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Peripheral immune reactions
following human traumatic
spinal cord injury: the interplay
of immune activation
and suppression
Hanne Coenen, Veerle Somers and Judith Fraussen*

Department of Immunology and Infection, Biomedical Research Institute, UHasselt – Hasselt
University, Hasselt, Belgium
Traumatic spinal cord injury (SCI) damages the nerve tissue of the spinal cord,

resulting in loss of motor and/or sensory functions at and below the injury level.

SCI provokes a long-lasting immune response that extends beyond the spinal

cord and induces changes in the composition and function of the peripheral

immune system. Seemingly contradictory findings have been observed, as both

systemic immune activation, including inflammation and autoimmunity, and

immune suppression have been reported. Differences in the levels and

functions of various cell types and components of both the innate and

adaptive immune system supporting these changes have been described at

(sub)acute and chronic stages post-injury. Further research is needed for a

more comprehensive understanding of the peripheral immune reactions

following SCI, their possible correlations with clinical characteristics, and how

these immune responses could be targeted to facilitate the therapeutic

management of SCI. In this review, we provide an overview of the current

literature discussing changes in the peripheral immune system and their

occurrence over time following a traumatic SCI.
KEYWORDS

spinal cord injury, peripheral immune reaction, inflammation, autoimmunity,
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1 Introduction

Spinal cord injury (SCI) is defined as damage to the nerve tissue of the spinal cord,

resulting in reduction or loss of sensory and/or motor function (1). Globally, more than 15

million people are suffering from SCI, of which up to 90% of cases are of traumatic origin

(2, 3). In traumatic SCI, the primary injury is caused by an external physical force affecting
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the spinal cord, such as a fall, motor vehicle accident, sports-related

accident, or violence (4–6). This trauma results in acute cell damage

and cell death in the surrounding neuronal and vascular tissues.

Subsequently, a secondary injury cascade is initiated, characterized

by inflammatory cell infiltration, ischemia, edema, hemorrhage, and

the release of cytotoxic products, resulting in further spinal cord

damage and neurological dysfunction (1, 7). In addition to the

pathophysiological subdivision of traumatic SCI into primary and

secondary injuries, it can also be divided into temporal phases.

Although different classifications are used in literature, generally,

acute and subacute phases last hours to weeks, whereas the chronic

phase refers to six months post-injury and beyond (1, 8).

During the secondary injury phase, the destruction of the

blood-spinal cord barrier following the initial trauma allows the

recruitment of various immune cells into the injured spinal cord.

Local inflammation of the spinal cord in the early stages following

SCI is mediated by the innate immune system. As demonstrated in

human post-mortem SCI spinal cords, neutrophils are the first

immune cells to reach the areas of injury, peaking in number at 1-3

days and remaining increased up to 10 days post-injury (9, 10).

Subsequently, resident microglia are activated and monocytes/

macrophages infiltrate the spinal cord. At 5-10 days post-injury

and beyond, microglia and macrophages are the predominant

inflammatory cells in the spinal cord (9–11). Since it takes longer

for the adaptive immune system to initiate an immune response via

processes of antigen recognition, activation, proliferation, and

clonal expansion, few lymphocytes populate the lesion site in the

acute stages following injury (11). Nevertheless, at one week to

months post-injury, CD8+ and CD4+ T cells could be detected in

human post-mortem spinal cord lesions (9, 10). In addition, for a

subset of SCI patients in the subacute phase, a pronounced

infiltration of B cells and active plasma cells was observed in

human autopsy spinal cord tissues at 15 days up to 36 days post-

injury (10, 12).

Changes in the immune system are not limited to the accumulation

and activation of immune cells at the site of injury. Instead, SCI also

affects peripheral immune function and composition, as demonstrated

in both SCI animal models and SCI patients. Here, we focus on human

studies since species-specific differences have been reported in immune

responses following SCI (13–15), contributing to a lack of clinical

translation of the findings in experimental SCI models. Contradictory

findings have been reported in SCI patients at various stages following

the injury with, on the one hand, inflammation and autoreactivity, but

on the other hand, immunosuppression. In this review, we discuss the

current literature supporting both perspectives regarding the peripheral

immune system in traumatic SCI patients. An overview of the studies

that are covered in this review is given in Supplementary Tables 1, 2.
2 Activation of the immune system

Emerging experimental and clinical data indicate that SCI

triggers activation of the peripheral immune system, with signs of

systemic inflammation and autoreactivity, at various stages

following the initial trauma (Figure 1A).
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2.1 Acute and subacute
systemic inflammation

Several studies have demonstrated an acute systemic increase in

white blood cell numbers following human SCI. Total leukocyte

counts greater than reference values (17.1 ± 1.4×109 vs. 4–10×109

cells/L) and significantly higher compared to trauma controls (TC),

defined as patients with a trauma not involving central nervous

system (CNS) injury, were observed at 3.5 ± 1 hours (h) and one

week after injury, respectively (16, 17). This (sub)acute increase was

mainly attributed to neutrophilia, as neutrophil counts were also

strongly elevated above clinical reference ranges at 3.5 ± 1 h post-

injury (14.8 ± 1.3×109 vs. 2–7.5×109 cells/L) (16). Another study

also reported a transient but significant increase in neutrophil

counts compared to reference values within the first 24 h

following SCI in both analyzed cohorts, i.e. an exploration and an

independent validation patient cohort (18). Circulating monocyte

numbers were only significantly elevated in the exploration cohort

on the first day and one week post-injury, and not in the validation

cohort (18). This discrepancy could be due to differences in the sizes

of the exploration cohort (n = 161) and validation cohort (n = 49).

In addition, monocyte numbers were reported to be at the upper

reference limit at 3.5 ± 1 h in SCI patients (0.8 ± 0.1×109 vs. 0.2–

0.8×109 cells/L) (16). When analyzing monocyte subsets, those

subsets with the highest phagocytosis capacity, namely classical

(CD14+CD16-) and intermediate (CD14+CD16+) monocyte

populations, were significantly increased in blood samples

collected 0-3 days post-injury compared to a healthy control

(HC) group, whereas no differences were observed for non-

classical monocytes (CD14-/loCD16+) (19, 20).

Leukocytosis (increased blood leukocyte levels) in response to

physical trauma is associated with the activation of leukocytes in the

circulation, increasing their oxidative and phagocytic-like activity

and migration capacity (21, 22). Such activation not only primes the

cells to exacerbate the primary injury upon entry into the spinal

cord, but the leukocytes can also infiltrate and damage organs and

tissues that were initially unaffected, such as the lungs and kidneys

(23–25). Circulating neutrophils and monocytes demonstrated

increased cellular oxidation at 12 h, 24 h, and one week following

injury compared to HC and TC (16). Moreover, free radical

production and the activity of myeloperoxidase (MPO), an

enzyme that generates highly reactive products with antimicrobial

actions, were measured in leukocyte homogenates. Both were

significantly increased in SCI patients compared to TC within the

first two weeks following injury (16). Lastly, the protein expression

of oxidative enzymes, nicotinamide adenine dinucleotide phosphate

(NADPH) oxidase subunit gp91phox and inducible nitric oxide

synthetase (iNOS), was 20–25% higher in leukocyte homogenates

and leukocytes of blood smears of SCI patients than in those of TC

(16). This further confirms elevated leukocyte oxidative activity.

The potential of leukocytes to infiltrate and damage organs and

tissues is related to their expression of various selectins and integrins.

Hereby, selectins initiate the transient attachment and rolling of

leukocytes along the endothelial surface. Subsequently, integrins are

responsible for the firm adhesion of the cells to the endothelium,
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allowing their migration into neighboring tissue (26). Changes in the

surface expression of these adhesion molecules on human peripheral

leukocytes have been demonstrated after SCI. Although the

percentage of human peripheral neutrophils and monocytes

expressing L-selectins (CD62L) did not change in the 6 h to two-

week period following SCI, the level of CD62L surface expression

decreased markedly in SCI patients compared to HC (27). The

authors hypothesized that this observation could be attributed to

the shedding of CD62L following ligation to the endothelium, a
Frontiers in Immunology 03
process that has been shown to play an important role in regulating

leukocyte rolling (28, 29). However, further research is needed to

confirm this theory. Additionally, the expression of integrin subunits

a4, CD11d, and CD11b on neutrophils and/or monocytes was

significantly increased in SCI patients compared to HC and/or TC

between 12 h and 2 weeks post-injury (27).

In addition to neutrophils and monocytes, another subset of

innate immune cells, natural killer (NK) cells, has been related to

acute SCI-induced inflammation. NK cells play an important
FIGURE 1

Overview of research findings related to peripheral immune activation (A), including acute/subacute systemic inflammation, chronic systemic
inflammation, and autoimmunity, and peripheral immune suppression (B) in traumatic SCI patients. Arrows in dashed line indicate that only one
study demonstrated this finding or that contrasting findings were reported. APRIL, a proliferation-inducing ligand; A1G, alpha-1 globulin; BAFF, B-cell
activating factor; BCMA, B-cell maturation antigen; CCR7, C-C chemokine receptor type 7; CNS, central nervous system; CRP, C-reactive protein;
CXCL10, C-X-C motif chemokine ligand 10; ESR, erythrocyte sedimentation rate; GFAP, glial fibrillar acidic protein; HLA-DR, Human Leukocyte
Antigen DR isotype; HMGB1, High Mobility Group Box 1 protein; IL-6, interleukin 6; MBP, myelin basic protein; MIF, macrophage migration inhibitory
factor; NK, natural killer; ROS, reactive oxygen species; Temra, CD4+ effector memory T cells re-expressing CD45RA; TLR, Toll-like receptor; TNF-a,
tumor necrosis factor-a. Figure created with BioRender.com.
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regulatory role by secreting cytokines and have a high cytotoxic

potential, being crucial to combat viral and bacterial infections (26).

In blood samples collected within 24 h post-SCI, total NK cells were

demonstrated to be present in higher frequencies and express

higher levels of activation molecules (e.g. CD69 and human

leukocyte antigen (HLA-DR)) compared to those of HC (30). As

the percentage of highly cytokine producing CD56bright NK cells

was significantly lower in SCI patients compared to HC, the authors

concluded that the NK cell population in SCI patients was mainly

made up of cytotoxic CD56dim cells (30). Nevertheless, this has been

the only study to date that reported an increase in NK cells post-SCI

(see section 3).

Altogether, these reports underscore the hypothesis that in the

(sub)acute phase of SCI, circulating innate immune cell subsets

increase in number and functional capacities, contributing to a

systemic inflammatory response. This could lead to the

accumulation of activated immune cells and organ damage,

negatively impacting recovery from traumatic SCI.
2.2 Chronic systemic inflammation

In addition to an acute systemic inflammatory response, several

studies also provided serologic evidence of a chronic level of

immunoactivity in SCI patients.

Although blood levels of leukocytes were not elevated in chronic

SCI patients compared to HC in three individual studies, increased

levels of circulating pro-inflammatory cytokines have been reported

(31–33). In a study in which the majority of included patients were

in the chronic phase post-SCI, serum concentrations of the pro-

inflammatory cytokines interleukin (IL)-6 and tumor necrosis

factor (TNF)-a were significantly increased when compared to

HC (34). A similar elevation of serum TNF-a was observed in a

study population consisting solely of chronic SCI patients (35). For

IL-6, other studies could not confirm elevated levels in the plasma/

serum of chronic SCI patients compared to HC, although a non-

significant increase was indicated in one study (36, 37).

Interestingly, a systemic enrichment of genes related to Toll-like

receptor (TLR) signaling was observed in whole blood of both acute

and chronic SCI patients using RNA sequencing (19, 38). TLRs are

pattern-recognition receptors expressed in immune cells that

recognize conserved pathogen-associated molecular patterns

(PAMPs) during innate immune responses. This induces the

transcription of pro-inflammatory cytokines, such as IL-6 and

TNF-a, via activation of the nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-kB) signaling pathway (39). In

SCI, High Mobility Group Box 1 protein (HMGB1), a pro-

inflammatory alarmin, and its cell surface receptors, including

TLR2 and TLR4, were significantly elevated in whole blood at

both acute (0-3 days post-injury) and chronic (six months post-

injury) time points compared to HC (19). Additionally, significantly

elevated levels of HMGB1 were demonstrated in plasma and whole

blood samples of acute (≤1 week post-injury) and chronic (≥1 year

post-injury) SCI patients compared to HC (38, 40).

Circulating levels of acute phase reactants, a class of proteins

whose blood plasma concentration indicates the presence of an
Frontiers in Immunology 04
active inflammatory process (41), have also been analyzed in

chronic SCI patients. Mean C-reactive protein (CRP) levels were

significantly higher in chronic SCI patients than in HC (37). This

increase in CRP levels has been confirmed by other research groups

(42–44). Moreover, increased levels of alpha-1 globulin (A1G) and

erythrocyte sedimentation rate (ESR) have also been reported in

chronic SCI patients (43). Interestingly, pro-inflammatory

cytokines, such as IL-6 and TNF-a, stimulate the acute phase

response, which could be a possible link between the reported

increase in these cytokines and acute phase proteins (39).

Another indication of chronic systemic inflammation is the

increased activation of T cells observed in chronic SCI patients.

Hereby, one study demonstrated elevated proportions of HLA-DR+

CD4+ and CD8+ T cells at 3 to 12 months post-injury compared to

HC, although no significant differences in CD4+ and CD8+ T cell

frequencies were shown between 0-3 days and 12 months, except for

a significant reduction in CD4+ T cells at 3 months post-SCI (19). In

lymphocytes, HLA-DR is a late-phase activation marker that is

upregulated 24-48 h after cell activation (45). In the same study,

significant upregulation of genes linked to T cell activation was

observed up to 6 months following SCI compared to HC, which

may be at the forefront of the increased levels of activated T cells in

later stages (19). Similarly, in another study, chronic SCI patients (≥1

year post-injury) presented with significantly decreased frequencies

of total T cells and CD4+ T cells, although frequencies of activated

(HLA-DR+) CD4+ T cells were significantly elevated compared to HC

(46). In addition to T cells, we demonstrated inflammation-related

alterations in the B cell compartment in the chronic stage following

SCI. Although no significant changes in total B cells have been

reported in several studies (19, 32, 33, 47), we observed increased

frequencies of CD74-expressing B cells in the peripheral blood of SCI

patients compared to HC (47). Moreover, there was a trend towards

increased CD74 expression on total B cells, as well as significantly

increased CD74 expression on B cell subsets of subacute/chronic (>1

month post-injury) SCI patients compared with HC (47). CD74

functions as a receptor for the pro-inflammatory cytokine

macrophage migration inhibitory factor (MIF), whose plasma levels

are also increased in SCI patients at acute, subacute, and chronic

stages post-injury (48–50).

The upregulation of TLR signaling, the elevated levels of pro-

inflammatory cytokines and acute phase reactants, and the

increased expression of activated T cells and CD74+ B cells

suggest that SCI triggers chronic systemic inflammation.
2.3 Autoimmunity

Although SCI is not typically classified as an autoimmune

disease, recent research in humans indicates that the disease can

elicit autoimmune responses. Mainly adaptive immune reactions

have been linked to this phenomenon.

It is speculated that similar to what has been described in

multiple sclerosis (MS), autoreactive T cells can be activated upon

encounter with myelin and other neurological breakdown products

presented on antigen presenting cells, accumulate at the site of

injury, and contribute to secondary inflammation (51). A first study
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demonstrated a higher precursor frequency of peripheral blood T

cells reactive to myelin basic protein (MBP) in chronic SCI patients

in comparison to HC, although this was not statistically significant

(52). Still, MBP-reactive T cells of SCI patients showed several

similarities with those of MS patients. MBP-reactive T cells of SCI

and MS patients demonstrated similar precursor frequencies in

peripheral blood mononuclear cells (PBMC), similar frequencies of

cells reacting to the immunodominant 83-99 region of MBP, and a

comparable pro-inflammatory cytokine profile with production of

TNF-a and interferon (IFN)-g (52). In addition, another research

group indicated that in vitroMBP stimulated lymphocytes from the

peripheral blood of chronic SCI patients showed a significantly

higher proliferative response than those of HC (53). These studies

point towards the presence and activation of myelin-reactive T cells

in the circulation following a traumatic SCI. Their resemblances

with MBP-reactive T cells of MS patients may point towards their

potential involvement in spinal cord inflammation in SCI.

However, their presence within the injured human spinal cord

still needs to be demonstrated.

Due to their long lifespan and fast and efficient responses to

antigens, memory T cells are of particular interest in the setting of

autoimmune disorders (54). Interestingly, we showed that the

distribution of CD4+ T cells shifted from more naive T cells

(CD45RA+CD45RO-) in HC to more memory T cells (CD45RA-

CD45RO+) in (sub)acute SCI patients (47). Furthermore, SCI

patients showed trends towards increased frequencies of central

memory (CD45RA-CCR7+) and effector memory (CD45RA-CCR7-)

T cells, two main subpopulations of memory T cells (47). Elevated

proportions of memory CD4+ T cell subsets have also been reported

in autoimmune diseases such as MS and psoriasis, suggesting their

role as critical mediators of autoimmunity (54, 55).

Evidence is also available for the involvement of B cells in SCI-

induced autoimmunity. Elevated titers of autoantibodies, mostly

directed against CNS proteins, have been reported in the peripheral

blood of SCI patients. Increased levels of immunoglobulin (Ig)M

antibodies against the CNS protein monosialotetrahexosylganglioside

(GM1) have been reported in chronic SCI (>1 year post-injury) (35),

while increased anti-GM1 IgG antibodies were described in both

subacute and chronic SCI (34). Moreover, circulating levels of

antibodies targeting glial fibrillary acidic protein (GFAP) (56) and

MBP (53) were found to be significantly increased in subacute and

chronic SCI, respectively. Using serological antigen selection (SAS),

an unbiased cDNA phage display based technology using a human

spinal cord cDNA display library, we also identified novel antibody

responses directed against protein S100B, glyceraldehyde-3-

phosphate dehydrogenase (GAPDH), 26S proteasome non-ATPase

regulatory subunit 4 (PSMD4), adipocyte enhancer-binding protein 1

(AEBP1), and myeloma-overexpressed gene 2 (MYEOV2) in SCI

samples collected at hospitalization and 3 weeks post-injury (57). A

recent study that included subacute SCI patients (31 ± 1 days post-

injury) identified antibodies directed against both CNS targets,

including GFAP, MBP, neurofilament light (NFL), and

neurofilament intermediate (NFM), and systemic antigens, such as

albumin and hemoglobin (58). Interestingly, most of these

autoantibodies were reported to bind modified isoforms of proteins
Frontiers in Immunology 05
that deviated from their expected isoelectric point or molecular

weight, suggesting that the antibodies might be generated following

alterations or degradation of normally exposed antigens (58).

Although autoantibodies could have protective functions, their

presence following SCI has already been correlated with the

development or worsening of neuropathic pain, a common

adverse consequence of SCI. Recently, serum autoantibody

binding in rat spinal cord tissue-based assays and primary dorsal

root ganglia cell cultures was shown to be present in a

subpopulation of SCI patients (with a median of 70 days post-

injury) while being absent in vertebral fracture controls (12). SCI

patients with autoantibody binding displayed an increased need

for medication controlling neuropathic pain, which may reflect a

worsening of neuropathic pain in these patients (12). Interestingly,

circulating antibodies directed against GFAP and collapsing

response mediator protein-2 (CRMP2) have previously also been

associated with the development of neuropathic pain. The levels of

anti-GFAP antibodies measured at 16 ± 7 days post-SCI were

significantly increased in patients who subsequently developed

neuropathic pain within 6 months post-SCI as compared to HC

(56). Furthermore, the presence of autoantibodies targeting GFAP

and/or CRMP2 increased the odds of developing neuropathic pain

almost tenfold (56). In mouse models, the injection of SCI

antibodies into the spinal cord of uninjured animals caused large

necrotic inflammatory lesions and complete but transient paralysis,

further suggesting their pathologic potential (59, 60). Moreover, the

depletion of B cells by both a genetic knockout and anti-CD20

antibodies significantly improved locomotor activity post-injury in

SCI mouse models (60, 61).

Linked with the production of autoantibodies is the

overexpression of the survival receptor B-cell maturation antigen

(BCMA) and the cytokines B-cell–activating factor (BAFF) and a

proliferation-inducing ligand (APRIL) that was shown in PBMC of

chronic SCI patients (16.5-43.7 years post-injury) compared to

those of HC using microarray and real-time polymerase chain

reaction (RT-PCR) analyses (62). Both APRIL and BAFF are

known to bind BCMA and activate pathways involved in B cell

survival, proliferation, and differentiation into memory B cells and

antibody-producing plasma cells (63), which could contribute to

autoreactive B cell activation. However, we did not observe

increased frequencies of B cells expressing BAFF-receptor

(BAFFR) or transmembrane activator calcium modulator and

cyclophilin ligand interactor (TACI), two other receptors for

APRIL and/or BAFF, nor increased expression levels of BAFFR or

TACI on B cells from the peripheral blood of SCI patients when

compared to HC (47). Furthermore, it remains unclear whether B

cells and autoantibodies play a direct role in the pathophysiology of

human SCI or are a byproduct of the secondary response to spinal

cord damage.

The observations discussed above indicate that SCI triggers an

autoimmune response in which autoreactive T and B cells and

autoantibodies play a role. These cells are likely activated in

response to spinal cord damage and could drive autoimmune

reactions inside and outside the CNS, possibly complicating SCI

recovery or causing further damage.
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3 Suppression of the immune system

Although seemingly contradictory to the immune activation

seen following SCI, systemic immunosuppression has been

described in SCI patients as well (Figure 1B). One of the main

indications of reduced immune function is the frequent occurrence

of infections, predominantly affecting the respiratory and urinary

tract (64–67). Respiratory tract infections are common, with a

reported incidence up to 60%, during the first few days after SCI

(65, 66). Contrarily, the urinary tract is the primary origin for

infection during rehospitalization, affecting 34% of rehospitalized

SCI patients (65, 68). Moreover, large epidemiological studies have

indicated infections as the leading cause of death in the subacute

and chronic phase following SCI and as independent risk factors for

a worse neurological recovery (69–73). Nevertheless, underlying

mechanisms explaining the high susceptibility to infections are

poorly understood. In recent decades, several publications have

shown changes in immune cell numbers and functions that suggest

the triggering of immunosuppression following SCI.

In addition to SCI-induced inflammation, as discussed above,

NK cells are frequently related to immunosuppression following

SCI. One study reported decreased frequencies of CD56bright NK

cells and CD56dim NK cells at 0-3 days post-injury compared to HC,

remaining significantly suppressed up to 12 months following SCI

(19). In addition, the expression of NK cell genes was significantly

reduced in subacute (up to 6 months post-injury) and chronic

stages (≥1 year post-injury) (19, 38). Although in another study no

significant differences in total and CD56bright NK cells could be

demonstrated in acute SCI patients (30.3 ± 18.9 h post-injury),

significantly decreased frequencies of CD56dim and activated NK

cells were shown compared to HC and TC (74). A statistically

significant decrease in the percentage of blood NK cells following

SCI has also been reported in subacute/chronic SCI patients (>3

months post-injury) compared to HC (33). In contrast, we did not

find significant differences in NK cell frequencies of HC, (sub)acute

(≤1 month post-injury) and subacute/chronic (>1 month post-

injury) SCI patients (47). Three other studies (including samples of

SCI patients >3 months, 7-120 months, and >5 years post-injury)

also did not observe significant differences in NK cell numbers and

frequencies in the blood and bone marrow compared to HC (31, 32,

75). Despite the inconsistent results in literature concerning the

frequency of NK cells post-SCI, several research groups have

confirmed a decrease in their cytotoxicity. NK cell function

deficiencies after SCI were detected as early as two weeks post-

injury, being ultimately suppressed at two months (76–79). These

deficiencies remained present for years following SCI (33, 76–80).

SCI has also been reported to negatively affect the number and

function of circulating T cells, although conflicting results have

been reported concerning T cell frequencies. In one study,

significant reductions in T cell numbers were evident within 24 h

following SCI compared to TC (81). Cell numbers remained

suppressed up to 3-4 days post-injury, but recovered significantly

by the end of the first week and reached plateau control levels in

later stages (105-136 days post-SCI) (81). However, since all

patients were treated with a high dose of the corticosteroid

methylprednisolone within 24 h after SCI, a contributing effect of
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this therapy cannot be excluded. In contrast, comparable

frequencies of CD4+ and CD8+ T cells were demonstrated in SCI

patients within 24 h of injury compared to HC (30). Moreover, we

and others showed significantly increased frequencies of total T cells

and CD4+ T cells in subacute/chronic SCI (>1 or >3 months post-

injury) in comparison to (sub)acute SCI (≤1 month post-injury)

and/or HC (33, 47). Two other studies reported no significant

differences in circulating T cell frequencies and numbers in smaller

cohorts of chronic SCI patients (7-120 months and >5 years post-

injury) compared to HC (31, 32). Additionally, frequencies of total,

CD4+, and CD8+ T cells in bone marrow were not significantly

different between chronic SCI patients (8 months to 5 years post-

injury) and HC (82). Concerning T cell function, changes have been

described in multiple studies. First of all, several studies analyzed

the function of lymphocytes by measuring their proliferation in

response to mitogens. When comparing peripheral lymphocytes

from chronic SCI patients (7-120 months post-injury) to HC,

significant suppression in the lymphocyte blastogenic response to

three different mitogens was reported (32). Furthermore, T cell

function, as measured by lymphocyte transformation induced by a

T cell mitogen, showed a significant decline starting at two weeks

and reaching a minimum at three months post-injury (76–79).

After that, T cell function was restored gradually over the next 3

months and stayed constant between 6 and 12 months following

SCI (76–79). T cell activation, as reflected by the expression levels of

IL-2 receptors, showed the same pattern in time (76–79). Lastly, the

ability of T cells to kill allogeneic lymphocytes was significantly

reduced in chronic SCI patients (7-40 years post-injury) compared

to HC (80).

When analyzing specific T cell subsets, regulatory T cells

(Tregs), that were identified as CD25+CD127loCD4+ T cells that

express CCR4+ and/or HLA-DR+, were significantly increased in

chronic SCI (>1 year post-injury) (46). In addition, gene set

enrichment analysis using an existing RNA-sequencing dataset of

peripheral blood leukocytes indicated a significant increase in the

expression of Tregs in acute SCI patients (30.3 ± 18.9 h post-injury)

compared to HC and TC (74). However, production of IL-10, an

anti-inflammatory cytokine that can be produced by Tregs, was not

significantly different between chronic SCI patients (>6 months

post-injury) and HC following in vitro stimulation of PBMC with

phytohemagglutinin and lipopolysaccharide (83). Another T cell

subset that has been related to immunosuppression following SCI is

the CD4+ effector memory T cell re-expressing CD45RA (termed

Temra). Significantly decreased frequencies of this cell type have

been reported by us in (sub)acute SCI patients (≤1 month post-

injury) compared to HC (47). Recent studies indicated Temra as

specialized effector memory T cells that play a role in protective

cytotoxic responses against pathogen-infected cells, indicating that

decreased numbers of these cells may possibly challenge the

eradication of infections (84–86).

Furthermore, alterations in the expression of chemokines and

their receptors following SCI have been associated with

immunosuppression. By analyzing chip-based RNA-sequencing

data from peripheral blood leukocytes of acute SCI patients,

expression of C-C chemokine receptor type 7 (CCR7) was found to

be significantly downregulated in acute SCI patients (30.3 ± 18.9 h
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post-injury) compared to TC and HC, which was positively

correlated with T follicular helper (Tfh) cell function (74). The

authors hypothesized that following acute SCI, peripheral CCR7 is

downregulated causing suppression of Tfh cells through the

chemokine signaling pathway, contributing to immunosuppression

(74). Moreover, a significant reduction in activated B cells was

demonstrated following acute SCI (74). This reduction may also be

linked to decreased CCR7 expression and impaired Tfh function, as

Tfh cells play an important role in B cell maturation in the germinal

center reaction. Additionally, CCR7 plays a role in effector T cell

migration and positioning within secondary lymphoid organs (87).

Secondly, a significant defect in the production of C-X-C motif

chemokine ligand 10 (CXCL10) by monocytes in response to TLR7

and TLR9 stimulation was reported in chronic SCI patients (>6

months post-injury) with an injury level above T6 compared to HC

(83). This defect in the innate immune response may contribute to

the increased susceptibility to infections observed in chronic SCI.

Interestingly, it has been hypothesized that the reduced immune

cell activity following SCI is attributed to a qualitative rather than a

quantitative defect. In a study in which bone marrow aspirates of

small cohorts of chronic SCI patients (7-40 years post-injury) and

HC were analyzed, significantly reduced long-term colony

formation of all hematopoietic cell lineages was reported

following SCI (80). Notably, another study that also analyzed

bone marrow aspirates, demonstrated that the percentage of

hematopoietic stem cells was elevated in chronic SCI patients (8

months to 5 years post-injury) compared to HC, suggesting that it is

the ability of the stem cells to form mature immune cells, rather

than the proliferative capacity of the stem cells, that is impaired

(82). The changes in the early maturation process of immune cells

such as NK and T cells might in turn interfere with the development

of their cytotoxic machinery and their functionality. Additionally,

immune function deficits may be influenced by the level of injury,

which has been demonstrated in rodent studies to be related to the

anatomy of the sympathetic column of the spinal cord (88–91). In

brief, upon SCI, sympathetic preganglionic neurons below the

lesion level are removed from inhibitory supraspinal control,

resulting in their overactivation. Consequently, the neurons

release excessive amounts of norepinephrine and glucocorticoids

in lymphoid organs, leading to recurrent or prolonged activation of

b-2-adrenergic or glucocorticoid receptors on immune cells,

promoting immunosuppressive responses (88, 91, 92). This effect

is more pronounced for lesions at cervical or high thoracic spinal

segments since the majority of sympathetic innervation of

immunologically relevant organs originates from preganglionic

neurons situated below the fifth thoracic segment (T5), both for

experimental animal models and for humans (89). Indications for

this phenomenon were also obtained in human studies. In motor

complete SCI patients, injuries at high (T1–4) relative to mid (T4-8)

thoracic levels and at mid relative to low (T9-12) thoracic levels

were independently associated with an increased risk for

pneumonia following SCI (89). In another study, the mean killing

capacity of NK cells was significantly reduced in subacute/chronic

tetraplegic SCI patients, whereas no significant difference was

observed in subacute/chronic paraplegic (at or below T10) SCI

patients (>3 months post-injury) compared to HC (75).
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Although no statistically significant difference could be

demonstrated for neutrophils, the phagocytic activity of

neutrophils showed a decreasing trend in the tetraplegic group,

whereas their activity was unchanged in paraplegic patients when

compared with HC (75). In contrast, other studies did not observe

differences in neutrophil oxygen consumption, eosinophil

activation, and the cytotoxic capability of NK and T cells between

HC, chronic tetraplegics (cervical segment (C)5-7), and chronic

paraplegics (T5-10) (>5 years and 7-40 years post-injury) (31, 80).

In addition, no significant difference in NK cytotoxicity was

observed between subacute/chronic SCI patients with injuries at

T6 and above and those with injuries below T6 (>3 months post-

injury) (33).

Altogether, the studies discussed above hypothesize that

changes in lymphocyte frequencies and functions contribute to

the increased risk of infections following SCI. These changes are

thought to result from impaired maturation of immune cells and

have been related to lesions at higher levels along the spinal column,

potentially affecting immune regulation and response.
4 Conclusion

SCI adversely affects the immune system, contributing to

changes in immune system composition and function both at the

site of injury and in the periphery. Seemingly contrasting findings of

peripheral immune system activation and suppression have been

reported in traumatic SCI patients and these phenomena seem to

emerge simultaneously in both (sub)acute and chronic stages

following the injury. In response to SCI, a systemic inflammatory

host response is triggered. In the (sub)acute stages, immune

activation manifests prominently through increased neutrophil

and monocyte frequencies and their enhanced oxidative and

migratory capabilities, whereas in chronic stages, increased levels

of cytokines, acute phase proteins, TLR signaling genes, and T and B

cell subsets related to activation and inflammation were reported. In

parallel, SCI-induced immune suppression develops quickly and

extends into chronic stages, possibly to avert autoimmunity against

self-antigens that are released or expressed following SCI. Immune

suppression post-SCI is most importantly marked by significant

decreases in T cell and NK cell frequencies and functions and is

influenced by the level of injury, although this should be confirmed

in further studies. Notably, a similar paradox of immune activation

and suppression has been described in other conditions involving

neuronal injury, including stroke and traumatic brain injury (93–

95). Additionally, deficient or ineffective initiation of SCI-induced

immune suppression may result in autoimmunity, in which MBP-

reactive and memory T cells, B cells, and autoantibodies have been

reported to play a role. Presumably, a balance between immune

system activation and suppression is necessary to reestablish

homeostasis in the affected tissues. As a consequence, an

imbalance may result in an exaggerated manifestation of one of

both responses. The resulting peripheral changes in immune

function could complicate SCI recovery or lead to an aberrant

immune reaction long after the initial trauma, for example, leading

to an increased susceptibility to infections or systemic organ failure.
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The peripheral changes after SCI have only been studied in small

patient cohorts and numerous clinical characteristics, such as the

spinal injury level, the time after injury, and the injury severity, can

influence the progression of SCI and study results. Therefore, future

studies should focus on large patient cohorts with varied clinical

characteristics that accurately represent the diversity of the SCI

patient population. Furthermore, the association of clinical

characteristics with peripheral immune reactions following SCI

should be investigated. A more detailed understanding of

alterations in immune cell function, their temporal occurrence, and

potential correlations with clinical characteristics could facilitate

the clinical assessment and therapeutic management of SCI.

Additionally, many of the reviewed publications lack information

on the included treatments that could potentially affect the immune

system. In this regard, whilst their clinical utility remains

controversial, traumatic SCI patients are frequently treated with

immunomodulatory drugs, including corticosteroids such as

methylprednisolone (7, 96). Other therapeutic options for SCI that

interfere with the immune response include non-steroidal anti-

inflammatory drugs (NSAIDs) and antibiotics (7). In case these

immunotherapies are not listed as exclusion criteria, their potential

impact on study outcomes cannot be excluded. Hence, participants

receiving treatments that impact the immune response should either

be excluded or their treatments should be clearly mentioned in future

studies. Moreover, examining the correlation between these

treatments and the immune response to SCI would be valuable.

Finally, the reports discussed in this review highlight the need for

the development of novel, more efficient therapeutic approaches to

address the immune system-related consequences of SCI that extend

beyond the spinal cord. Notably, it is important that these strategies

control peripheral immunosuppression without aggravating immune

cell-mediated damage to the spinal cord and other organs. Moreover,

therapies that could ameliorate SCI recovery and prevent further

damage by addressing autoreactivity merit attention. Reevaluating

peripheral changes in immune system composition and function

following SCI from these perspectives could open doors to more

specific and personalized therapies for SCI.
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