
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Xiangpeng Dai,
Jilin University, China

REVIEWED BY

Zhiwei Wang,
Wenzhou Medical University, China
Ruize Gao,
Luxembourg Institute of Health, Luxembourg

*CORRESPONDENCE

Yanhua Gong

gongyanhua@tju.edu.cn

Xueren Li

13820931847@163.com

†These authors share first authorship

RECEIVED 12 September 2024

ACCEPTED 18 October 2024
PUBLISHED 15 November 2024

CITATION

Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y
and Li X (2024) The role of histone post-
translational modifications in cancer and
cancer immunity: functions, mechanisms and
therapeutic implications.
Front. Immunol. 15:1495221.
doi: 10.3389/fimmu.2024.1495221

COPYRIGHT

© 2024 Duan, Xing, Qiao, Qin, Zhao, Gong and
Li. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 15 November 2024

DOI 10.3389/fimmu.2024.1495221
The role of histone post-
translational modifications in
cancer and cancer immunity:
functions, mechanisms and
therapeutic implications
Xiaohong Duan1,2,3†, Zhiyao Xing4,5,6†, Lu Qiao7†, Shan Qin4,
Xuejing Zhao4, Yanhua Gong1,2,3* and Xueren Li5,6*

1School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China,
2Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China,
3Medical School, Faculty of Medicine, Tianjin University, Tianjin, China, 4Tianjin University and Health-
Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine,
School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University,
Tianjin, China, 5Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China,
6Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China, 7The Province and
Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of
Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and
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Histones play crucial roles in both promoting and repressing gene expression,

primarily regulated through post-translational modifications (PTMs) at specific

amino acid residues. Histone PTMs, including methylation, acetylation,

ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation,

act as important epigenetic markers. These modifications influence not only

chromatin compaction but also gene expression. Their importance extends to

the treatment and prevention of various human diseases, particularly cancer, due

to their involvement in key cellular processes. Abnormal histone modifications

and the enzymes responsible for these alterations often serve as critical drivers in

tumor cell proliferation, invasion, apoptosis, and stemness. This review

introduces key histone PTMs and the enzymes responsible for these

modifications, examining their impact on tumorigenesis and cancer

progression. Furthermore, it explores therapeutic strategies targeting histone

PTMs and offers recommendations for identifying new potential

therapeutic targets.
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1 Introduction

The regulation of chromatin structure, nucleosome positioning,

and gene transcription is primarily controlled by histone proteins.

The nucleosome, the fundamental unit of chromatin, consists of a

central histone octamer, around which approximately 1.75 left-

handed superhelical turns of DNA are wrapped (1, 2). Each

nucleosome is made up of two identical subunits, and each

subunit contains four core histones: H2A, H2B, H3, and H4.

Additionally, histone H1, which acts as a linker, is not part of the

nucleosome itself but plays a crucial role in stabilizing the DNA

between nucleosomes (3). These histones undergo various forms of

post-translational modifications (PTMs), which serve as epigenetic

markers that influence their interaction with DNA. Under normal

physiological conditions, these histone PTMs are essential for

maintaining nucleosome structure and functioning as regulatory

mechanisms. They play vital roles in key cellular processes,

including DNA replication, gene expression, DNA damage repair,

and chromatin organization (4).

At least eleven types of post-translational modifications (PTMs)

have been identified on histones, including methylation, acetylation,

propionylation, butyrylation, formylation, ubiquitylation,

phosphorylation, sumoylation, citrullination, proline isomerization,

and ADP ribosylation, occurring at more than 60 different amino acid

residues (5) (Figure 1). These modifications can occur in various

combinations, contributing to a wide range of biological functions.

Upon histone modification, the chromatin structure is altered, which

subsequently influences the interaction between histones and DNA,

thereby regulating gene transcription.

Most histone post-translational modifications (PTMs) are

localized within the N-terminal tail domain of core histones,

although some crucial PTMs involved in histone–DNA and

histone–histone interactions also occur in the globular domain of

core histones (6–8). The structural domains at the ends of histone
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tails are positively charged and interact with negatively charged DNA.

Much of the N-terminal part of the histone tail does not participate in

nucleosome assembly and protrudes from the core structure, making

it more suitable for interactions with the surrounding environment

and, thus, more susceptible to PTMs (9). Compared with those of

H2A and H2B, the histone tails of H3 and H4 are particularly

vulnerable to PTMs. PTMs on histone tails are typically recognized

by “reader” or effector proteins, which, in turn, regulate chromatin

function (Figure 2). Histone methylation and acetylation

predominantly occur on the N-terminal tail and are key regulators

of gene transcription. PTMs in the globular domain of histones can

disrupt histone–histone interactions, destabilize nucleosomes or alter

histone-DNA interactions, impacting nucleosome dynamics and

chromatin function, often without the need for effector proteins.

Mounting evidence indicates that histone post-translational

modifications (PTMs) play essential roles in a variety of biological

processes, including cell differentiation and organismal development.

The dysregulation of histone PTMs under pathological conditions is

closely associated with the onset and progression of major human

diseases, especially cancer. Enzymes such as histonemethyltransferases,

demethylases, acetyltransferases, and deacetylases regulate gene

expression through these modifications. For instance, histone

methylation typically results in gene silencing, while acetylation

activates gene transcription; in contrast, demethylation and

deacetylation generally reverse these effects. The abnormal expression

of these modifying enzymes is a key factor contributing to tumor

development and progression. Thus, understanding the biological roles

of histone PTMs is critical for elucidating their pathophysiology.

This review emphasizes the role of histone PTMs in cancer and

explores the mechanisms underlying abnormal modification events.

Additionally, this review discusses the potential of developing

therapeutic drugs that target histone-modifying enzymes, offering

new directions for identifying novel therapeutic targets and strategies

for cancer treatment.
FIGURE 1

Post-translational modifications (PTMs) of the histone amino terminus. Histones in nucleosomes (two each of H2A. H2B. H3. and H4), Histone tails
are subject to various PTMs that affect not only the overall compression of chromatin but also gene expression. Created in BioRender. Xing, Z.
(2024) https://BioRender.com/l06b379.
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2 Histone modifications related
to cancer

2.1 Histone methylation

2.1.1 Histone methylation in cancer
Histone methylation predominantly occurs on lysine and

arginine residues and represents a critical post-translational

modification catalyzed by histone methyltransferase enzymes. This

modification can either activate or repress transcription, depending

on the specific sites involved. For example, methylation at H3K4,

H3K36, and H3K79 is generally linked to transcriptional activation,

whereas methylation at H3K9, H3K27, and H4K20 is typically

associated with transcriptional repression (10). The impact of

methylation also varies on the basis of degree of methylation. For

example, monomethylation of H4K20 (H4K20me1) is observed in

active gene bodies, whereas trimethylation of H4K20 (H4K20me3) is

associated with gene repression and chromatin compaction (11, 12).

Additionally, the position of the methylated lysine residues relative to

the DNA sequence plays a crucial role in gene regulation. For

example, H3K9me3 at the promoter region is linked to gene

silencing, whereas H3K9me3 within the gene body is often found

in inducible genes. Since this modification is electrically neutral and

chemically inert, it relies on other proteins with binding motifs to

exert its function. Proper histone methylation is essential for genomic

programming during development. However, during tumorigenesis,

dysregulated histone methylation promotes tumor cell proliferation,

migration, and invasion, ultimately contributing to tumor

progression and poor prognosis (Table 1).

2.1.1.1 H3K9me3

The expression levels of numerous histone modification

markers are closely linked to the prognosis of various human

cancers. Among these, H3K9me3 is a key histone modification
Frontiers in Immunology 03
marker that plays a significant role in tumor development and

patient outcomes. H3K9me3 is generally associated with gene

transcriptional silencing and influences cancer progression in

multiple ways. On the one hand, H3K9me3 contributes to the

abnormal silencing of tumor suppressor genes, thereby promoting

tumor progression and leading to poorer patient prognosis. For

instance, in HCT116 cells, the promoter and adjacent 3’ regions of

the tumor suppressor gene DCC are enriched with the repressive
FIGURE 2

The main methylation sites on the amino termini of H3 and H4. Along with the associated methyltransferases (above) and demethylases (below).
TABLE 1 Abnormal histone methylation in cancer.

Cancer
type

Relevant
histone

modifications

Abnormal
expression
pattern

Ref

Acute
Myeloid
Leukemia

H3K9me3 Downregulation Laura
Monaghan

(13)

Gastric cancer H3K9me3 Upregulation Park YS (14)

Colorectal
cancer

H3K9me3 Downregulation Benard
A (15)

Glioblastoma H3K27me3 Downregulation Pathak
P (16)

Glioblastoma H3K4me3 Downregulation Pathak
P (16)

Breast cancer H3K4me3 Upregulation Luisa
Berger (17)

Hepatocellular
carcinoma

H3K4me3 Upregulation Gao SB (18)

Hepatocellular
carcinoma

H3K27me3 Upregulation Duan JL (19)

Pancreatic
Adenocarcinoma

H3K4me2 Downregulation Ananya
Manuyakorn

(20)

Lung cancer H3K4me2 Downregulation Barlési F (21)
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H3K9me3 marker, which inhibits DCC transcription and promotes

colorectal cancer development (22). Elevated H3K9me3 levels are

also prognostic markers in cancers such as acute myeloid leukemia,

gastric adenocarcinoma, salivary carcinoma, and bladder cancer

(23–26). On the other hand, H3K9me3 helps to repress the aberrant

expression of oncogenes and regulates the silencing of repetitive

sequences in the genome. Studies have shown that higher H3K9me3

immunostaining scores are inversely correlated with disease

recurrence, particularly distant metastasis, and improved disease-

free survival in patients with non-small cell lung cancer (27).

Furthermore, reduced levels of both H3K9me3 and H4K20me3

are associated with shorter survival times and increased tumor

recurrence rates in patients with early-stage colon cancer (15).

2.1.1.2 H3K4me3

H3 lysine 4 (H3K4) methylation is among the most extensively

studied histone modifications due to its strong association with gene

expression and cancer development. This methylation is catalyzed

by the SET1/COMPASS complex, which comprises several lysine

methyltransferases and essential subunits, including six catalytic

members: SETD1A, SETD1B, and MLL1-4 (28). H3K4me3 is

typically found at transcription start sites (TSSs) and is believed

to enhance transcription by recruiting PHD finger-containing

proteins, such as TATA-box binding protein-associated factor 3

(TAF3), which play critical roles in transcription initiation (29).

Additionally, H3K4me3 at promoter regions can counterbalance

repressive histone modifications such as H3K9me3 and H3K27me3,

helping to activate gene transcription (30–32). H3K4me3 is a

hallmark of actively transcribed genes and has been implicated in

promoting changes in gene expression and advancing tumor

progression. Recent research has indicated that H3K4me3 actively

participates in driving the progression of several cancers, including

lung cancer, liver cancer, multiple myeloma, and prostate cancer

(33–37). Notably, in gastric cancer (GC) patients, H3K4me3 is

significantly upregulated at the TM4SF1-AS1 locus, promoting the

expression of TM4SF1-AS1, which in turn inhibits apoptosis in

gastric cancer cells (38). While most expressed genes present

H3K4me3 restricted to the promoter and 5’ regions of the gene

body, a subset of genes exhibit broader H3K4me3 regions (39).

These broad domains often identify genes involved in crucial

functions such as cell identity, tumor suppression, and disease-

related processes (32, 40). For example, highly metastatic triple-

negative breast cancer cells show higher expression levels of

oncogenes linked to broad H3K4me3 domains compared to

normal breast epithelial cells and less malignant breast cancer cell

lines (39).

2.1.1.3 H3K27me3

H3K27 methylation is catalyzed by polycomb repressive

complex 2 (PRC2), a key regulator whose subunits can recognize

the H3 tail for complex binding (41). The primary function of PRC2

is to deposit methyl groups onto the lysine 27 residue of histone H3

(H3K27), resulting in gene repression (42). This trimethylation of

H3K27 is mediated by the histone methyltransferase enhancer zeste

homolog 2 (EZH2), an essential component of PRC2 (43).
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H3K27me3 plays a critical role in cell differentiation, and studies

have demonstrated that the disruption of PRC2 impairs the

differentiation of embryonic stem cells (44).

In addition to its pivotal role in development, alterations in

H3K27me3 are observed in various cancer types, where H3K27me3

contributes to different stages of tumor initiation, progression, and

metastasis. Both the upregulation and downregulation of

H3K27me3 have been implicated in numerous cancers. For

example, in ovarian cancer, overexpression of EZH2 leads to

increased H3K27me3 levels, which suppresses the expression of

genes such as E-cadherin, TIMP2, and TIMP3, all of which are

involved in cell migration. Their repression facilitates tumor

metastasis (45). EZH2 also modulates the expression of DAB2IP

by trimethylating H3K27 at the DAB2IP promoter. DAB2IP,

known for its Ras-GTPase activity, suppresses cancer stem cell

phenotype in several cancers, and its repression by EZH2 promotes

cancer cell stemness (46, 47).

Conversely, the loss of H3K27me3 can also contribute to tumor

development. In such cases, reduced H3K27me3 may lead to the

activation of tumor suppressor genes, accelerating tumor

progression. In diffuse midline gliomas, for example, the loss of

H3K27 trimethylation is a primary driver of tumor growth (48).

This reduction in H3K27 methylation promotes glial cell stemness

and silences tumor suppressor genes (42). Thus, dynamic changes

in H3K27me3 play multifaceted and complex roles at various stages

of tumor initiation and progression.
2.1.2 Histone methyltransferases in cancer
Histone methyltransferases (HMTs) are categorized into two

main subfamilies: histone lysine methyltransferases (HKMs) and

histone arginine methyltransferases (HRMs) (49). Lysine

methyltransferases (KMTs) can be further divided into two

families based on the sequence of their catalytic domain: those

with the SET domain (located in the histone tails) and those with

non-SET domains (located in the histone core) (50–52). All

HKMTs, except those in the Dot1 family, contain a conserved

enzymatic SET [SU(VAR)3-9, E(Z), and TRX] domain, which was

initially discovered in su(var)3-9, enhancer-of-zeste, and trithorax

proteins (52). The SET domain includes enzymes such as

SUV39H1/2, G9a, EZH2, GLP, and SETDB1 (53).

In the histone arginine methyltransferase (HRM) subfamily,

protein arginine methyltransferases (PRMTs) methylate arginine

residues in histones through mono-, symmetric-, or asymmetric-

dimethylation (54). Currently, nine PRMTs have been identified in

mammals, all of which possess four conserved motifs. Mammalian

PRMTs are classified into two groups on the basis of the type and

position of methylation. Class I includes PRMT1, 3, 4, 6, and 8,

which catalyze monomethylation and asymmetric dimethylation of

arginine. Class II comprises PRMT5 and PRMT7, which catalyze

monomethylation and symmetric dimethylation of arginine

(55–57).

The dysregulated expression of histone methyltransferases

(HMTs) can result in aberrant histone methylation of cancer-

related genes, thereby contributing to tumor development. The

histone-lysine N-methyltransferase (KMT2) family plays crucial
frontiersin.org
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roles in regulating transcription. Mutations in the KMT2 family are

among the most frequently observed genetic aberrations in various

cancers, including hematological malignancies and solid tumors

such as colorectal, lung, endometrial, breast, bladder, and brain

cancers (58–63). Members of the PRMT family have also gained

importance in the study of different cancer types. The

overexpression and dysregulation of PRMT4, PRMT5, and

PRMT7 are known to drive the progression of several

hematological malignancies and solid tumors, making them

effective therapeutic targets (64–66). Therefore, PRMT family

members can serve as effective targets for cancer therapy.

Aberrant expression of HMTs disrupts the transcriptional

regulation of genes linked to disease, including oncogenes and

tumor suppressor genes, which can promote tumorigenesis.

HMTs are associated with chemotherapy resistance and immune

evasion, highlighting their potential as therapeutic targets.

Chemically targeting these enzymes represents a promising

approach for the development of novel cancer therapies.

2.1.2.1 SETD1A

SETD1A is a histone lysine methyltransferase that contains the

SET domain and is part of the SET1/COMPASS complex family,

alongside its paralog SETD1B (28, 67). SETD1A specifically

methylates H3K4, a modification crucial for the transcriptional

activation of genes that regulate the self-renewal and differentiation

of embryonic stem cells (68). Additionally, SETD1A plays a

significant role in maintaining mitosis and cell proliferation.

Research has shown that SETD1A is upregulated in various

cancers, and its overexpression is linked to accelerated tumor cell

proliferation and invasion, which is often correlated with

poor prognosis.

In lung cancer, high levels of SETD1A expression drive the

deposition of H3K4me3 on the promoters of key oncogenes such as

MYC, GLI1, FOXM1, and DNMT1. This promotes the

transcription of these oncogenes, thereby facilitating the onset

and progression of lung cancer (33). Furthermore, studies

indicate that SETD1A contributes to the development of gastric

cancer by increasing H3K4me3 levels at hypoxia response elements

in the promoters of HK2 and PFK2. This, in turn, enhances the

transactivation of HIF1a and upregulates the expression of its target

genes, ultimately leading to increased glycolysis in gastric cancer

cells (69). Similarly, SETD1A is overexpressed in pancreatic ductal

adenocarcinoma (PDAC) and is associated with poor patient

prognosis. It binds to the promoter of the oncogenic protein

ATP-dependent DNA helicase gene RUVBL1, increasing

H3K4me3 levels and promoting transcriptional regulation of the

gene, which plays a pivotal role in PDAC cell proliferation and

motility (70). These findings suggest that SETD1A may serve as a

potential predictive marker for various cancer types.

2.1.2.2 KMT2D

Lysine-specific methyltransferase (KMT2D), also known as

myeloid/lymphoid or mixed-lineage leukemia 2 (MLL2), is a key

histone methyltransferase essential for regulating gene transcription.

It specifically targets histone H3 lysine 4 (H3K4), whose methylation
Frontiers in Immunology 05
serves as a marker for gene activation. KMT2D, along with SETD1A,

is a member of the SET/MLL (mixed lineage leukemia)

methyltransferase family, which is conserved across species, from

yeast to mammals. In humans, this family includes six H3K4

methyltransferases (HMTs): MLL1 (MLL/KMT2A), MLL2

(KMT2B), MLL3 (KMT2C), MLL4 (KMT2D), SETD1A (KMT2F),

and SETD1B (KMT2G) (58, 71).

In recent years, KMT2D has emerged as one of the most

frequently mutated genes in various cancers and human diseases,

including lymphoma, medulloblastoma, and gastric cancer (72–74).

Mutations in KMT2D often result in a loss of function, suggesting

its role as a tumor suppressor in various tissues. The absence of

KMT2D affects the proliferation and migration of colorectal cancer

cell lines. KMT2D regulates H3K4 monomethylation and is

associated with enhancer elements in the HCT116 cell line. The

SET domain of the enzyme is critical for maintaining effective H3K4

monomethylation, and its activity is directly involved in regulating

H3K4me1, which is essential for sustaining tumor cell proliferation.

Moreover, KMT2D plays a role in addressing tumor resistance.

For example, drugs targeting the PI3K signaling pathway are

effective in some breast cancer patients; however, estrogen

receptor (ER)-positive breast cancer patients often develop

resistance to these therapies. Toska et al. reported that PI3K

inhibition activates KMT2D and that H3K4 methylation catalyzed

by KMT2D leads to a more open chromatin state, facilitating

estrogen receptor-dependent transcription (75). As a result,

researchers have suggested that combination therapy consisting of

PI3K inhibitors and KMT2D inhibitors may be more effective than

PI3K inhibitors alone.
2.1.2.3 PRMT1

PRMT1 is the predominant type 1 protein arginine

methyltransferase (PRMT), accounting for more than 85% of

arginine methylation in mammals, with histone H4 as its primary

methylation target. Arginine dimethylation of histone H4

(H4R3me2a) enhances histone acetylation, chromatin accessibility,

and transcriptional activation. Recent studies have underscored the

critical role of arginine methylation in various human diseases,

particularly cancer. Elevated levels of PRMT1 are linked to poor

prognosis in many cancer types.

Research conducted by Ku et al. demonstrated that high

PRMT1 levels are associated with unfavorable outcomes in both

human and mouse pancreatic cancer patients (76). PRMT1 activity

is essential for regulating chromatin accessibility and controlling the

expression of key glycolytic genes, such as GLUT1 and HK2.

Furthermore, inhibiting PRMT1 can disrupt KRAS-driven

glycolysis in pancreatic ductal adenocarcinoma (PDAC), thereby

affecting tumor metabolism.

PRMT1 also acts in synergy with SMARCA4, an ATPase

subunit of the SWI/SNF chromatin remodeling complex, to drive

the progression of colorectal cancer (CRC) (77). Mechanistically, it

was shown that H4R3me2a directly recruits SMARCA4, enhancing

the proliferative, colony-forming, and migratory capacities of CRC

cells by activating EGFR signaling pathways. PRMT1 is further

involved in numerous interactions with transcription factors and
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gene promoters. The overexpression and aberrant splicing of

PRMT1 are directly implicated in the development of several

cancers, including breast, lung, and bladder cancers and leukemia

(78–81).

2.1.3 Histone demethylases in cancer
Histone methylation is a reversible modification that is

dynamically regulated by the interplay between histone

methyltransferases and histone demethylases. Histone

demethylation is catalyzed by histone demethylases (HDMs), which

remove methyl groups from specific amino acids on the N-terminal

tails of histones. These enzymes primarily target lysine (K) residues

on histone H3, such as K4, K9, K27, and K36, and are also known as

lysine demethylases (KDMs). Currently, two evolutionarily conserved

families of histone demethylases have been identified: lysine-specific

demethylases (LSDs) and demethylases containing the Jumonji C

(JmjC) domain (JHDM). These two families utilize different

mechanisms to remove methyl groups (82, 83).

The LSD family includes LSD1 and LSD2, which demethylate

mono- and dimethylated lysine residues through a flavin adenine

dinucleotide (FAD)-dependent amine oxidase reaction. LSD1, also

known as KDM1A or AOF2, was the first discovered histone lysine

demethylase. It removes mono- and dimethyl groups from lysine 4

(H3K4me1/2) or lysine 9 (H3K9me1/2) of histone H3, serving as

either repressors or activators of gene expression (84). However,

owing to its reliance on FAD and protonated nitrogen, LSD1 can

only demethylate mono- or dimethylated lysines and is ineffective

against trimethylated lysines (82, 85). The catalytic mechanism of

LSD1 limits its ability to demethylate trimethylated lysine, a

widely observed modification. This has led researchers to propose

that other catalytic mechanisms may exist for histone

lysine demethylation.

Zhang et al. discovered that F-box and leucine-rich repeat

protein 11 (FBX11) possesses histone demethylase activity and

contains a JmjC domain, classifying it as JHDM1A (JmjC

domain-containing histone demethylase 1A) (86). JmjC domain-

containing proteins exhibit hydroxylase activity, which enables their

demethylation function. JHDM1A specifically removes

dimethylation marks from H3K36me2 on histone H3 in the

presence of divalent iron ions and a-ketoglutarate. The JHDM1A

protein comprises several domains: a JmjC domain, an F-box

domain, a PHD, a zinc finger domain, and three leucine-rich

repeat regions, with the JmjC domain serving as the catalytic

domain. On the basis of sequence information, proteins

containing the JmjC domain are classified into seven families:

JHDM1, JHDM2, JHDM3, JARID1, UTX/UTY, PHF8, and those

containing only the JmjC domain. The JmjC family has 30

members, nearly 20 of which have demonstrated histone

demethylase activity. Unlike LSDs, JmjC domain-containing

proteins do not require a hydrogen donor, allowing them to

demethylate all three methylation states of lysine residues.

Proteomic analyses have shown that histone arginine

methylation is also a reversible modification. However, the

“arginine demethylases” (RDMs), which directly remove methyl

groups from arginine, remain poorly characterized. The most

studied candidates are peptidylarginine deiminase 4 (PADI4) and
Frontiers in Immunology 06
Jumonji domain-containing protein 6 (Jmjd6) (87, 88). PADIs are

Ca2+-dependent enzymes that catalyze the conversion of arginine

to citrulline in proteins. They can also convert monomethylated

arginine (MMA) to citrulline, affecting histone H3 and H4

modifications. Additionally, Chang et al. identified Jmjd6 as a

histone arginine demethylase that specifically demethylates

histone H3 at arginine 2 (H3R2) and histone H4 at arginine

3 (H4R3).

These histone demethylases can target both histone and non-

histone substrates and are involved in various biological processes,

including development and metabolic diseases such as diabetes and

cancer. Abnormal expression of histone demethylases is linked to

tumorigenesis, cancer progression, and drug resistance (Table 2).

For example, LSD1 is abnormally expressed in several cancers and

has been shown to inhibit cancer cell differentiation while

promoting proliferation, metastasis, and invasion. LSD1

overexpression is associated with poor prognosis in conditions

such as non-small cell lung cancer, neuroblastoma, pancreatic

cancer, prostate cancer, and breast cancer (101–105). Inhibiting

LSD1 activity may help reduce or halt the growth of these tumors.
TABLE 2 The mechanism of KDMs in cancer.

KDMs type Cancer type Function

KDM1A

NSCLC

Upregulating E-cadherin and
promoting epithelial-
mesenchymal transition
(EMT) (89).

Glioblastoma
Activating the unfolded protein
response pathway (90).

KDM2A HCC

Upregulating the stemness of
liver cancer tumor-initiating
cells and promoting sorafenib
resistance (91).

KDM3A Ovarian cancer Demethylating p53 protein (92).

KDM4B Prostate cancer

Recruiting AR to the c-Myc
(MYC) gene enhancer and
increasing c-Myc’s
transcription (93).

KDM5A

Ovarian cancer

Decreasing E-cadherin
expression and increasing N-
cadherin/P-glycoprotein
expression (94).

Lung adenocarcinoma
Decreasing expression of E-
cadherin and increasing N-
cadherin expression (95).

Breast cancer Modulating ER signaling (96).

KDM5B

NSCLC
Promote the growth of cancer
stem cells (97).

Hepatocellular
carcinoma

Downregulating PTEN and
activating the PI3K/Akt
pathway (98).

KDM6A Osteosarcoma
Inactivating RAF/ERK/MAPK
cascades (99).

KDM6B Breast cancer
Counteracting EZH2-mediated
suppression of IGFBP5 (100).
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2.1.3.1 JMJD1A

JMJD1A, also known as lysine demethylase 3A (KDM3A), is a

member of the Jumonji C (JmjC) family of histone demethylases.

JMJD1A plays a key role in promoting the expression and activity of

various transcription factors through the demethylation of H3K9,

thereby regulating critical biological processes such as

spermatogenesis, stem cell activity, and sex determination.

Notably, JMJD1A is upregulated in multiple malignant tumors,

including neuroblastoma, breast cancer, cervical cancer, non-small

cell lung cancer, liver cancer, and gastric cancer (106–111).

In prostate cancer, JMJD1A plays several important roles (112).

First, the interaction between JMJD1A and the androgen receptor

(AR) promotes AR chromatin binding by demethylating H3K9 on

AR target genes. Additionally, JMJD1A regulates the oncogene c-

Myc through three distinct mechanisms: (1) JMJD1A induces H3K9

demethylation at the c-Myc enhancer, thereby promoting c-Myc

transcription (113); (2) JMJD1A acts as a coactivator of c-Myc by

interacting with it and enhancing c-Myc recruitment to chromatin

via H3K9 demethylation; and (3) JMJD1A interacts with the protein

HUWE1, which is involved in the ubiquitination and degradation

of c-Myc (114). By inhibiting c-Myc degradation, JMJD1A

enhances the stability of c-Myc.

Furthermore, JMJD1A has been implicated in promoting the

progression of urinary bladder cancer (115). It does so by enhancing

glycolysis through the coactivation of HIF-1a, contributing to

cancer cell growth and survival. These findings highlight JMJD1A

as a potential therapeutic target in various cancers.

2.1.3.2 UTX/KDM6A

Lysine-specific demethylase 6A (UTX), encoded by the KDM6A

gene, is a key component of the COMPASS complex, which plays a

critical role in gene activation. UTX functions as part of a

transcriptional activation complex that includes MLL2/MLL3 (H3K4

methyltransferases) and P300/CBP histone acetyltransferases (116).

This collaborative mechanism enables the removal of the repressive

histone mark H3K27me3 and the deposition of activation-associated

marks such as H3K27 acetylation and H3K4 methylation, facilitating

transcriptional activation.

Mutations in KDM6A are frequently observed in various cancer

types, particularly in primary multiple myeloma (MM) and certain

types of T-cell leukemia (117–119). Loss of UTX in MM promotes

tumor cell proliferation, clonogenicity, and adhesion. Moreover,

UTX-mutant MM cells exhibit increased sensitivity to EZH2

inhibition both in vitro and in vivo, which correlates with reduced

levels of IRF4 and c-MYC, as well as the activation of IRF4

repressors specific to germinal center B cells, such as BCL6

and IRF1.

Interestingly, UTX can either suppress or promote cancer

development through interactions with transcription factors. For

example, in breast cancer, UTX regulates the oncogenic functions of

estrogen receptor a (ERa) (120). In bladder cancer, UTX functions

as a tumor suppressor by localizing to enhancers and regulating key

genes involved in bladder differentiation through a catalytic-

independent mechanism (121). UTX also attenuates the

transcriptional and phenotypic effects of aberrant fibroblast
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growth factor receptor 3 (FGFR3) activation. These findings

suggest that the concurrent loss of UTX function and FGFR3

mutations synergistically drive tumorigenesis in bladder cancer.

UTX/KDM6A is encoded on the X chromosome and escapes X

inactivation in females. In females, UTX lesions are often

homozygous, whereas in males, these mutations are frequently

accompanied by the loss of the paralog UTY, further supporting

its role as a tumor suppressor.

2.1.3.3 JMJD2

The JMJD2A-D proteins, now commonly referred to as

KDM4A-D (lysine demethylases 4 A-D), belong to one of the

largest subfamilies of JMJD proteins. These enzymes have

garnered significant attention for their ability to recognize and

demethylate dimethylated and trimethylated histones, specifically

H3K9 and H3K36, as well as trimethylated H1.4K26. The KDM4

family consists of three ∼130-kDa proteins (KDM4A-C) and a

smaller member, KDM4D/JMJD2D, which lacks the double PHD

and Tudor domains found in the other KDM4 proteins (122). These

domains function as epigenome readers, and their absence in

KDM4D results in different substrate specificities than those of

the other family members.

Various studies have shown that KDM4A/JMJD2A, KDM4B/

JMJD2B, and/or KDM4C/JMJD2C are overexpressed in breast

cancer, colorectal cancer, lung cancer, prostate cancer, and other

tumors and are essential for the efficient growth of cancer cells (122,

123). KDM4A/JMJD2A is the most extensively studied member of

the KDM4 family, and it can demethylate H3K9 and H3K36,

thereby regulating gene transcription. In breast and prostate

cancers, KDM4A forms a complex with estrogen and androgen

receptors and activates downstream target genes. Therefore,

depletion of KDM4A in ER-positive T47D breast cancer cells

reduces the expression of ER target genes (such as the oncogenes

c-Jun and Cyclin D1) and leads to decreased cell growth (124). Like

in breast cancer cells, the knockdown of KDM4A in multiple

colorectal cancer cell lines led to reduced cell proliferation,

further increased apoptosis, and delayed G2−M phase progression

of the cell cycle (125).

KDM4B and KDM4C, which share structural similarities with

KDM4A, exhibit the same target specificity and similar enzymatic

activities in vitro (126, 127). The expression of KDM4B and KDM4C

is elevated in breast tumors. Functionally, KDM4C overexpression

has been linked to the development of ER-negative breast cancers,

while KDM4B contributes to the tumorigenic transformation of ER-

positive breast cancer cells (128–131). Furthermore, KDM4B

overexpression has been observed in gastric, bladder, lung, and

colorectal cancers, where it is essential for the proliferation, colony

formation, invasion, and survival of cancer cells (132, 133).

KDM4D, which is distinct from other KDM4 proteins due to its

lack of PHD and Tudor domains, also acts as a coactivator of the

androgen receptor, similar to KDM4A and KDM4C, thereby

promoting tumor progression. Additionally, KDM4D plays a role

in mediating inflammatory responses triggered by cytokines such as

TNF-a, potentially influencing tumorigenesis within the tumor

microenvironment and immune cells (134).
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2.1.3.4 JMJD3/KDM6B

Lysine-specific demethylase 6B (KDM6B, also known as

JMJD3) is a member of the UTX/UTY JmjC domain protein

subfamily that demethylates H3K27 residues, including both the

trimethylated and dimethylated forms, in conjunction with UTX

(135). KDM6B promotes gene transcription by removing

H3K27me3 marks from the promoters of its target genes, thereby

preventing the binding of polycomb repressive complex 2 (PRC2),

or by recruiting coactivators and mediating their interactions with

transcription factors (TFs), which can be dependent on or

independent of its demethylase activity (136, 137). KDM6B is a

crucial histone demethylase involved in various biological and

pathological processes, including development, inflammation,

aging, and cancer.

KDM6B functions as both a tumor suppressor and an

oncogene, depending on the cellular context. In certain cancer

types, such as neuroblastoma, hepatocellular carcinoma, lung

adenocarcinoma, and endometrial cancer, KDM6B functions as a

tumor suppressor, and its expression is associated with improved

survival rates and prognoses (138–141). For example, in non-small

cell lung cancer (NSCLC), KDM6B expression is reduced, and when

KDM6B is overexpressed, it restricts cell proliferation and

migration while inducing apoptosis. This is achieved by inhibiting

the phosphorylation of FOXO1, leading to its accumulation in the

nucleus (142). In acute myeloid leukemia (AML), particularly the

M2 and M3 subtypes, KDM6B overexpression reduces the number

of leukemia stem cells, promotes bone marrow differentiation, and

induces cellular senescence by upregulating the expression of C/

EBPb and its target genes (143).

Despite its tumor-suppressive functions, KDM6B can also act as

an oncoprotein in certain contexts, promoting tumor progression.

In prostate cancer cells, KDM6B is highly expressed, with levels

increasing as the disease progresses, particularly in metastatic cases.

Additionally, in estrogen receptor a (ERa)-dependent breast

cancer, KDM6B forms a complex with ERa and binds to ERa
sites in the BCL2 enhancer region, leading to BCL2 overexpression

following estrogen treatment (144). KDM6B also induces the

expression of SNAI1, promoting epithelial-mesenchymal

transition (EMT) and contributing to metastasis in patients (145).

In esophageal squamous cell carcinoma (ESCC), the RAS/MEK

pathway induces KDM6B overexpression, which is associated with

disease stage and patient survival (146). Thus, KDM6B plays dual

roles in cancer, acting as either a tumor suppressor or an oncogene,

depending on the specific cancer type and context.
2.2 Histone acetylation

Acetylation, one of the earliest discovered histone modifications

affecting transcriptional regulation, introduces negative charges to

lysine residues located in the N-terminal histone tails protruding

from the nucleosome (147, 148). These negative charges repel

negatively charged DNA, resulting in a more relaxed chromatin

structure that allows transcription factors to bind more easily, thereby

significantly increasing gene expression (149). The dynamic balance
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of histone acetylation is regulated by two classes of enzymes: histone

deacetylases (HDACs) and histone acetyltransferases (HATs) (150).

HDACs can remove acetyl groups from histones, leading to a more

compact chromatin structure and the suppression of gene

transcription. In contrast, HATs add acetyl groups to histones,

resulting in a more relaxed chromatin structure and promoting

gene transcription. The dynamic balance between these two classes

of enzymes determines the level of histone acetylation at specific gene

loci, thereby influencing the expression of the corresponding

genes (151).

Histone acetylation plays a vital role in regulating various

cellular processes, such as the cell cycle, cell proliferation,

apoptosis, differentiation, DNA replication and repair, nuclear

transport, and neuronal inhibition (152). Imbalances in histone

acetylation are closely associated with tumor development and

cancer progression, as aberrations in acetylation can disrupt the

regulation of gene expression involved in these key processes.

In various cancers, abnormal changes in H3K27ac modification

are often linked to the dysregulation of tumor-related genes, affecting

critical cellular processes such as proliferation, differentiation, and

apoptosis. Several studies have highlighted the potential of H3K27ac

modification changes as biomarkers for cancer diagnosis and

prognosis, aiding in identifying the onset and progression of

malignancies. In pancreatic ductal adenocarcinoma (PDAC), a

highly invasive tumor, the pro-apoptotic protein NOXA serves as a

marker of the invasive subtype. Research has demonstrated that

inhibition of the transcription factor RUNX1 leads to enrichment of

H3K27ac, which, in turn, activates the proximal NOXA promoter

region (153). This drug-induced enrichment of H3K27ac triggers

NOXA-dependent cell death. Similarly, in cervical cancer cells, the

long non-coding RNA EGFR-AS1 promotes migration and invasion

while inhibiting apoptosis. Studies have shown that CBP interacts

with the promoter of EGFR-AS1, activating H3K27ac and

subsequently leading to the upregulation of EGFR-AS1, which

influences the WNT pathway through ACTN4, promoting cervical

cancer cell growth (153).

In summary, H3K27ac plays a crucial role in cancer

development and progression. Given its significance as an

epigenetic marker, targeting the mechanisms that regulate

H3K27ac, such as CBP/p300, has emerged as a promising

therapeutic strategy for treating various cancers.

2.2.1 Histone deacetylases in cancer
Lysine acetylation on histone tails is a highly dynamic process

crucial for regulating chromatin structure, transcription, and DNA

repair. This process is controlled by two enzyme families: histone

acetyltransferases (HATs) and histone deacetylases (HDACs) (154).

HATs catalyze the transfer of an acetyl group from acetyl-CoA to

the e-amino group of lysine residues on histones, leading to a more

relaxed chromatin structure that promotes transcription. In

contrast, HDACs remove the acetyl group from histones,

resulting in a more compact chromatin conformation that

reduces transcription factor accessibility. This dynamic regulation

of histone acetylation plays a key role in gene expression and

chromatin organization.
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HDACs, in particular, serve as critical transcriptional

corepressors in a variety of physiological and pathological

systems. In mammals, there are 18 HDACs, which are classified

into four major classes (155, 156). Class I HDACs (HDACs 1, 2, 3,

and 8) are ubiquitously expressed in human cells and are primarily

localized in the nucleus. Class II HDACs (HDACs 4, 5, 6, 7, 9, and

10) exhibit tissue-specific expression and shuttle between the

nucleus and cytoplasm. Compared with other HDAC classes,

class III HDACs, also known as sirtuins (SIRT1–7), are NAD

+-dependent and have a unique catalytic mechanism. Finally,

Class IV contains only one member, HDAC11, which has been

found to deacetylate various histone sites, resulting in low substrate

specificity and functional redundancy in certain contexts.

Mutations and abnormal expression of HDACs are frequently

observed in human diseases, especially cancer, where the

dysregulation of histone acetylation contributes to oncogenesis.

As a result, HDACs have emerged as significant therapeutic

targets in cancer, with their inhibition leading to increased

histone acetylation and potential restoration of normal gene

expression patterns in tumor cells. Consequently, the overall

pattern of histone acetylation becomes dysregulated in cancer,

further driving disease progression.

2.2.1.1 Class I HDACs

All members of the class I subfamily of HDACs are dysregulated

in many types of cancer. The overexpression of HDAC1 has been

observed in patients with breast cancer, prostate cancer, gastric

cancer, and pancreatic cancer, and its upregulation is correlated

with poor prognosis (157–160). Specifically, HDAC1 is highly

expressed in glioblastoma (GBM) tissues, where it promotes the

invasion and migration of GBM cells by regulating the epithelial-

mesenchymal transition (EMT) process (161). Moreover, HDAC1

upregulation has been identified as a key factor in the development

of drug resistance in ovarian cancer. Enhancing c-Myc-dependent

miR-34a expression to target HDAC1 may offer a promising

strategy to improve the efficacy of cisplatin treatment in these

patients (162).

In human lung cancer cell lines, HDAC2 inactivation leads to

apoptosis via the activation of p53 and Bax (163). Conversely, in

colorectal cancer cells, the loss or knockdown of HDAC2 induces

EMT and lung metastasis by upregulating the long non-coding

RNAH19 (lncRNAH19) (164). Additionally, frequent mutations in

the CREBBP gene in B-cell lymphomas drive tumorigenesis in vivo

through the involvement of HDAC3 (165). HDAC3 also plays a

crucial role in the development of non-small cell lung cancer

(NSCLC) driven by the KL and KP genotypes (166).

Furthermore, knockdown of HDAC8 has been shown to inhibit

cell proliferation in lung cancer, colorectal cancer, and cervical

cancer cell lines, highlighting its potential as a therapeutic target

across multiple cancers (167–169).

2.2.1.2 Class II HDACs

Class II HDACs are divided into two subfamilies: Class IIa

(HDAC4, 5, 7, 9) and Class IIb (HDAC6 and 10) (154). Some

members of the Class IIa subfamily play dual roles in cancer.
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HDAC4, for example, is upregulated in breast cancer patients, yet

its inhibition or downregulation can also affect cancer progression.

Interestingly, homozygous deletion of HDAC4 has been observed in

melanoma cell lines, indicating that HDAC4 can function both as

an oncogenic factor and as a tumor suppressor depending on the

context (170). Similarly, HDAC7 demonstrates dual roles in tumor

biology. High expression of HDAC7 and HDAC9 has been linked to

poor prognosis in children with acute lymphoblastic leukemia

(ALL), whereas Skov et al. reported significant downregulation of

HDAC7 in myeloproliferative tumors (171, 172). These findings

suggest that Class IIa HDACs may serve as both proliferation-

promoting and tumor-suppressive factors, depending on the

cellular environment. In addition, Peixoto et al. reported that

HDAC5 is essential for the replication fork process in cancer

cells, as it is capable of maintaining and assembling the structure

of heterochromatin around centromeres in cancer cells (173).

Among the Class IIb HDACs, HDAC6 has been extensively

studied for its role in tumorigenesis. Elevated HDAC6 expression is

positively correlated with cancer progression in oral squamous cell

carcinoma, and estrogen stimulation increases HDAC6 gene

expression in MCF-7 breast cancer cells (174). Moreover, acute

myeloid leukemia samples and leukemia cell lines (such as HL60,

K562, and KG1a) present elevated levels of HDAC6 expression

(175). HDAC10, another member of Class IIb, has been implicated

in gastric cancer development. It plays a crucial role in regulating

the production of reactive oxygen species (ROS) in gastric cancer

cells. Inhibition of HDAC10 leads to ROS accumulation, which

triggers apoptosis in these cells, suggesting its potential as a

therapeutic target (176).

2.2.1.3 Class III HDACs

Sirtuins, Class III HDACs, play both oncogenic and tumor-

suppressive roles in cancer, depending on the context. Various

sirtuins have been found to be aberrantly expressed in multiple

types of cancers. The most studied of these genes is SIRT1, which is

widely recognized as a key epigenetic regulator involved in

numerous biological processes (177). SIRT1 is responsible for

deacetylating histone H1 lysine 26 (H1K26ac), histone H3 lysine

9 (H3K9ac), and histone H4 lysine 16 (H4K16ac) (178). Compared

with that in normal tissues, the overexpression of SIRT1 has been

reported in several cancers, including prostate cancer, colorectal

cancer, leukemia, and melanoma. However, SIRT1 downregulation

has also been observed in other types of tumors, such as breast

cancer and hepatocellular carcinoma (179, 180), reflecting its

multifaceted effects that depend on its subcellular localization and

roles in different tissues.

On the other hand, SIRT2 primarily acts as a tumor suppressor.

Studies have shown that a deficiency in SIRT2 impairs the mitotic

checkpoint, leading to genomic instability and tumorigenesis (181).

Furthermore, a significant decrease in SIRT2 expression has been

reported in patients with gliomas (182). In cholangiocarcinoma,

SIRT3 plays a tumor-suppressive role by downregulating the

HIF1a/PDK1/PDHA1 pathway, leading to tumor regression

(183). SIRT3 also inhibits renal cancer tumorigenesis by blocking

mitochondrial biogenesis and inducing ferroptosis. In gallbladder
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cancer, SIRT3 suppresses tumors by inhibiting AKT-dependent

mitochondrial metabolism and epithelial−mesenchymal transition

(EMT) (184). However, in cervical cancer, SIRT3 overexpression

promotes cancer cell progression by reprogramming fatty

acid synthesis.

SIRT7, another member of this class, is a promoter-associated,

highly selective H3K18Ac deacetylase. It plays a role in mediating

transcriptional repression and stabilizing the cancer cell phenotype,

further underscoring the diverse and complex roles of sirtuins

in cancer.

2.2.1.4 Class IV HDACs

HDAC11, a newly discovered member of the HDAC family, is

encoded by a gene located on human chromosome 3q25.1 and is

found in both the nucleus and cytoplasm (185). Its role in cancer

appears to be cancer type specific. HDAC11 is highly expressed in

lung adenocarcinoma and squamous cell carcinoma, where it is

associated with poor patient prognosis (186, 187). In these cancers,

HDAC11 promotes tumor cell migration, stemness, and drug

resistance. In contrast, in basal-like breast cancer (BLBC),

HDAC11 expression is downregulated, and overexpression of

HDAC11 can suppress in vitro invasion and in vivo metastasis in

xenograft breast cancer models, such as the SUM1315 and BT549

cell lines (128, 188).

The role of HDAC11 in hepatocellular carcinoma (HCC)

metastasis is complex and may depend on the specific cancer cell

lines and preclinical models used. Wang et al. reported that the

downregulation of HDAC11 significantly reduced the migration

and invasion abilities of highly metastatic MHCC97H HCC cells

(189). However, Zhu et al. reported that while the knockdown of

HDAC11 inhibited the proliferation of HepG2 cells, it did not affect

invasion or migration (190).

In addition to its role in metastasis, HDAC11 is implicated in

maintaining stemness and promoting tumor development in HCC.

Downregulation of HDAC11 significantly suppresses glycolysis in

HCC cancer stem cells and inhibits the stem cell-like properties of

these cells by modulating their glycolytic levels (191). These

findings highlight the context-dependent functions of HDAC11

across different cancer types.
2.3 Histone ubiquitination

All core histone proteins can undergo ubiquitination, but H2A

and H2B are the most ubiquitinated and commonly modified

histones in the nucleus (192, 193). Histone H2A was the first

identified ubiquitination substrate, with lysine 119 (H2AK119ub)

serving as the single ubiquitination site, catalyzed by the polycomb

repressive complex 1 (PRC1) E3 ligase (194–196). H2AK119ub1 is

highly enriched in the promoter regions of polycomb target genes

and functions as a transcriptional repressor through various

mechanisms. Histone H2A ubiquitination (H2Aub) plays a key

role in several biological processes, including gene transcription and

DNA damage repair (197, 198). Additionally, H2Aub promotes the

binding of histone H1 to the nucleosome, stabilizing the

nucleosome by preventing the dissociation of DNA from it (199).
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Similarly, the ubiquitination site for histone H2B in mammals is

typically located at lysine 120 (H2BK120ub) (200). In vivo, the

ubiquitination of H2B (H2BK123ub) is catalyzed by the E2

transferase Rad6 and the E3 ligase Bre1. H2Bub rapidly

accumulates at double-strand break (DSB) sites, where it plays a

pivotal role in DSB repair (201, 202). Studies indicate that

H2BK123ub promotes the methylation of histone H3 at lysines 4,

46, and 79 (H3K4, H3K46, H3K79) and that methylation at H3K46

and H3K79 is essential for effective DSB repair (203). These dynamic

post-translational modifications regulate gene transcription and

DNA repair through several mechanisms, including histone−DNA

interaction regulation, nucleosome stability, histone eviction,

chromatin compaction, histone cross-talk, and the recruitment of

effector proteins.

In cancer, the mechanisms that regulate histone ubiquitination

are frequently disrupted. Abnormal histone ubiquitination can

drive tumorigenesis by altering the expression of tumor

suppressors and oncogenes, misregulating cell differentiation, and

promoting the proliferation of cancer cells. Compared with that in

normal tissues, H2AK119ub1 expression is generally reduced in

prostate cancer tissues. A global loss of H2BK120ub has been

observed in patients with triple-negative breast cancer, gastric

cancer, and colorectal cancer. Depletion of H2BK120ub

significantly decreases p53 expression while simultaneously

promoting c-MYC expression (204–207). Furthermore, DNA and

RNA sequencing data revealed that genes encoding histone E3

ubiquitin ligases are frequently altered in cancer.

The polycomb E3 ubiquitin ligase subunits RING1A, RING1B,

and BMI1, along with H2AK119ub1, help maintain the adult stem

cell pool, and they may also contribute to the maintenance of cancer

stem cells (208). In leukemia cells, BMI1 promotes cancer cell self-

renewal by mediating the repression of key tumor suppressor genes

(including the INK4A/ARF locus) through H2AK119ub1 (209). In

addition to promoting acute leukemia, BMI1 promotes the

proliferation of cancer cells in various solid tumors, including

gastric cancer, pancreatic cancer, and epithelial ovarian cancer, by

catalyzing H2A ubiquitination at lysine 119 (H2AK119ub)

(210–212).

Given these roles, targeting abnormal histone ubiquitination

represents a viable strategy for reprogramming transcription in

cancer cells. The development of inhibitors that target aberrant

histone ubiquitination sites or E3 ubiquitin ligases to block cancer

cell proliferation and induce cell death is a promising avenue in

histone ubiquitination-targeted cancer therapies.
2.4 Histone lactylation

Lactylation, a newly discovered post-translational modification

(PTM) of histones, is closely related to the glycolytic metabolite

lactate. Therefore, histone lactylation plays a significant role in

cellular metabolic reprogramming. In 2019, Zhang et al. first

reported a novel post-translational modification (PTM) of

histones induced by lactate-lactylation (213). They discovered

that lysine residues in histone tails can undergo lactylation.

Subsequent studies confirmed the widespread existence of
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lactylation in various cancers and its close association with

processes such as the development of malignancies. In

hepatocellular carcinoma (HCC), researchers have reported that

histone lactylation activates the transcription of ESM1 in HCC cells

and that ESM1 is highly expressed in HCC, where it plays a

carcinogenic role. Histone lactylation promotes the malignant

phenotype of cells, tumor growth, and metastasis by increasing

the expression of ESM1 in HCC. These findings may provide new

therapeutic targets for the treatment of HCC (214). Yang et al.

reported that the level of histone lactylation is associated with poor

prognosis in patients with clear cell renal cell carcinoma (ccRCC).

Mechanistic studies have shown that histone lactylation can

promote the progression of ccRCC by activating the transcription

of platelet-derived growth factor receptor b (PDGFRb). Targeting
histone lactylation can inhibit the proliferation and metastasis of

ccRCC cells in vivo (215). In addition to the pro-cancer effects,

histone lactylation can also have tumor-suppressive effects.

According to a study by Jiang et al. on non-small cell lung

cancer (NSCLC), increased histone lactylation can lead to decreased

levels of hexokinase 1 (HK-1) and pyruvate kinase M (PKM) in

glycolysis, as well as increased levels of succinate dehydrogenase

(SDHA) and isocitrate dehydrogenase 3g (IDH3g) in the

tricarboxylic acid (TCA) cycle. This further results in the

inhibition of tumor cell glycolysis, as well as reduced cell

proliferation and migration abilities (216). In recent years, there

have been several advancements in research on the roles of

lactylation-related enzymes in tumors. Jin et al. reported that the

delactylase SIRT3 can suppress the proliferation of liver cancer cells

by regulating the lactylation of Cyclin E2 (217). In future research,

studying histone lactylation modifications and their regulatory sites

may lead to the identification of effective therapeutic targets for

cancer treatment.
3 Clinical therapeutics

The previous discussion highlighted numerous abnormal

histone modification sites and alterations in the activity of

histone-modifying enzymes in cancer. These aberrant

modifications and changes in the expression of modifying

enzymes can serve as valuable biomarkers for the accurate

screening, detection, diagnosis, and prognosis of tumors. Since

different enzymes catalyze modifications at specific histone sites,

targeting these histone-modifying enzymes with oncogenic

potential represents a promising strategy in cancer therapy.
3.1 Epigenetic markers for prognosis

Epigenetic changes, particularly histone modifications observed

in the early stages of tumor development and cancer progression,

have been proposed as biomarkers for early cancer detection,

prognosis, and treatment response. In most breast cancer

patients, low or absent expression of H4K16ac has been

identified, making H4K16ac an early marker of the disease (218).

During epithelial−mesenchymal transition (EMT), the loss of
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H4K16ac in mesenchymal cells can distinguish between epithelial

and mesenchymal phenotypes. Additionally, low levels of

H4R3me2, H3K4me2, and H4K20me3 are associated with poor

prognosis in patients with breast cancer (219). In gastric cancer,

Jang et al. reported high expression of H3K9me3, which is positively

correlated with tumor stage. Abnormal expression of KDM5B also

promotes gastric cancer metastasis by regulating various signaling

pathways, contributing to poor prognosis. In ovarian cancer,

overexpression of HDAC3 and loss of H3K27me3 are linked to

prognosis and disease progression. Furthermore, in glioblastoma

(GBM), the nuclear expression levels of lysine methyltransferases,

such as SETDB1, KMT5B, Suv-39h1, and EZH2, are elevated and

associated with advanced histological cancer grades. Overall,

changes in histone post-translational modifications have

demonstrated clinical utility and are increasingly recognized as

promising biomarkers for early cancer detection and diagnosis.
3.2 New targets and therapy

3.2.1 HMT inhibitors
Increasing evidence suggests that histone methyltransferases

(HMTs) may serve as potential therapeutic targets for cancer

treatment. As a result, the development of HMT inhibitors has

gained considerable attention over the past decade. Most of these

inhibitors target enzymes such as EZH2 and PRMT5 (220). To date,

the U.S. FDA has approved two small-molecule inhibitors:

tazemetostat (EPZ-6438) and valemetostat (DS-3201b), which

target EZH2 or both EZH1 and EZH2 for cancer therapy. In

addition, multiple EZH2 inhibitors (EZH2is), such as CPI-1205,

SHR2554, and PF-06821497, are currently in various stages of

clinical trials. PRMT5, another promising therapeutic target, is

also being explored for cancer treatment. GSK3326595, a PRMT5

inhibitor, is in phase I trials for non-Hodgkin lymphoma, while

other PRMT5 inhibitors, such as the PRT543 series, are in phase I

trials for relapsed/refractory advanced solid tumors, and the

PRT811 series is in phase I trials for relapsed glioma, advanced

solid tumors, and CNS lymphoma. Other HMT inhibitors, such as

the DOT1L inhibitor EPZ-5676, which is undergoing clinical trials

for AML, ALL, and CML, have made significant progress in

recent years.

While substantial progress has been made in the development

of HMT inhibitors, the emergence of resistance with prolonged use

highlights the limitations of monotherapy in treating solid tumors.

Studies have shown that combining HMT inhibitors, such as EZH2

inhibitors, with immunotherapy, targeted therapy, chemotherapy,

and endocrine therapy can result in synergistic anti-tumor effects,

improving treatment outcomes. However, owing to the high

homology between EZH1 and EZH2, EZH2 inhibitors often

inhibit both, presenting challenges for the development of highly

specific EZH2 inhibitors. Adachi et al. reported the discovery of two

novel orally bioavailable dual-target EZH1/2 inhibitors, OR-S1

(compound 1) and OR-S2 (compound 2). These compounds

exhibit potent and selective inhibition of both EZH2 and EZH1,

effectively reducing H3K27me3 levels, and have demonstrated

significant anti-tumor activity against diffuse large B-cell
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lymphoma cells with gain-of-function mutations. Optimizing the

therapeutic efficacy of these inhibitors and minimizing their toxicity

and side effects will be the focus of future research.

Inhibition of EZH2 can boost tumor immunotherapy through

various mechanisms. Resistance to immune checkpoint inhibitors

(ICIs) is currently a significant challenge in cancer immunotherapy.

DuCote et al. reported that EZH2 inhibitors could increase ICI

responses in patients undergoing treatment for lung squamous cell

carcinoma (LSCC) (221). In LSCC, tumors can evade the immune

system through the expression of PD-L1, thereby suppressing T-cell

activation. Additionally, these tumors secrete high levels of CXCL1/2/

3, which recruit T-cell-suppressive neutrophils and express high

levels of arginase, further driving T-cell suppression. Under EZH2

inhibition, tumors upregulate the antigen presentation mechanisms

ofMHC I andMHC II and shift from the expression of CXCL1/2/3 to

the expression of the T-cell-promoting cytokines CXCL9/10/11 and

the anti-inflammatory molecule ALOX15. The combined use of anti-

PD1 therapy and EZH2 inhibitors (such as GSK126 or EPZ6438) has

also shown significant tumor-suppressive effects in LSCC patients.

Furthermore, the EZH2 inhibitor tazemetostat has recently received

FDA approval and is currently in clinical trials for the use of ICI

therapy in urothelial carcinoma (NCT03854474). These studies

suggest that EZH2 inhibition combined with ICI treatment may be

an effective treatment strategy for ICI-resistant solid tumors.

3.2.2 HDM inhibitors
The targeting of demethylases is an emerging approach for the

treatment of various cancers, and numerous demethylase inhibitors

have been reported, some of which are currently undergoing clinical

evaluation for cancer therapy. KDM inhibitors can be classified into

two categories: KDM1 and JmjC family histone lysine demethylase

inhibitors. Trans-2-phenylcyclopropylamine (TCP) and its

derivatives can inhibit KDM1A and KDM1B (84, 222). Currently,

six TCP-based KDM1A inhibitors have been developed and are in

clinical trials, including TCP, ORY-1001, ORY-2001, GSK-2879552,

INCB059872, and IMG-7289, which covalently bind to the FAD

domain within KDM1A (84, 223). ORY-1001 inhibits the

proliferation of TNBC cells and induces apoptosis by inactivating

AR (224). The TCP derivatives (NCL-1, NCD-38, MC_2580, and

DDP_38003) also exhibit anti-tumor effects as KDM1 inhibitors.

NCL-1 and NCD-38 inhibit KDM1A, leading to reduced viability

and increased apoptosis of GSCs, with minimal effects on

differentiated cells (90) Maes et al. emphasized the therapeutic

potential of combining ORY-1001 with checkpoint inhibitors for

the treatment of melanoma. After cotreatment with ORY-1001 and

anti-PD1 antibodies, significant tumor growth inhibition (TGI) was

achieved, which was 54% higher than that in the anti-PD1 antibody

treatment group (225).

JmjC family inhibitors are divided into broad-spectrum and

subfamily-specific inhibitors. IOX1 is a broad-spectrum inhibitor

that targets several subfamilies, including KDM2, KDM3, KDM4,

KDM5, KDM6, and KDM7 (226). Liu et al. reported that IOX1

inhibits the expression of P-glycoprotein (P-gp) in cancer cells

through the JMJD1A/b-catenin/P-gp pathway, thereby reducing the
expression level of PD-L1. Moreover, IOX1 significantly enhances
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immunogenic cell death (ICD) induced by doxorubicin (DOX),

promotes T-cell infiltration, and markedly suppresses tumor

growth in preclinical models. These results suggest that the

combination of IOX1 with immune checkpoint inhibitors may

represent a promising strategy for cancer treatment (227). On the

other hand, SD49-7 is a small-molecule inhibitor specific to

KDM4A and KDM4C. Inhibiting these demethylases disrupts the

expression of MDM2, activates p21, and suppresses the stemness of

leukemia cells, leading to increased cell apoptosis (228). PBIT is a

potent, selective inhibitor of KDM5B that reduces the expression of

JARID1B, which results in decreased levels of cancer stem cell

(CSC) and epithelial-mesenchymal transition (EMT) markers in

cisplatin-resistant non-small cell lung cancer (229). PBIT also

enhances the sensitivity of cancer cells to radiation therapy. These

small-molecule KDM inhibitors, which exhibit drug-like specificity

and selectivity, can be used either as standalone therapies or in

combination with other immunotherapies and chromatin-targeting

agents, thereby offering more viable treatment options for cancer.

3.2.3 HAT inhibitors
Among the existing small-molecule histone acetyltransferase

(HAT) inhibitors, many studies have focused on compounds that

target p300/CBP, which play key roles in acetylating histone H3 at

lysines 18 and 27 (H3K18, H3K27) to facilitate gene activation

critical for cell growth and differentiation (230). In addition to the

enzymatic HAT domain, p300/CBP contains several other

functional domains, such as three cysteine-histidine-rich domains

(CH1, CH2, and CH3), a KIX domain, a bromodomain, and a

steroid receptor coactivator interaction domain (SRC-1 interaction

domain). Inhibitors targeting p300/CBP are designed primarily to

exploit these domain characteristics.

One promising inhibitor is CCS1477, a CBP/p300

bromodomain inhibitor developed by CellCentric, which is

currently in phase 1b/2a clinical trials for treating hematological

malignancies and late-stage castration-resistant prostate cancer. A-

485 is another potent and highly selective p300/CBP inhibitor that

has shown anti-tumor activity in prostate cancer cell lines (231).

Additionally, Ding et al. identified compound 13f, a novel p300/

CBP HAT inhibitor, which demonstrated significant anti-tumor

effects in an ovarian cancer xenograft mouse model (232).

Natural compounds have also shown promise. Garcinol, a natural

inhibitor of p300/CBP and PCAF, has anti-tumor effects on several

cancer cell lines, including hepatocellular carcinoma, gastric cancer,

and triple-negative breast cancer (233). WM-3835 selectively inhibits

HBO1, another member of the HAT family, and effectively suppresses

mouse osteosarcoma (OS) tumor cell growth (234). Additionally, the

small molecule NBP targets KAT7 to inhibit PD-L1 expression and

weaken the PD-1/PD-L1 axis, reducing T-cell apoptosis to alleviate

lung cancer progression. It may serve as a potential therapeutic strategy

for immunotherapy in lung cancer (235).

Despite these advances, the development of targeted drugs for

HAT inhibition remains in its early stages. Future research should

focus on identifying and developing inhibitors for other members of

the HAT family, offering new and effective strategies for anti-

tumor therapy.
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3.2.4 HDAC inhibitors
Histone deacetylase (HDAC) inhibitors play crucial roles in

restoring the balance of acetylation and deacetylation of lysine

residues of histones and nonhistone proteins and are used to treat

several diseases, including cancer (Table 3). Four HDAC inhibitors

(HDACis), vorinostat (SAHA), belinostat (PXD101), panobinostat

(LBH589), and romidepsin (FK228), have been approved by the US

FDA for the treatment of cutaneous T-cell lymphoma (CTCL),

relapsed or refractory peripheral T-cell lymphoma (PTCL), and

multiple myeloma (MM), whereas chidamide (CS055) has also been

approved by China’s NMPA for the treatment of relapsed or

refractory peripheral T-cell lymphoma (249). Additionally, several

HDAC inhibitors are in clinical trial stages.

The majority of HDACi structures contain three pharmacophoric

elements: a cap structure (Cap region) that interacts with amino acid

residues at the entrance edge of the HDAC active site; a zinc-binding

group (ZBG) that chelates the catalytic zinc ion located at the bottom

of the active site pocket; and a linker region that connects the Cap

region and ZBG, which interacts with the hydrophobic channel of the

active site (250–252). The chemical structures of HDAC inhibitors

can be divided into four main categories: hydroxamic acids (such as

vorinostat), benzamide derivatives (such as chidamide), cyclic

peptides (such as romidepsin), and fatty acids (such as 2-

propylpentanoic acid).

Mocetinostat (MGCD0103) is a novel benzamide-class HDAC

inhibitor that can inhibit HDAC1, 2, 3, and 11. It is currently being

researched for diseases such as acute myeloid leukemia, bladder cancer,
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and non-small cell lung cancer and has entered phase II clinical trials

(253). Largazole is a cyclic depsipeptide natural product that shows

good activity and selectivity for HDAC1. It inhibits the proliferation of

the human breast cancer cell line MDA-MB-231 and the human

osteosarcoma cell line U2OS but has no effect on normal cells (254).

AR-42 is an orally effective HDAC inhibitor that is currently in clinical

trials for the treatment of multiple myeloma, leukemia, and lymphoma

(255). CAY10603 is a potent HDAC6 inhibitor that effectively inhibits

the activity of HDAC6. It inhibits the proliferation of Burkitt’s

lymphoma cell lines and induces caspase-dependent apoptosis (256).

The combination of HDACis and immunotherapy has made

great progress in cancer immunotherapy. The activation of the

immune response by HDACis could prevent cancer relapse.

Entinostat (ENT; Class I HDAC inhibitor) has shown significant

efficacy in tumor immunotherapy when combined with anti-PD-1/

anti-CTLA-4 antibodies, functioning by reducing the number of

tumor-infiltrating G-MDSCs (257). Owing to the typical

downregulation of MHC class I expression caused by epigenetic

mechanisms in cancer, HDAC inhibitors can upregulate MHC class

I expression in various types of cancer. Romidepsin (HDAC1/2

inhibitor), valproic acid (Class I HDAC inhibitor), or RGFP966

(HDAC3 inhibitor) can upregulate MHC class I expression and the

expression of costimulatory molecules such as CD80 and CD86 in

B-cell lymphomas (258). In HER2+ breast cancer, the combination

of palbociclib and trastuzumab (anti-HER2) achieves anti-tumor

efficacy by stimulating the release of CXCR3-reactive chemokines

and increasing the recruitment of tumor-associated natural killer

(NK) cells (259). In addition, HDAC inhibitors (HDACis) can

modulate the effector functions of activated immune cells and

potentiate the efficacy of immunotherapeutic strategies against

established solid tumors. The HDAC inhibitor MS-275 can

enhance the lymphocyte depletion induced by oncolytic virus

vectors, leading to the selective exhaustion of conventional

lymphocytes and regulatory T cells (Tregs) while allowing the

expansion of antigen-specific secondary responses (260). HDAC

inhibitors may participate in the anticancer immune response by

directly altering the immunogenicity of tumor cells and potentially

rescuing the functional activity of exhausted CD8+ T cells (261).

Currently, the main applications of HDAC inhibitors (HDACis)

are limited to the treatment of peripheral T-cell lymphoma and

cutaneous T-cell lymphoma, whereas the development of drugs for

solid tumors is relatively limited. Additionally, clinical trials of HDAC

inhibitors have revealed numerous adverse reactions in patients,

including thrombocytopenia-induced bleeding, neutropenia-

induced susceptibility to infections, anemia due to hemoglobin

reduction, arrhythmias, myocardial hypertrophy, and neurotoxicity,

which also pose major limitations in the development of HDAC

inhibitors (262). Furthermore, most HDACis are broad-spectrum

inhibitors, making the development of efficient inhibitors with cell

selectivity and isoform specificity a significant challenge.
4 Summary and future perspectives

Epigenetic modifications have become key regulatory factors and

drivers in the occurrence and development of cancer in recent years.
TABLE 3 HDACis in cancer therapy.

HDAC
inhibitors

HDAC
type

Target Cancer

Entinostat(MS-275) Class I HDAC1/
HDAC3
/HDAC8

Breast cancer (236)
Non-small cell lung

cancer (166)

Tacedinaline
(CI994)

Class I HDAC1/
HDAC3

Pancreatic cancer (237)
Non-small cell lung

cancer (238)

Mocetinostat
(MGCD0103)

Class I HDAC1/
HDAC2/
HDAC3/
HDAC11

Acute myeloid leukemia
(239)

Bladder cancer (240)

CXD101 Class I HDAC1/
HDAC2/
HDAC3

Colorectal cancer (241)

Droxinostat Class I HDAC3/
HDAC6/
HDAC8

Prostate cancer (242)

Ricolinostat
(ACY-1215)

Class II HDAC6 Colorectal cancer (243)
Multiple myeloma (244)

WT161 Class II HDAC6 Multiple myeloma (245)

Tasquinimod Class II HDAC4 Prostate cancer (246)

LMK-235 Class II HDAC4 Breast cancer (247)

NQN-1 Class II HDAC6 Acute myeloid
leukemia (248)
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The processes of DNA repair, replication, transcription, translation,

and posttranscriptional and post-translational regulation are all under

the control of epigenetics. Therefore, abnormal expression patterns or

epigenomic alterations can lead to dysregulation, ultimately resulting in

cancer. Changes in the epigenetic landscape of cancer can affect the

expression of genes involved in cellular metabolism, primarily through

the dysregulation of metabolic signaling pathways caused by abnormal

DNA methylation, histone modifications, and non-coding RNAs.

Histone post-translational modifications (PTMs) do not alter the

DNA sequence but can change the expression and functional levels,

providing new explanations for many biological activities. In addition

to common modifications such as methylation, acetylation,

ubiquitination, and phosphorylation, in recent years, histone

butyrylation, lactylation, propionylation, and isonicotinamide have

gradually become new research hotspots. Most PTMs are reversible

and therefore can regulate the functionality of the proteome in a cell

type-specific manner to modulate gene expression. Abnormalities in

histone post-translational modifications often affect key molecular

regulatory mechanisms involved in the progression of tumors.

In this review, we elaborate on the main types of histone PTMs

and their functions in different categories of cancers. We

subsequently summarize the key enzymes that influence histone

modifications and their inhibitors, providing feasible targets for

cancer treatment research. Furthermore, the crosstalk between

different histone PTMs is also an interesting research direction.

Methylation of H3K4 can increase the acetylation activity of HATs

on the H3 tail. Therefore, the impact of histone modification

enzymes on cancer development is certainly not singular.

As the role of histone PTMs in the cancer field has gained

increasing attention, targeted drugs against histone modification

enzymes have also become a research focus in this area. As

mentioned previously, HDAC inhibitors (HDACis) are currently the

most widely used HDACis in clinical practice. While various HDAC

inhibitors that target different HDAC classes have been approved, these

inhibitors are currently limited to the treatment of hematological

cancers, with few HDAC inhibitors that target solid tumors.

Therefore, developing more HDAC inhibitors that target solid

tumors is also a future research focus for researchers. Furthermore,

since the therapeutic efficacy of HDAC inhibitors as single agents is

limited, there is a need to develop dual-target HDAC drugs. Dual-

target HDAC inhibitors can act on multiple signaling pathways

involved in tumor development, thereby more comprehensively

regulating epigenetic modifications and gene expression in cells. For

example, researchers at China Pharmaceutical University have recently

developed a series of innovative dual PD-L1/HDAC6 inhibitors, C1-C6

(patent number: CN113387840A). In the CT26 syngeneic colon tumor

model, the tumor inhibition effect of C5 exceeded the efficacy of

BMS202 (a PD-L1 inhibitor) or SAHA (an approved HDAC

inhibitor) monotherapy.

Histone modification enzyme inhibitors are also a hot topic in the

clinical treatment of cancer immunotherapy. Immunotherapy works

by activating the immune system to fight cancer cells, achieving good

efficacy in some patients. However, in many patients, tumor cells evade

detection by the immune system because of their low mutational

burden, resulting in “cold tumors.” Additionally, cancer cells can

develop various resistance mechanisms to immune checkpoint
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inhibitors, such as reduced antigen presentation, modulation of

immune cell recruitment, secretion of immunosuppressive factors,

decreased co-stimulatory molecules, and induction of T cell

apoptosis. These factors greatly limit the effectiveness of

immunotherapy in cancer patients. Currently, multiple studies have

shown that histone modification enzyme inhibitors, important

epigenetic modifiers, can not only enhance anti-tumor immunity by

inhibiting the expression of immune checkpoint molecules (ICMs) but

also be used in combination with immune checkpoint inhibitors (ICIs)

to enhance the tumor response to immunotherapy by increasing ICM

expression. A study revealed that the combination of HDAC inhibitors

(HDACis) and immune checkpoint inhibitors (ICIs) altered the

infiltration and function of innate immune cells, leading to a more

robust adaptive immune response via the inhibition of myeloid-derived

suppressor cells (MDSCs) and immune-resistant breast tumors (263).

Many drugs targeting dysregulated epigenetic regulators have entered

clinical use for the treatment of hematological malignancies. Increasing

compelling evidence suggests that epigenetic therapies have the

potential to transform immunosuppressive (“cold”) tumors into

immunopermissive (“hot”) tumors. The combination of epigenetic

therapies and immunotherapy can consolidate anti-tumor immune

responses, reprogram the immunosuppressive TME, and improve

treatment outcomes.

In future cancer treatment, the ability of HDAC to synergize

with other therapies makes it a promising candidate for cancer

immunotherapy. In future tumor treatment strategies centered on

histone PTMs, only by clearly elucidating the specific mechanisms

of action of histone PTMs in tumors will it be possible to conduct

research on targeted anticancer drugs based on the molecular

mechanisms of PTMs and thus promote cancer treatment.
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39. López C, Barnon MT, Beacon TH, Nardocci G, Davie JR. The key role of
differential broad H3K4me3 and H3K4ac domains in breast cancer. Gene. (2022)
826:146463. doi: 10.1016/j.gene.2022.146463
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