journal.pcbi.1008904
https://doi.org/10.1371/journal.pcbi.1008904
https://doi.org/10.1111/tan.v101.5
https://doi.org/10.3389/fimmu.2024.1494995
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2024.1494995
33. Roe D, Williams J, Ivery K, Brouckaert J, Downey N, Locklear C, et al. Efficient
sequencing, assembly, and annotation of human KIR haplotypes. Front Immunol.
(2020) 11:582927. doi: 10.3389/fimmu.2020.582927

34. Roe D, Kuang R. Accurate and efficient KIR gene and haplotype inference from
genome sequencing reads with novel K-mer signatures. Front Immunol. (2020)
11:583013. doi: 10.3389/fimmu.2020.583013

35. Vukcevic D, Traherne JA, Næss S, Ellinghaus E, Kamatani Y, Dilthey A, et al.
Imputation of KIR types from SNP variation data. Am J Hum Genet. (2015) 97:593–
607. doi: 10.1016/j.ajhg.2015.09.005

36. Marschall T, Costa IG, Canzar S, Bauer M, Klau GW, Schliep A, et al. Clever:
clique-enumerating variant finder. Bioinformatics. (2012) 28:2875–82. doi: 10.1093/
bioinformatics/bts566

37. Szolek A, Schubert B, Mohr C, Sturm M, Feldhahn M, Kohlbacher O. Optitype:
precision hla typing from next-generation sequencing data. Bioinformatics. (2014)
30:3310–6. doi: 10.1093/bioinformatics/btu548

38. Lin H-Y, Chuang H-W, Hung T-K, Wang T-J, Lin C-J, Hsu JS, et al. Graph-kir:
Graph-based kir copy number estimation and allele calling using short-read sequencing
data. bioRxiv. (2023), 2023–11. doi: 10.1101/2023.11.29.568665

39. Norman PJ, Hollenbach JA, Nemat-Gorgani N, MarinWM, Norberg SJ, Ashouri
E, et al. Defining KIR and HLA class I genotypes at highest resolution via high-
throughput sequencing. Am J Hum Genet. (2016) 99:375–91. doi: 10.1016/
j.ajhg.2016.06.023

40. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics.
(2018) 34:3094–100. doi: 10.1093/bioinformatics/bty191

41. Daily J. Parasail: SIMD C library for global, semi-global, and local pairwise
sequence alignments. BMC Bioinf. (2016) 17:1–11. doi: 10.1186/s12859-016-0930-z

42. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J,
et al. GenBank. Nucleic Acids Res. (2012) 41:D36–42. doi: 10.1093/nar/gks1195

43. 1000 Genomes Project Consortium, et al. A global reference for human genetic
variation. Nature. (2015) 526:68. doi: 10.1038/nature15393

44. Liao W-W, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft
human pangenome reference. Nature. (2023) 617:312–24. doi: 10.1038/s41586-023-
05896-x

45. Gabrielaite M, Torp MH, Rasmussen MS, Andreu-Sánchez S, Vieira FG,
Pedersen CB, et al. A comparison of tools for copy-number variation detection in
germline whole exome and whole genome sequencing data. Cancers. (2021) 13:6283.
doi: 10.3390/cancers13246283

46. Belkadi A, Bolze A, Itan Y, Cobat A, Vincent QB, Antipenko A, et al. Whole-
genome sequencing is more powerful than whole-exome sequencing for detecting
exome variants. Proc Natl Acad Sci. (2015) 112:5473–8. doi: 10.1073/pnas.1418631112
Frontiers in Immunology 12
47. Ly RC, Shugg T, Ratcliff R, Osei W, Lynnes T, Pratt VM, et al. Analytical
validation of a computational method for pharmacogenetic genotyping from clinical
whole exome sequencing. J Mol Diagnostics. (2022) 24:576–85. doi: 10.1016/
j.jmoldx.2022.03.008

48. Norman PJ, Abi-Rached L, Gendzekhadze K, Hammond JA, Moesta AK,
Sharma D, et al. Meiotic recombination generates rich diversity in NK cell receptor
genes, alleles, and haplotypes. Genome Res. (2009) 19:757–69. doi: 10.1101/
gr.085738.108

49. Rajagopalan S, Long EO. Understanding how combinations of HLA and KIR
genes influence disease. J Exp Med. (2005) 201:1025–9. doi: 10.1084/jem.20050499

50. IHIWS. The 19th International HLA & Immunogenetics Workshop(2024).
Available online at: https://ihiw19.org (accessed July 14, 2024).

51. UCLA Health. International cell exchange(2024). Available online at: https://
www.uclahealth.org/departments/pathology/research/research-services/
immunogenetics-uic/services-and-pricing/reference-programs/international-cell-
exchange (accessed July 14, 2024).

52. Pratt VM, Everts RE, Aggarwal P, Beyer BN, Broeckel U, EpsteinBaak R, et al.
Characterization of 137 genomic DNA reference materials for 28 pharmacogenetic
genes: a GeT-RM collaborative project. J Mol diagnostics. (2016) 18:109–23.
doi: 10.1016/j.jmoldx.2015.08.005

53. Bruijnesteijn J, Wiel Mvd, De Groot NG, Bontrop RE. Rapid characterization of
complex killer cell immunoglobulin-like receptor (kir) regions using cas9 enrichment
and nanopore sequencing. Front Immunol. (2021) 12:722181. doi: 10.3389/
fimmu.2021.722181

54. Pende D, Falco M, Vitale M, Cantoni C, Vitale C, Munari E, et al. Killer ig-like
receptors (kirs): their role in nk cell modulation and developments leading to their
clinical exploitation. Front Immunol. (2019) 10:1179. doi: 10.3389/fimmu.2019.01179

55. Ghannad MS, Hajilooi M, Solgi G. Hla-kir interactions and immunity to viral
infections. Res Mol Med. (2014) 2:1–20. doi: 10.18869/acadpub.rmm.2.1.1

56. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data
via the EM algorithm. J R Stat society: Ser B (methodological). (1977) 39:1–22.
doi: 10.1111/j.2517-6161.1977.tb01600.x

57. Li N, Stephens M. Modeling linkage disequilibrium and identifying
recombination hotspots using single-nucleotide polymorphism data. Genetics. (2003)
165:2213–33. doi: 10.1093/genetics/165.4.2213

58. Inkman MJ, Jayachandran K, Ellis TM, Ruiz F, McLellan MD, Miller CA, et al.
HPV-em: An accurate HPV detection and genotyping EM algorithm. Sci Rep. (2020)
10. doi: 10.1038/s41598-020-71300-7

59. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. (2023) Gurobi
Optimization, LLC.
frontiersin.org

https://doi.org/10.3389/fimmu.2020.582927
https://doi.org/10.3389/fimmu.2020.583013
https://doi.org/10.1016/j.ajhg.2015.09.005
https://doi.org/10.1093/bioinformatics/bts566
https://doi.org/10.1093/bioinformatics/bts566
https://doi.org/10.1093/bioinformatics/btu548
https://doi.org/10.1101/2023.11.29.568665
https://doi.org/10.1016/j.ajhg.2016.06.023
https://doi.org/10.1016/j.ajhg.2016.06.023
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.1093/nar/gks1195
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.1038/s41586-023-05896-x
https://doi.org/10.3390/cancers13246283
https://doi.org/10.1073/pnas.1418631112
https://doi.org/10.1016/j.jmoldx.2022.03.008
https://doi.org/10.1016/j.jmoldx.2022.03.008
https://doi.org/10.1101/gr.085738.108
https://doi.org/10.1101/gr.085738.108
https://doi.org/10.1084/jem.20050499
https://ihiw19.org
https://www.uclahealth.org/departments/pathology/research/research-services/immunogenetics-uic/services-and-pricing/reference-programs/international-cell-exchange
https://www.uclahealth.org/departments/pathology/research/research-services/immunogenetics-uic/services-and-pricing/reference-programs/international-cell-exchange
https://www.uclahealth.org/departments/pathology/research/research-services/immunogenetics-uic/services-and-pricing/reference-programs/international-cell-exchange
https://www.uclahealth.org/departments/pathology/research/research-services/immunogenetics-uic/services-and-pricing/reference-programs/international-cell-exchange
https://doi.org/10.1016/j.jmoldx.2015.08.005
https://doi.org/10.3389/fimmu.2021.722181
https://doi.org/10.3389/fimmu.2021.722181
https://doi.org/10.3389/fimmu.2019.01179
https://doi.org/10.18869/acadpub.rmm.2.1.1
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1093/genetics/165.4.2213
https://doi.org/10.1038/s41598-020-71300-7
https://doi.org/10.3389/fimmu.2024.1494995
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2024.1494995
Appendix A EM algorithm

Given the likelihood function with respect to parameters q as:

L(q) = log P(Rjq) = o
m

k=1

log o
n

i=1
P(rkjZk = i)P(Zk = i; q) :

We assume each read rk is uniformly sampled from each alleleAi

with a length of allele li, and each base of the read are independently

generated with a sequencing error rate e, and there are pik matching

bases mapping rk on Ai. Considering multi-mapping of read rk
within alleleAi, assume read rk maps to lik positions on alleleAi, and

mi
k be number of times rk aligns on Ai we have:

P(rkjZk = i; q) =
mi

ke
(lik−p

i
k)(1 − e)p

i
k

li
: (1)

Let

Q(qjq t) = EZjR;q t ½log L(R,Z; q)� = o
m

k=1
o
n

i=1
 

P (Zk = ijrk, q t)   log P(rk,Zk = i; q) :

For each i, j we compute:

mi
k = P(Zk = i j rk) =

P(Zk = i)P(rkjZk = i)

on
s=1P(Zk = s)P(rkjZk = s)

: (2)

To maximize Q(q|qt), we construct a Lagrangian:

L(f, e , b) = o
m

k=1
o
n

i=1
mi
klog 

mi
ke

(lik−p
i
k)(1 − e)p

i
k

li
fi

 !

+ b o
n

i=1
fi − 1

 !
: (3)

To update e, by KKT condition, we set:

∂ L(f, e, b)
∂ e

= 0: (4)

Then:

∂om
k=1on

i=1m
i
klog  

mi
ke

(li
k
−pi

k
)
(1−e)p

i
k

li
fi

� �
+ b(on

i=1fi − 1)

∂ e
= 0 (5)

o
m

k=1
o
n

i=1
mi
k

∂ log  
mi
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(li
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−pi

k
)
(1−e)p

i
k

li
fi

� �
∂ e

= 0

o
m

k=1
o
n

i=1
mi
k(l

i
k − pik) − eo

m

k=1
o
n

i=1
mi
kl
i
k = 0:

Thus:

e t+1 = o
m
k=1on

i=1m
i
k(l

i
k − pik)

om
k=1on

i=1mi
kl
i
k

(6)
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To update fi, set:

∂ L(f, e , b)
∂ fi

= 0: (7)

Thus:

∂om
k=1on

i=1m
i
klog  

mi
ke

(li
k
−pi

k
)
(1−e)p

i
k

li
fi

� �
+ b(on

s=1fs − 1)

∂ fi
= 0 (8)

We have:

ft+1
i =

−om
k=1m

i
k

b
: (9)

Since o
n

i=1
ft+1
i = 1, we have o

n

i=1

−om
k=1m

i
k

b
= 1, thus:

b = −o
m

k=1
o
n

i=1
mi
k = −m (10)

Applying (10) to (9), we get:

ft+1
i = o

m
k=1m

i
k

m
: (11)
Appendix B Accession numbers

GenBank IDs that contain complete KIR region assemblies and

were used for simulations:
GenBank IDs of the assemblies with the complete KIR region used in the
experimental section.

• NT_113949.2
• NT_187636.1
• NT_187637.1
• NT_187638.1
• NT_187639.1
• NT_187640.1
• NT_187641.1
• NT_187642.1
• NT_187643.1
• NT_187644.1
• NT_187645.1
• NT_187668.1
• NT_187669.1
• NT_187670.1
• NT_187671.1
• NT_187672.1
• NT_187673.1

• NT_187674.1
• NT_187675.1
• NT_187676.1
• NT_187677.1
• NT_187683.1
• NT_187684.1
• NT_187685.1
• NT_187686.1
• NT_187687.1
• NT_187693.1
• NW_003571054.1
• NW_003571055.2
• NW_003571056.2
• NW_003571057.2
• NW_003571058.2
• NW_003571059.2
• NW_003571060.1

• NW_003571061.2
• NW_016107300.1
• NW_016107301.1
• NW_016107302.1
• NW_016107303.1
• NW_016107304.1
• NW_016107305.1
• NW_016107306.1
• NW_016107307.1
• NW_016107308.1
• NW_016107309.1
• NW_016107310.1
• NW_016107311.1
• NW_016107312.1
• NW_016107313.1
• NW_016107314.1
Accession numbers for 40 HPRC samples used in the

experimental section:
Accession IDs of the HPRC samples used in the experimental section.

• HG00438
• HG00621
• HG00673
• HG00733

• HG00735
• HG00741
• HG01071
• HG01106

• HG01109
• HG01175
• HG01243
• HG01258

(Continued)
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Continued

• HG01358
• HG01361
• HG01891
• HG01928
• HG01952
• HG01978
• HG02055
• HG02080
• HG02145
• HG02148

• HG02257
• HG02572
• HG02622
• HG02630
• HG02717
• HG02723
• HG02818
• HG02886
• HG03098
• HG03453

• HG03486
• HG03492
• HG03516
• HG03540
• HG03579
• NA18906
• NA19240
• NA20129
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