
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Wenyi Jin,
City University of Hong Kong, Hong Kong
SAR, China

REVIEWED BY

Yuquan Chen,
Monash University, Australia
Xin Yu,
Baylor College of Medicine, United States
Kaige Chen,
Wake Forest University, United States

*CORRESPONDENCE

Xiaoyuan Qiao

qiaoxiaoyuan@sxmu.edu.cn

RECEIVED 15 September 2024

ACCEPTED 06 November 2024
PUBLISHED 25 November 2024

CITATION

Li Y, Chen Y, Zhang Y, Fang Y, Wu L, Zhao Y,
Wang D and Qiao X (2024) Integrating
multi-omics techniques and in vitro
experiments reveals that GLRX3 regulates
the immune microenvironment and
promotes hepatocellular carcinoma
cell proliferation and invasion through
iron metabolism pathways.
Front. Immunol. 15:1496886.
doi: 10.3389/fimmu.2024.1496886

COPYRIGHT

© 2024 Li, Chen, Zhang, Fang, Wu, Zhao,
Wang and Qiao. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 25 November 2024

DOI 10.3389/fimmu.2024.1496886
Integrating multi-omics
techniques and in vitro
experiments reveals that
GLRX3 regulates the immune
microenvironment and
promotes hepatocellular
carcinoma cell proliferation
and invasion through iron
metabolism pathways
Yang Li1, Yuan Chen1,2, Yang Zhang3, Yunsheng Fang4,5,
Ling Wu6, Ying Zhao1, Danqiong Wang1 and Xiaoyuan Qiao7*

1Department of General Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,
Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China, 2Department of
Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology,
Wuhan, China, 3School of Mechanical Engineering, Taiyuan University of Science and Technology,
Taiyuan, China, 4The Key Laboratory of Biomedical Information Engineering of Ministry of Education,
School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China, 5Bioinspired
Engineering & Biomechanics Center (BEBC), Xi’an Jiaotong University, Xi’an, China, 6Tumor Center,
Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical
University, Tongji Shanxi Hospital, Taiyuan, China, 7Department of Comprehensive Medicine, Shanxi
Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical
Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
Background: Hepatocellular carcinoma (HCC) is a common malignancy

worldwide, and its development is closely related to abnormalities in iron

metabolism. This study aims to systematically analyze changes in iron

metabolism in the tumor microenvironment of HCC using single-cell

sequencing technology, and investigate the potential mechanisms by which

iron metabolism regulation affects the survival of liver cancer patients.

Materials and methods: Single-cell sequencing data from hepatocellular

carcinoma patients were obtained from the GEO database. By iron metabolism

genomic scoring, we assessed differences in iron metabolism levels in

hepatocellular carcinoma samples. By cell communication analysis as well as

GO and KEGG enrichment analysis, we determined the functional role of iron

metabolism in different cell types. We used survival analysis and Kaplan-Meier

curves to assess the impact of iron metabolism levels on patient prognosis. In

addition, we identified and analyzed the expression profile of the GLRX3 gene,

investigated its key regulatory role in iron metabolism, and validated its clinical

value as a prognostic marker. Finally, we explored the effect of GLRX3 on

hepatocellular carcinoma phenotype by in vitro experiments such as PCR,

transwell, CCK8, and wound healing assay.
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Results: Bioinformatics results and experimental validation confirmed the

dysregulation of iron metabolism in the development of hepatocellular

carcinoma, revealing iron’s regulatory influence across various cell types.

Additionally, GLRX3 was identified as a key regulatory factor in iron

metabolism, and the mechanism by which GLRX3 regulates tumor cell

proliferation and immune evasion was determined. Furthermore, experiments

verified GLRX3’s role in facilitating tumor cell proliferation and invasion.

Conclusion: This study highlights the critical role of iron metabolism in the

progression of hepatocellular carcinoma, particularly the regulatory mechanism

of the GLRX3 gene in tumor cell proliferation and immune evasion. Iron

metabolism abnormalities are not only drivers of liver cancer development but

also key indicators of patient prognosis.
KEYWORDS

iron metabolism, GLRX3, immunotherapy, precision medicine, multi-omics analysis,
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1 Introduction

Primary liver cancer (PLC) is the fifth most common cancer

globally and the second leading cause of cancer-related deaths (1–

4). Its incidence and mortality rates are rising rapidly, particularly

in Western countries. Hepatocellular carcinoma (HCC), the most

prevalent form of PLC, makes up 90% of all primary liver tumors

and around 5% of all cancers (5–8). The malignant transformation

of hepatocytes results in HCC (9), with known risk factors including

excessive alcohol consumption, hepatitis B virus (HBV) infection,

fat accumulation in the liver, and autoimmune liver diseases (10–

12). While liver transplantation, surgery, and local therapies can be

curative at early stages (13, 14), most liver cancer patients are

diagnosed late, where treatment options are extremely limited and

the prognosis is poor (15–17). Thus, understanding changes in the

tumor microenvironment during liver cancer progression and

gaining deeper insights into its pathogenesis are critical for

developing effective treatments (18).

Iron metabolism encompasses the comprehensive processes of

iron absorption, transport, storage, and utilization within a

biological system. Although the body’s requirement for iron is

relatively modest, it is an essential trace element that plays a

critical role in numerous physiological processes (19). The key

components involved in maintaining cellular iron homeostasis

include transferrin receptor 1 (TfR1), which internalizes

transferrin-bound iron; ferroportin (Fpn), the sole iron export

protein; and ferritin, which stores excess iron (20). Iron levels are

tightly regulated at both systemic and cellular levels to remain

within an optimal range. However, excessive iron can promote the

production of highly reactive and toxic oxidants via the Fenton

reaction, impairing immune function and disrupting various

physiological processes (21).
02
Hepatocytes play a crucial role in maintaining stable plasma

glucose and lipoprotein levels in humans (22). Under normal

conditions, hepatocytes remain quiescent; however, when liver

tissue is excessively exposed to viruses, toxic substances, or

metabolites, significant physiological changes occur. Given that

the liver is a primary organ for excess iron accumulation, it plays

a crucial role in maintaining iron homeostasis (19, 23).

Dysregulation of iron metabolism significantly increases the risk

of liver cancer. Research has shown that iron overload is not only

associated with cancer development but also actively contributes to

carcinogenesis. Excess iron induces oxidative stress-mediated DNA

damage in hepatocytes and promotes the rapid proliferation of

tumor cells (24, 25). Thus, understanding the intrinsic link between

abnormal iron metabolism and changes in the tumor

microenvironment of liver cancer is critical for developing precise

treatment strategies and for uncovering the broader impact of metal

ions on cancer progression (22, 26).
2 Materials and methods

2.1 Cell culture

The human hepatocellular carcinoma cell lines, Hep3B and

Huh7, were cultured in RPMI/1640 medium (Gibco) supplemented

with 10% fetal bovine serum (FBS) (Hyclone), along with 100 U/L

of penicillin and 100 mg/L of streptomycin (Thermo Fisher). Cells

were maintained at 37°C in a humidified atmosphere of 5% CO2.

The culture medium was changed every 2-3 days to ensure optimal

growth conditions. When cells reached 80-90% confluence, they

were passaged using trypsin-EDTA for further experiments.
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2.2 shRNA knockdown

Plasmids expressing shRNA, specifically designed to target

GLRX3, were carefully constructed with the assistance of

GenePharma. During cultivation, the cells were treated with viral

supernatants and polybrene (Sigma Aldrich) in the culture medium.

After 24 hours of incubation, the cells were transferred to fresh

medium containing 2.0 mg/ml of puromycin. The efficiency of

GLRX3 knockdown was confirmed two days later using qRT-

PCR analysis.
2.3 qPCR assay

Total RNA extraction was carried out utilizing the RNA Eazy

Fast Tissue/Cell Kit (TIANGEN Biotech) in accordance with the

manufacturer’s guidelines. Subsequently, cDNA synthesis was

performed using the FastKing RT Kit (TIANGEN Biotech),

adhering to the provided protocol. Real-time PCR analysis was

conducted with the application of the SuperReal PreMix Plus

(TIANGEN Biotech) reagent, implemented on the StepOnePlus

Real-Time PCR System. The PCR reaction encompassed an initial

pre-denaturation phase at 95°C for 15 minutes, followed by 40

amplification cycles, comprising denaturation at 95°C for 10

seconds, annealing at 72°C for 20 seconds, and extension at 60°C

for 20 seconds. Primer sequences utilized were procured from

Sangon Biotech. (Species of Human Origin) GLRX3 Forward

Primer: GGGCGGCTGAGGCAGCT,reverse primer GCAGG

GGGCAGCATGAGTC;(Species of Human Origin) IL10 Forward

Primer: GACTTTAAGGGTTACCTG GGTTG,Reverse Primer:

TCACATGCGCCTTGATGTCTG; At last, PCR signals 2-44Ct

was used to calculate the expression of genes mRNA levels. The

following sequences were used: 5′-GTGGAAATTCTTCA

CAAACAT-3′ for human GLRX3 shRNA and 5′-GGAATC
TCATTCGATGCATAC-3′ for the control shRNA.
2.4 Transwell assay

A seeding density of 1×10^5 cells was allocated to either

Matrigel-coated chambers (BD Biosciences, San Jose, CA) for the

invasion assay or uncoated chambers designated for the migration

assay. The upper chamber was filled with serum-free medium, while

the lower chamber was supplied with complete RPMI/1640

medium. Following a 24-hour incubation period, cells that had

traversed the membrane were meticulously fixed with a 4%

paraformaldehyde solution and subsequently subjected to staining

with 0.1% crystal violet. Cell quantification was carried out using a

light microscope, specifically the Thermo Fisher instrument based

in Waltham, MA, USA.
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2.5 CCK-8 assay

Cell viability was ascertained via the Cell Counting Kit-8 (CCK-8)

assay. Cells were appropriately seeded at a density of 1500 cells

per well, and each well contained 200 µl of complete medium within

96-well plates. Subsequent to seeding, the cells were diligently

cultured under standard conditions at 37°C. Following each

experimental procedure, 20 µl of CCK-8 reagent (Beyotime) was

introduced into every well. A further incubation period of 2 hours

ensued, after which the optical density value (OD450nm) was

meticulously determined utilizing a microplate reader.
2.6 Wound healing assay

A wound healing assay was conducted to evaluate the migratory

capacity of hepatocellular carcinoma cells. Transfected cells in six-

well plates were incubated at 37°C until they reached around 80%

confluence. Then, a 200 mL sterile pipette tip was used to create

uniform wounds in the cell monolayer. Cells were washed twice

with phosphate-buffered saline to remove any debris, and the

medium was replaced with serum-free medium. Cell migration

into the wound area was carefully monitored under an Olympus

inverted microscope at 0 and 24 hours.
2.7 Protein expression
and immunohistochemistry

We used the CTPAC database to validate the difference in the

expression of GLRX3 protein in hepatocellular carcinoma tissues

and normal liver tissues. The expression levels of GLRX3 in

hepatocellular carcinoma tissues and normal tissues were verified

by immunohistochemical sections from the HPA database.
2.8 Data sources

The single-cell sequencing data used in this study was obtained from

the GEO database, specifically from dataset GSE149614, which includes

sequencing data from 10 HCC patients. We selected two types of

samples, primary tumors and non-tumorous liver tissues, for analysis.

Spatial transcriptomics sequencing data from one HCC tumor tissue

sample was sourced from GSM6177612, with tissue sections derived

from primary hepatocellular carcinoma regions. Additionally, RNA-seq

data for HCC was downloaded from the UCSC Xena platform (https://

xena.ucsc.edu/), originating from the TCGA (The Cancer Genome

Atlas) cohort. This dataset contains sequencing information from

424 samples along with corresponding survival data, which was

used for survival analysis. External validation sets utilized in this

study included GSE144269, GSE76427, and ICGC_LIRI.
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2.9 Single-cell sequencing data processing

After processing single-cell sequencing data from 10 tumor and 8

normal liver samples, we obtained a total of 63,101 cells. Preliminary data

analysis was conducted using the Seurat package, which included quality

control, dimensionality reduction, clustering, and visualization. To

ensure the reliability of the sequencing data, stringent quality control

measures were implemented. Specifically, cells with fewer than 500 or

more than 6,000 detected genes, as well as those with over 20%

mitochondrial gene content, were excluded. This step minimized the

presence of empty droplets, doublets, and senescent cells. Following data

normalization and scaling, PCA-based dimensionality reduction was

performed, and batch effects weremitigated using theHarmony package.

We then selected the top 20 principal components for clustering with a

resolution of 0.3, resulting in the identification of 17 cell clusters, which

were visualized using UMAP (27–29).
2.10 Cell type identification and
subpopulation segmentation

We employed common cell marker genes and the

“FindAllMarkers” function to conduct preliminary cell type

identification. Based on the expression patterns of marker genes in

each cluster and the upregulation of specific genes, we assigned cell type

labels. Subpopulations within larger groups, such as myeloid cells, B

cells, and T/NK cells, were further subdivided. Using a resolution of 0.1,

we identified distinct cell types, including plasma cells, cytotoxic T

lymphocytes (CTLs), epithelial-mesenchymal transition cells (EMTs),

regulatory T cells (Tregs), and macrophages (30, 31).
2.11 Tumor cell identification and
stemness assessment

To identify tumor cells, we utilized the “copykat” package for

copy number variation (CNV) analysis. CopyKAT (Copy-number

Karyotyping of Tumors) is a computational tool that employs an

integrative Bayesian approach to detect whole-genome aneuploidy

in single cells at a 5MB resolution, allowing us to distinguish tumor

cells from normal cells. Cells displaying extensive whole-genome

CNV (aneuploidy) were classified as tumor cells, while stromal and

immune cells typically exhibited 2N diploid or near-diploid CNV

profiles. To assess the differentiation status of tumor cells and

support pseudotime analysis of T cell subpopulations, we applied

the “cytotrace” package for cell stemness scoring. Cytotrace

provides a continuous measure of developmental potential,

ranging from 0 (fully differentiated) to 1 (pluripotent).

Pseudotime inference for T cell subpopulations was performed

using the “monocle” package (32).
2.12 Iron metabolism level assessment

To quantify iron metabolism levels across different cell types

using 73 iron metabolism-related genes, we applied several gene set
Frontiers in Immunology 04
scoring methods, including AddModuleScore, ssGSEA, AUCell,

UCell, and singscore. Each method generated a score for each

cell, and after centering and standardizing these scores, the final

score for each cell was obtained by summing the five scores. The use

of multiple scoring methods helps reduce errors and biases in gene

set scoring, providing more comprehensive information, increased

robustness, and better biological interpretation. For cell types that

showed significant changes in iron metabolism levels between

groups, cells were classified into high- and low-score groups

based on the average score, representing different levels of iron

metabolism (27, 33, 34).
2.13 Enrichment and cell
communication analysis

To investigate the biological functional differences among cells with

varying iron metabolism levels, we conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses. Genes for enrichment analysis were identified using the

“FindMarkers” function, focusing on those upregulated in the high-

score group cells. The “clusterProfiler” package was employed to

retrieve gene sets from the GO, KEGG, and GSEA databases and to

visualize the results. Additionally, we utilized the “GSVA” package,

which employs the “HALLMARK” gene set to identify tumor-

associated biological processes. To compare differences in cell

communication between high- and low-score cells, we conducted cell

communication network analysis using the “CellChat” package.

CellChat simulates and analyzes intercellular communication by

integrating gene expression data with known interactions between

signaling ligands, receptors, and cofactors (35–37).
2.14 Infiltration and prognostic analysis of
high- and low-score cells

Using the marker genes of high- and low-score cells, we

performed ssGSEA scoring on TCGA data to classify patients into

high- and low-infiltration groups. Survival data from these groups

were then used to plot Kaplan-Meier (K-M) curves, allowing us to

compare prognostic differences. The “survival” and “survminer”

packages were employed to plot K-M curves for both overall

survival and progression-free survival (38).
2.15 Spatial transcriptomics data
deconvolution analysis

For the initial processing of spatial transcriptomics data, we utilized

the “Seurat” package. During quality control, only mitochondrial and

ribosomal genes were excluded, while data for each spot were retained.

After normalization and centering using the “SCTransform” function,

we performed PCA-based dimensionality reduction and clustering. We

clustered the data using the top 20 principal components, resulting in

the identification of 7 cell clusters. The “scMetabolism” package was

employed to infer metabolic activity in each cell cluster from the spatial
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transcriptomics data. This package includes human-specific metabolic

gene sets covering 85 KEGG pathways and 82 REACTOME entries,

employing the VISION algorithm to score each cell. To address the

resolution limitations of spatial transcriptomics and leverage spatial

location information, deconvolution analysis was performed using the

“spacexr” package, specifically the RCTD deconvolution analysis.

Annotated single-cell data were used to deconvolute spatial

transcriptomics data, inferring the probability of each cell type at

each sequencing spot. Cells from high- and low-score groups were also

included in the analysis to compare iron metabolism levels across

different locations.
2.16 Expression and prognostic analysis of
key iron metabolism genes in tumors

For key iron metabolism genes, we performed differential gene

expression analysis using TCGA data and validated the results with

GEO data. Six significantly differentially expressed iron metabolism

genes were then used to score bulk data, categorizing patients into

high and low groups for comparison of prognostic differences,

reflecting the impact of key iron metabolism genes on HCC

prognosis. The ssGSEA method was employed to score and plot

K-M curves using various survival datasets. Two additional datasets

from GEO and ICGC were used as external validation sets to assess

the impact of key iron metabolism genes on HCC patient prognosis.

Furthermore, we examined the expression of key iron metabolism

genes in spatial transcriptomics data, comparing gene expression in

normal cells, mixed cells, and malignant cells, and their correlation

with various cell types.
2.17 Prognostic and clinical analysis of
GLRX3, a key iron metabolism gene

For GLRX3, a key gene in iron metabolism, we conducted

subgroup differential expression analysis using clinical information

from TCGA. The prognostic value of GLRX3 was evaluated using

TCGA and multiple external validation sets. Enrichment analysis

and spatial transcriptomics data were also employed in the study

of GLRX3.
2.18 Statistical analysis

Statistical analyses were performed using R 4.2.2 64-bit version

and its supported packages. The non-parametric Wilcoxon rank-

sum test was used to assess relationships between groups for

continuous variables. Spearman correlation analysis was used to

test correlation coefficients. All statistical analyses were considered

significant at P<0.05.
Frontiers in Immunology 05
3 Results

3.1 Quality control of liver cancer samples

In this study, we obtained single-cell transcriptomic data from

the GEO database (dataset GSE149614), which includes 18 liver

cancer tumor tissue samples and adjacent normal liver tissue

samples from ten patients. To ensure high-quality single-cell data

analysis, we first performed quality control on all samples. To

minimize the impact of aging cells, red blood cells, and a high

percentage of mitochondrial reads, we evaluated key quality

metrics, such as UMI counts and the percentages of

mitochondrial and hemoglobin gene expression (Figure 1A).

Additionally, we employed the Harmony package to correct for

potential batch effects in sequencing, ensuring that observed

differences were due to biological variation between samples

(Figure 1B). After dimensionality reduction and clustering, we

visualized 61,776 cells that passed quality control, which were

grouped into 16 distinct clusters via UMAP (Figure 1C).

Furthermore, we analyzed differences in data distribution across

samples (Figure 1D), between tumor and normal groups

(Figure 1E), and in mRNA density (Figure 1F).

Next , us ing common ce l l marker genes and the

“FindAllMarkers” function, we performed preliminary cell type

identification. Based on the expression patterns of marker genes

and upregulated genes, we named the cell types (Figure 1G).

Figure 1H displays the distribution of different cell types across

the tumor and normal groups, while the heatmap in Figure 1I shows

the marker genes for each cell cluster. For the large groups of

myeloid cells, B cells, and T/NK cells, we further subdivided the

populations, using a resolution of 0.1, identifying plasma cells,

CTLs, EMTs, Tregs, macrophages, and more (Figures 1J–M).

Lastly, we displayed the distribution differences of all cell types

across the tumor and normal groups (Figure 1N).
3.2 Tumor cell identification

To identify tumor cells, we used the “copykat” package for copy

number variation (CNV) analysis, which distinguishes tumor from

normal cells by identifying aneuploidy. Cells exhibiting extensive

genome-wide CNV were classified as tumor cells. Figure 2A shows a

group of cells with high levels of CNV abnormalities detected by

copykat. Additionally, we performed stemness scoring using the

“cytotrace” package (Figure 2B). By combining these results with

those from copykat, we confirmed that hepatocytes constituted a

highly malignant tumor cell population. Next, we applied five

scoring methods (AddModuleScore, ssGSEA, AUCell, UCell, and

singscore) to assess the expression of iron metabolism genes across

different cell populations (Figures 2C, D). We also compared the

iron metabolism scores of each cell type between tumor and normal

groups (Figure 2E).
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FIGURE 1

Single-cell data processing and cell type identification. (A) Violin plot showing sample characteristics after single-cell data quality control. The upper
plot displays the number of detected genes, while the lower plot shows the proportion of mitochondrial genes. (B) PCA plot of cell distribution
across samples after batch effect removal. (C) UMAP of dimensionality-reduced clustered cell populations, with a total of 17 clusters. (D) UMAP
showing cell distribution across different samples. (E) UMAP showing cell distribution across different groups. (F) UMAP of cell counts. (G) Results of
cell type identification, displaying the distribution and number of each cell type in different groups. (H) Bar plot of cell proportions. (I) Heatmap of
cell marker gene expression. (J) UMAP of B cell subpopulations. (K) UMAP of T/NK cell subpopulations. (L) UMAP of myeloid cell subpopulations.
(M) UMAP of overall cell types. (N) Bar plot showing proportions of overall cell types.
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3.3 Plasma cell iron metabolism analysis

To investigate the characteristics of ironmetabolism in plasma cells

within the liver cancer tumor microenvironment, we categorized

plasma cells into high and low expression groups based on their iron

metabolism scores (Figure 3A). Notably, plasma cells in the tumor

group exhibited significantly higher iron metabolism scores compared

to those in the normal group (Figure 3B). To assess the heterogeneity

between the two groups, we performed Gene Set Variation Analysis

(GSVA), which revealed functional differences between plasma cells

with high and low iron metabolism scores (Figure 3C). Plasma cells

with elevated iron metabolism scores demonstrated enhanced

lipogenesis, metabolic activity, and oxidative phosphorylation.

Furthermore, we evaluated the expression of antibody secretion-

related genes and observed a reduction in antibody secretion

functionality in the high iron metabolism group (Figure 3D). Cell

communication analysis indicated that plasma cells with high iron
Frontiers in Immunology 07
metabolism scores exhibited stronger communication and signaling

output (Figures 3E, F). GO enrichment analysis indicated that plasma

cells with high iron metabolism scores exhibited increased iron ion

transport and oxidative response capabilities (Figure 3G). KEGG

pathway analysis suggested that these cells were more active in

ferroptosis and pyrimidine/nucleotide metabolism (Figure 3H).

Finally, survival curve analysis revealed that patients with high

iron metabolism had shorter overall survival (OS) and progression-

free survival (PFS) compared to those with low iron metabolism

(Figures 3I–K).
3.4 Cytotoxic T cell iron
metabolism analysis

To assess the impact of iron metabolism on immune

cytotoxicity, we categorized cytotoxic T cells (CTLs) into high
FIGURE 2

Tumor microenvironment analysis and iron metabolism level assessment. (A) UMAP showing copy number variation, where red indicates polyploid
cells (tumor cells). (B) Heatmap of stemness score, ranging from 0 (differentiated) to 1 (pluripotent). (C) Bubble plot of gene set scoring results.
(D) Heatmap of gene set scores. (E) Violin plot of score differences between tumor and normal groups. ** represents a p-value < 0.01,
**** represents a p-value < 0.0001.
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and low expression groups based on their iron metabolism scores

(Figure 4A). Notably, CTLs in the tumor group exhibited

significantly higher iron metabolism scores compared to those in

the normal group (Figure 4B). GSVA analysis of the functional

differences between these groups revealed a heightened oxidative

profile in the high iron metabolism group (Figure 4C). Evaluation of
Frontiers in Immunology 08
cytotoxicity-related genes showed reduced cytotoxic function in

CTLs with elevated iron metabolism (Figure 4D). Cell

communication analysis further demonstrated enhanced

intercellular communication and signal output in these cells

(Figures 4E, F). GO and KEGG enrichment analyses indicated

increased iron ion transport and oxidative responses in CTLs
FIGURE 3

Plasma cell analysis. (A) UMAP of high and low iron metabolism score cells, where pink indicates high iron metabolism score cells and blue indicates low
score cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets, showing pathways enriched in low-
score and high-score cells. (D) Bubble plot of antibody secretion-related gene expression. (E) Circle plot showing cell communication frequency, where
line thickness represents the number of communications. (F) Scatter plot of signal transmission and reception strength between cells. (G) Bar plot of GO
enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of differential expression of iron metabolism-related genes in
plasma cells. (J) KM survival curve for high and low infiltration groups (overall survival). (K) KM survival curve for high and low infiltration groups
(progression-free survival).
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with high iron metabolism (Figures 4G, H). Additionally, analysis of

iron metabolism-related gene expression revealed a downregulation

of NDFIP1 and BOLA3 in tumor tissues (Figure 4I). Survival curve

analysis showed that patients with high iron metabolism had

shorter overall survival (OS) and progression-free survival (PFS)

compared to those with low iron metabolism (Figures 4J, K).
3.5 Effector memory T cell iron
metabolism analysis

Effector memory T cells (TEMs) can rapidly produce effector

cytokines to provide immune protection. We investigated the effects

of iron metabolism on their immune function. TEMs were divided into
Frontiers in Immunology 09
high and low iron metabolism score groups (Figure 5A), and TEMs in

the tumor group exhibited significantly higher iron metabolism scores

than those in the normal group (Figure 5B). GSVA analysis revealed

increased protein synthesis in high ironmetabolism TEMs (Figure 5C).

However, these cells also exhibited reduced cell proliferation and

migration capacities (Figure 5D). Cell communication analysis

showed enhanced intercellular communication and signal output in

TEMs with high iron metabolism (Figures 5E, F). GO and KEGG

analyses indicated elevated iron ion transport, protein localization, and

cell differentiation in high iron metabolism TEMs (Figures 5G, H).

Additionally, most iron metabolism-related genes were upregulated in

tumor tissues (Figure 5I). Survival analysis demonstrated shorter

overall survival (OS) and progression-free survival (PFS) in patients

with high iron metabolism (Figures 5J, K).
FIGURE 4

Cytotoxic T cell analysis. (A) UMAP of high and low iron metabolism score cells, where yellow indicates high-score cells and gray indicates low-
score cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of cytotoxic-
related gene expression. (E) Circle plot of cell communication frequency. (F) Scatter plot of signal transmission and reception strength. (G) Bar plot
of GO enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron metabolism-related gene expression in
CTLs. (J) KM survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for progression-free survival in high and low
infiltration groups.
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3.6 Regulatory T cell iron
metabolism analysis

Regulatory T cells (Tregs) are responsible for modulating

immune responses and maintaining self-tolerance. We explored

the impact of iron metabolism on their function. Tregs were divided
Frontiers in Immunology 10
into high and low expression groups based on their iron metabolism

scores (Figure 6A), and Tregs in the tumor group exhibited higher

iron metabolism scores compared to those in the normal group

(Figure 6B). GSVA analysis revealed that oxidative phosphorylation

was a dominant feature in high iron metabolism Tregs (Figure 6C).

Immune suppression-related genes displayed distinct expression
FIGURE 5

Effector memory T cell analysis. (A) UMAP of high and low iron metabolism score cells, with green indicating high-score cells and blue indicating
low-score cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of
proliferation and migration-related gene expression. (E) Circle plot showing cell communication frequency. (F) Scatter plot of signal transmission and
reception strength. (G) Bar plot of GO enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron
metabolism-related gene expression in EMTs. (J) KM survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for
progression-free survival in high and low infiltration groups.
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patterns in the high iron metabolism group (Figure 6D). Cell

communication analysis showed enhanced intercellular

communication and signal output in Tregs with high iron

metabolism scores (Figures 6E, F). GO and KEGG analyses

revealed increased iron ion transport and oxidative responses in
Frontiers in Immunology 11
these cells (Figures 6G, H). Interestingly, high iron metabolism was

associated with longer overall survival (OS) and progression-free

survival (PFS) (Figures 6I–K). Pseudotime analysis revealed that

CD56dim NK cells and Tregs appeared in the later stages of T cell

development (Figures 6L, M).
FIGURE 6

Regulatory T cell analysis. (A) UMAP of high and low iron metabolism score cells, with blue indicating high-score cells and yellow indicating low-score
cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of immunosuppressive-
related gene expression. (E) Circle plot of cell communication frequency. (F) Scatter plot of signal transmission and reception strength. (G) Bar plot of
GO enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron metabolism-related gene expression in Tregs.
(J) KM survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for progression-free survival in high and low infiltration
groups. (L) Pseudotime trajectory plot of T cell subpopulations, with color representing pseudotime. (M) Left panel shows the distribution of T cell
subtypes on the trajectory plot, and the right panel shows the trajectory tree diagram.
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3.7 Endothelial cell iron
metabolism analysis

To explore iron metabolism in endothelial cells within the liver

cancer microenvironment, we divided endothelial cells into high and
Frontiers in Immunology 12
low expression groups based on iron metabolism scores (Figure 7A).

Endothelial cells in the tumor group exhibited higher iron

metabolism scores compared to those in the normal group

(Figure 7B). Endothelial cells with high iron metabolism showed

upregulation of pro-angiogenic genes, such as VEGFA (Figure 7C).
FIGURE 7

Endothelial cell analysis. (A) UMAP of high and low iron metabolism score cells, with green indicating high-score cells and white indicating low-
score cells. (B) Bar plot of cell proportions. (C) Bubble plot of angiogenesis-related gene expression. (D) Diverging bar plot of GSVA enrichment
results for Hallmark gene sets. (E) Bar plot of GO enrichment analysis results. (F) Bar plot of KEGG enrichment analysis results. (G) Circle plot of cell
communication frequency. (H) Scatter plot of signal transmission and reception strength. (I) Bubble plot showing NOTCH signaling pathway
communication between high and low iron metabolism endothelial cells. (J) Contribution of ligand-receptor pairs to communication in the NOTCH
pathway. (K) Violin plot of iron metabolism-related gene expression in endothelial cells. (J) KM survival curve for overall survival in high and low
infiltration groups. (K) KM survival curve for progression-free survival in high and low infiltration groups.
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GSVA analysis indicated increased oxidative phosphorylation and

metabolic activity in high iron metabolism endothelial cells

(Figure 7D). GO and KEGG enrichment analyses revealed elevated

metabolic activity in these cells (Figures 7E, F). Cell communication

analysis showed enhanced intercellular communication and signal

output (Figures 7G, H). The JAG1-NOTCH1 pathway was identified

as a key mediator of active communication (Figures 7I, J). Survival

analysis revealed that patients with high iron metabolism had a

longer survival period (Figures 7L, M).
3.8 Characterization of iron metabolism
in fibroblasts

Fibroblasts are an important cellular component of the tumor

microenvironment. Tumor-associated fibroblasts play a key role at
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all stages of tumor development, promoting tumor proliferation

and migration, enhancing tumor angiogenesis, regulating tumor

immunity, and increasing tumor drug resistance. We divided

fibroblasts into high- and low-expression groups based on iron

metabolism scores (Figures 8A, B). To explore the heterogeneity

between the two groups, we analyzed the functional differences

between fibroblasts with high and low iron metabolism scores

through GSVA and found that the high iron metabolism score

group exhibited higher oxidative phosphorylation, reactive oxygen

species response, and fat generation-related characteristics

(Figure 8C). We constructed a bubble chart to visualize the

expression levels of tumor-associated fibroblast marker genes,

aiming to explore the impact of different metabolic scores on the

generation of tumor-associated fibroblasts (Figure 8D). The results

indicated that the expression of tumor-associated fibroblast marker

genes was elevated in fibroblasts with low iron metabolism scores.
FIGURE 8

Fibroblast analysis. (A) UMAP of high and low iron metabolism score cells, with yellow indicating high-score cells and gray indicating low-score cells.
(B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of tumor-associated fibroblast
marker gene expression. (E) Circle plot of cell communication frequency. (F) Scatter plot of signal transmission and reception strength. (G) Bar plot of GO
enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron metabolism-related gene expression in fibroblasts. (J) KM
survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for progression-free survival in high and low infiltration groups.
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In a cell communication analysis, we discovered that fibroblasts

with high iron metabolism scores exhibited enhanced levels of cell

communication and stronger signal output characteristics

(Figures 8E, F). Gene Ontology (GO) enrichment analysis

revealed that fibroblasts with high iron metabolism scores

demonstrated increased iron ion transport characteristics and a

heightened oxidative response (Figure 8G).KEGG pathway analysis

found that fibroblasts with high iron metabolism scores displayed

more active metabolism (Figure 8H). We further analyzed the

expression levels of iron metabolism genes and found that most

of these genes were downregulated in liver cancer tissues

(Figure 8I). Survival curves indicated that patients with high iron

metabolism had a longer survival period compared to those with

low iron metabolism (Figures 8J, K).
3.9 Spatial distribution of iron metabolism

To further investigate the features of iron metabolism in liver

cancer, we conducted a deconvolution analysis of spatial

transcriptomic data. We obtained spatial transcriptomic sequencing

data from hepatocellular carcinoma (HCC) tumor tissue

(GSM6177612), specifically from the tumor region of primary

hepatocellular carcinoma. Following dimensionality reduction and

clustering of the spatial transcriptomic data, we visualized the results

using UMAP, which revealed seven distinct cell clusters (Figures 9A,

B). The spatial distribution of these cell clusters is illustrated in

Figure 9C. We assessed the iron metabolism-related gene scores for

each cell cluster (Figure 9D) and analyzed the metabolic differences

among the clusters, highlighting elevated metabolic activity in clusters

0, 1, and 2 (Figure 9E). Additionally, we examined the activity levels

of glycolytic and oxidative phosphorylation metabolic pathways

across different spatial regions (Figures 9F, G). High metabolic

activity generally indicates that these cells play a more active role in

tumor growth and progression, particularly in scenarios where energy

demands are elevated. The spatial differences in the glycolytic and

oxidative phosphorylation pathways suggest that cells in different

regions may employ unique metabolic strategies to adapt to changes

in the microenvironment. To further clarify the metabolic

characteristics of cells in each spot and reveal the spatial

distribution of their iron metabolism levels, we displayed the

single-cell annotation results at the spatial level through

deconvolution analysis (Figures 9H, I), showing the primary and

secondary probabilities of cells with different iron metabolism levels

in each spot (Figures 9J, K).
3.10 Survival analysis of iron metabolism-
related genes

We analyzed the differential expression of key iron metabolism

genes in tumor versus normal samples using TCGA and GEO data

(Figure 10A), and performed ssGSEA scoring of iron metabolism
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levels in both groups (Figures 10B, C). The results revealed that iron

metabolism levels were markedly elevated in the tumor group

compared to the normal group. To further investigate the role of

iron metabolism across different tumor stages, we examined and

illustrated the differences in iron metabolism scores among patients

at various clinical stages (Figures 10D, E). In the spatial

transcriptomics data, we identified malignant, mixed, and normal

cells, and depicted the iron metabolism score intensities for these

three cell types (Figures 10F–H). The elevated iron metabolism

scores in malignant cells compared to normal cells reflect the

heterogenei ty of i ron metabol i sm within the tumor

microenvironment. The correlation between AUC scores of key

iron metabolism genes and microenvironment components further

indicated that iron metabolism plays a significant role in regulating

the tumor microenvironment, potentially influencing intercellular

metabolic communication and tumor growth.

Through Spearman correlation analysis of AUC scores for key

iron metabolism genes and microenvironment components, we

further validated the pivotal role of iron metabolism in liver cancer

(Figure 10I). We extracted overall survival (OS), disease-free survival

(DFS), progression-free interval (PFI), and disease-free interval (DFI)

data from liver cancer samples and examined the survival durations

of patients with varying iron metabolism levels. The results indicated

that higher iron metabolism levels were associated with poorer

prognoses across these survival metrics (Figures 10J–M). This

suggests that elevated iron metabolism levels may serve as a

potential biomarker for increased tumor malignancy and adverse

prognosis. Additionally, we utilized ICGC-LIRI and GSE76427

datasets to generate prognostic curves, thereby corroborating our

findings (Figures 10N, O). Furthermore, conducting Gene Ontology

(GO) enrichment analysis on patients with high and low iron

metabolism scores revealed potential mechanisms through which

iron metabolism influences prognosis (Figure 10P). Overall, these

results suggest that iron metabolism represents a critical target for

diagnosis and treatment in liver cancer.
3.11 GLRX3 expression and
prognostic analysis

GLRX3, a key iron metabolism gene, was found to be highly

expressed in HCC. Glutaredoxin 3 (GLRX3) is a type II monothiol

glutaredoxin involved in iron balance, redox reactions, and

antioxidant responses. In the TCGA cohort, GLRX3 expression

was higher in advanced tumor grades (Figure 11A) and higher-stage

tumors (Figure 11B). M1-stage tumors also showed increased

GLRX3 expression compared to M0-stage tumors (Figure 11C).

These differences indicate that high GLRX3 expression correlates

with more advanced tumors and poorer prognosis (Figure 11D).

We validated these findings by analyzing OS and DSS in patients

with different GLRX3 expression levels (Figures 11E–H). Meta-

analysis confirmed our conclusions (Figure 11I). GO enrichment

analysis of high and low GLRX3 score patients revealed potential
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mechanisms influencing prognosis (Figure 11J). Spatial

transcriptomics data showed that GLRX3 was highly expressed in

malignant regions (Figure 11K). Spearman correlation analysis

further confirmed the role of GLRX3 in HCC (Figure 11L).
3.12 Knocking down the expression level of
GLRX3 significantly inhibited the
proliferation, invasion and migration of
hepatocellular carcinoma cells

Knocking down the expression level of GLRX3 significantly

inhibited the proliferation, invasion, and migration of

hepatocellular carcinoma cells. Considering the importance of

GLRX3, we validated its role in hepatocellular carcinoma through

a series of in vitro experiments. First, we reduced the expression of

GLRX3 and confirmed via PCR that its level was significantly

decreased compared to the control group (Figures 12A, B).

Subsequently, CCK8 assays demonstrated that the knockdown of

GLRX3 markedly inhibited the activity of hepatocellular carcinoma

cells (Figure 12C, D). To investigate the relationship between

GLRX3 and the invasive migration of hepatocellular carcinoma,

we conducted transwell and wound healing assays, revealing that

GLRX3 knockdown significantly inhibited the invasive migration of

these cells (Figures 12E, F). Immunohistochemistry experiments

indicated that GLRX3 was highly expressed in hepatocellular

carcinoma tissues (Figure 12G), and Western blot analysis

confirmed the elevated protein expression of GLRX3 in these

tissues (Figure 12H). In summary, GLRX3 enhances the invasive

migration of hepatocellular carcinoma cells, correlating with the

malignant characteristics of the disease.
4 Discussion

Iron serves dual roles in cancer biology: it acts as an initiator in

the early stages of tumor development and functions as a promoter

during malignancy, allowing transformed cells to maximize their

potential for uncontrolled proliferation. Concurrently, cancer cells

exhibit an increased demand for iron to support cellular growth,

leading to alterations in iron metabolism-related gene expression

that facilitate enhanced iron acquisition. Previous studies have

demonstrated that tumor cells often upregulate transferrin

receptor 1 (TFR1) while downregulating ferroportin (FNP),

thereby limiting iron release (4, 19, 21). In our study, by scoring

iron metabolism-related genes, we classified all cells into high and

low iron metabolism groups and found that iron metabolism

activity was consistently higher in tumor samples.

Disruption of the cellular iron homeostasis mechanism can lead

to abnormal iron accumulation or depletion within cells. Under

normal conditions, cells finely regulate iron levels to maintain a

balance between demand and supply (39, 40). Heightened iron

metabolism can disrupt homeostasis, resulting in abnormal iron
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levels that adversely impact cellular function and overall health.

This dysregulation may alter the cellular redox balance, potentially

inducing oxidative damage and ultimately resulting in iron-

dependent programmed cell death, known as ferroptosis. These

factors can significantly impact the prognosis of liver cancer

patients (41). In our study, we generated multiple prognostic

curves based on iron metabolism, showing that patients with

higher iron metabolism scores experienced worse outcomes to

varying degrees (42). Similarly, elevated iron metabolism was

correlated with advanced tumor grades and stages. These findings

underscore the potential of abnormal iron metabolism as a

predictive biomarker and therapeutic target in cancer. They

provide single-cell-level evidence to support the clinical

investigation of iron chelators in cancer therapy (43). For

example, oral iron chelators, such as deferasirox, have shown

efficacy in leukemia patients, while the thiosemicarbazone

Dp44mT has inhibited cancer cell proliferation in vitro by

inducing the expression of p21, a cyclin-dependent kinase

inhibitor involved in cell cycle arrest (44–46).

Our study also identified GLRX3 (Glutaredoxin 3) as a key iron

metabolism target gene that significantly influences liver cancer

progression (47). GLRX3 is a critical iron-sulfur cluster protein

primarily involved in regulating iron metabolism. As a member of

the oxidoreductase family, it performs multiple biological roles

within cells, particularly in maintaining iron homeostasis and

facilitating the assembly and transport of iron-sulfur clusters. In

our study, we observed that GLRX3 was abnormally expressed in

liver cancer patients (48). Iron-sulfur clusters serve as essential

cofactors for many enzymes and proteins. Overexpression of

GLRX3 can enhance the assembly and transport of these clusters

in the cytoplasm, leading to excessive production and distribution

(49). This overactivation may disrupt the metabolic balance in

certain cells by over activating iron-sulfur cluster-dependent

proteins. This finding is consistent with previous studies showing

that tumor cells increase their demand for iron to sustain

proliferation, with alterations in iron metabolism gene expression

facilitating iron acquisition (50). Consequently, the expression level

of GLRX3 may serve as a significant biomarker for liver cancer

prognosis and as a potential indicator for assessing the efficacy of

immunotherapy. Future research should prioritize elucidating the

specific mechanisms through which GLRX3 contributes to tumor

progression and developing targeted therapeutic strategies to

enhance prognosis and treatment outcomes for liver cancer

patients (51).

Although our study reveals the critical impact of iron

metabolism on liver cancer, several limitations should be noted.

First, the limited sample size may affect the generalizability of our

findings. We hope future studies will analyze larger datasets,

incorporating single-cell data from liver cancer patients across

different databases, to fully explore the effects of iron metabolism

dysregulation on the tumor microenvironment. Second, future

studies should integrate proteomics and metabolomics approaches

to provide multi-omics analyses that better elucidate the functional
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FIGURE 9

Spatial transcriptomics deconvolution analysis. (A) Heatmap of count values on spatial transcriptomic slices. (B) UMAP of dimensionality-reduced
clustering results. (C) Plot of reduced dimensional clustering on spatial transcriptomic slices. (D) Bubble plot showing expression of key iron
metabolism-related genes in spatial transcriptomics data. (E) Bubble plot of metabolic pathway activity scores. (F) Heatmap of glycolysis activity.
(G) Heatmap of oxidative phosphorylation activity. (H) Deconvolution analysis results, including tumor cells, macrophages, fibroblasts, etc. (I) Plot of
the most likely cell type for each spot. (J) Deconvolution analysis incorporating high and low iron metabolism levels, showing primary cell type
results. (K) Deconvolution analysis incorporating high and low iron metabolism levels, showing secondary cell type results.
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FIGURE 10

Expression of key iron metabolism-related genes and prognosis analysis. (A) Violin plot showing differential expression of key iron metabolism-related
genes in TCGA and GEO data. (B) Violin plot of ssGSEA score results. (C) Differential expression of ssGSEA scores in paired samples. (D) Violin plot of
score differences among patients at different clinical stages. (E) Line chart showing changes in scores across different clinical stages. (F) Identification of
malignant, mixed, and normal cells in spatial transcriptomics data. (G) Active landscape of key iron metabolism-related genes in microregions.
(H) Differences in the AUC scores of key iron metabolism-related genes between malignant, mixed malignant, and normal microregions at spatial
transcriptomics resolution. (I) Spearman correlation between the AUC scores of key iron metabolism genes and microenvironment components.
(J-M) Prognostic curves of patients with high and low iron metabolism scores. (N) Prognostic curve in ICGC-LIRI data. (O) Prognostic curve in GSE76427
data. (P) GO enrichment analysis of patients with high and low iron metabolism scores.
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FIGURE 11

Clinical subgroup expression and K-M curve of GLRX3. (A) Differential expression of GLRX3 in high/low tumor grades in the TCGA cohort. (B) Differential
expression of GLRX3 in high and low stages in the TCGA cohort. (C) Differential expression of GLRX3 in M1 and M0 stages in the TCGA cohort. (D) Bar chart
of chi-square test showing the number of survival and death samples with different expression levels. The X-axis represents patients with different GLRX3
expression levels, and the Y-axis represents the proportion of deaths (red) and survivors (blue). (E) Kaplan-Meier survival analysis of OS. (F) Kaplan-Meier
survival analysis of OS dividing patients into four groups (Q1, Q2, Q3, and Q4) based on GLRX3 expression levels. (G) Kaplan-Meier survival analysis of DSS.
(H) Kaplan-Meier survival analysis of DSS dividing patients into four groups (Q1, Q2, Q3, and Q4) based on GLRX3 expression levels. (I) Meta-analysis of
survival risk ratios. (J) GO enrichment analysis of high and low expression groups. (K) Each dot represents a microregion (spot) from spatial transcriptomics
sequencing. The darker the color (red), the higher the expression level of the gene in the spot. (L) Correlation between cell content and GLRX3 expression
levels in all spots, and correlation between cell content and GLRX3 gene expression.
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role of GLRX3. Third, due to technical and funding constraints,

while we investigated the impact of GLRX3 on liver cancer

prognosis, we did not conduct a comprehensive analysis of other

key iron metabolism genes. Future research should broaden the

scope of iron metabolism studies in liver cancer (4). Despite these

limitations, our understanding of many processes remains

incomplete, but growing recognition of the importance of iron

metabolism in cancer biology offers new opportunities to uncover

the mechanisms driving tumorigenesis. This, in turn, could lead to
Frontiers in Immunology 19
the development of more effective iron-targeted therapies for

liver cancer.
5 Conclusion

This study revealed that iron metabolism plays a critical role in

the progression of liver cancer, focusing on the role of GLRX3

(Glutaredoxin 3) in modulating iron homeostasis and driving
FIGURE 12

In vitro experiments to validate the role of GLRX3 in hepatocellular carcinoma. (A, B) PCR assay to detect GLRX3 knockdown efficiency. (C, D) CCK8
assay to detect cell viability. (E) transwell assay. (F) Wound healing assay. (G) IHC assay. (H) CTPAC database to verify GLRX3 expression. **
represents a p-value < 0.01, *** represents a p-value < 0.001, **** represents a p-value < 0.0001.
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tumor progression. The study showed that disruptions in iron

metabolism lead to abnormal iron accumulation or deficiency

within liver cancer cells, inducing oxidative damage and ferroptosis.

GLRX3, a key regulatory protein for iron-sulfur clusters, is

abnormally overexpressed in liver cancer patients, and its

overexpression facilitates iron-sulfur cluster assembly and transport,

thereby disrupting metabolic balance and promoting tumor cell

growth and metastasis. Survival analysis and experimental

validation demonstrated that high GLRX3 expression correlates

with poor patient prognosis, highlighting its potential as a

prognostic biomarker and an indicator for assessing immune

therapy response.
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