
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Xuefeng Wang,
Soochow University, China

REVIEWED BY

Hamid Ahmadi,
University of Pécs, Hungary
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Postmenopausal osteoporosis (PMOP) is a metabolic bone disease driven by

estrogen deficiency, primarily manifesting as reduced bonemass and heightened

fracture risk. Its development is intricately linked to the balance between Th17

and Treg cells. Recent studies have highlighted the significant role of gut

homeostasis in PMOP. The gut microbiota profoundly impacts bone health by

modulating the host’s immune system, metabolic pathways, and endocrine

functions. In particular, the regulation of Th17 and Treg cell balance by gut

homeostasis plays a pivotal role in the onset and progression of PMOP. Th17 cells

secrete pro-inflammatory cytokines that stimulate osteoclast activity,

accelerating bone resorption, while Treg cells counteract this process through

anti-inflammatory mechanisms, preserving bone mass. The gut microbiota and

its metabolites can influence Th17/Treg equilibrium, thereby modulating bone

metabolism. Furthermore, the integrity of the gut barrier is critical for systemic

immune stability, and its disruption can lead to immune dysregulation and

metabolic imbalances. Thus, targeting gut homeostasis to restore Th17/Treg

balance offers a novel therapeutic avenue for the prevention and treatment

of PMOP.
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1 Introduction

PMOP is a metabolic bone disease primarily characterized by bone loss driven by

estrogen deficiency. It progresses silently in postmenopausal women and is typically

diagnosed only after the occurrence of fragility fractures (1). In China, approximately

20.6% of women over 40 years old are affected by osteoporosis (2). Gut homeostasis, a

crucial regulator of bone metabolism, is strongly associated with the onset and progression

of PMOP and has emerged as a key area of research (3). Gut homeostasis involves the

stability of the gut microbiota, its metabolic functions, and the integrity of the gut’s physical

and immune barriers (4). The gut microbiota, a vast and complex microbial community
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residing in the gastrointestinal tract, plays a pivotal role in bone

metabolism and health by interacting with the host’s immune,

metabolic, and endocrine systems (5).

The gut barrier consists of multiple layers (6): the outer layer,

comprising mucus, symbiotic microbes, antimicrobial proteins, and

secretory immunoglobulin A; the middle layer, formed by intestinal

epithelial cells; and the innermost layer, which includes innate and

adaptive immune cells (7). The gut mucosal immune system

executes diverse immune defense functions through immune cells

located at induction and effector sites (8). Within the gut, immune

cells such as dendritic cells, macrophages, and T cells recognize and

respond to microbiota and their metabolites, thereby regulating

both local and systemic immune responses (9). Disruption of the

gut barrier can result in epithelial cell apoptosis, promoting a pro-

inflammatory environment that drives the differentiation of helper

T cells 17 (Th17) and regulatory T cells (Treg) (10). Alterations in

the gut microbiota are closely associated with changes in bone mass,

particularly through their role in bone immunology and the gut-

bone axis (11, 12). Previous studies have investigated the role of the

gut microbiota in PMOP (13). Thus, elucidating the mechanisms by

which gut homeostasis regulates the Th17/Treg balance could

provide valuable insights into the pathogenesis of PMOP and

inform the development of novel therapeutic strategies.
2 Pathological pathways of PMOP

PMOP is primarily caused by estrogen deficiency, which leads

to decreased bone mass, deterioration of microarchitecture, and

impaired bone metabolism. A hallmark pathological feature of

PMOP is the imbalance between bone resorption and formation,

with accelerated resorption outpacing bone formation (14). Recent

advances in osteoimmunology have revealed that estrogen

deficiency induces a chronic low-grade inflammatory state,

significantly contributing to disease progression. This

inflammatory response is mediated through various immune

pathways, driving the pathological mechanisms underlying

PMOP. System is shown in Figure 1.
2.1 Immune cells and the development
of PMOP

B cells contribute to humoral immunity through antibody

production and regulate bone metabolism. Studies have

highlighted their osteoclastogenic potential, particularly under

erythropoietin stimulation, where bone marrow B cells express

receptor activator of nuclear factor kappa-Β ligand (RANKL),
Abbreviations: PMOP, Postmenopausal osteoporosis; Treg, Regulatory T cells;

Th17, Helper T cells 17; SCFAs, Short-chain fatty acids; IL-10, Interleukin-10;

LPS, Lipopolysaccharide; SFB, Segmented filamentous bacteria; RANKL,

Receptor Activator of Nuclear Factor Kappa-Β Ligand; TNF-a, tumor necrosis

factor-a; TGF-b, transforming growth factor-b; BMD, bone mineral density ;

FMT, Fecal microbiota transplantation; IL-6, Interleukin-6; IL-17, Interleukin-17.
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modulating bone metabolism via the RANKL/osteoprotegerin

axis. High erythropoietin concentrations induce B cell

differentiation into osteoclasts, resulting in bone loss (15).

Additionally, estrogen downregulates hypoxia-inducible factor-1a
expression by upregulating heat shock protein 70 production. In

ovariectomized mice, elevated hypoxia-inducible factor-1a levels

activate downstream pathways, upregulating RANKL gene

expression in B cells and promoting osteoclastogenesis, thus

accelerating PMOP progression (16).

T cells, originating from bone marrow lymphoid stem cells,

mature in the thymus before circulating through systemic immune

organs and tissues. Under normal conditions, T cells maintain bone

homeostasis via multiple mechanisms. Estrogen presence facilitates

T cell-derived CD40 ligand interactions with B cell surface CD40,

enhancing osteoprotegerin mRNA expression and protecting bone

(17). However, in PMOP, this protective mechanism is disrupted.

Following ovariectomy, activated CD4+ and CD8+ T cells increase

Dickkopf-1 production, inhibiting osteoblast Wnt signaling via

paracrine effects (18). Simultaneously, these T cells secrete tumor

necrosis factor-a (TNF-a) and RANKL, accelerating bone

resorption (19). PMOP patients also exhibit elevated LIGHT

expression in circulating monocytes and T cells, which enhances

os teoc las togenes i s by modula t ing TNF and RANKL

expression (20).

Treg cells and Th17 cells, key subsets of T cells, exhibit

differentiation plasticity but serve opposing functions. Treg cells

suppress osteoclast differentiation by inhibiting IL-17 expression,

whereas Th17 cells promote osteoclastogenesis via RANKL

signaling (21). Maintaining the balance between these populations

is critical for preserving normal bone mass (22). Emerging research

demonstrates that gut microbiota significantly influences Treg and

Th17 cell functions. For example, Bifidobacterium longum

modulates Breg cell expression, establishing a Breg-Treg-Th17

axis that enhances Treg cell function and suppresses Th17

activity. This modulation reduces pro-inflammatory cytokines,

such asInterleukin-6 (IL-6), Interleukin-17 (IL-17), and TNF-a,
while increasing anti-inflammatory factors, including Interleukin-

10 (IL-10) and IFN-g, thereby protecting bone and alleviating

PMOP symptoms (23).
2.2 The estrogen-Th17/Treg cell-
PMOP axis

Chronic inflammation-induced bone metabolic dysregulation is

a fundamental pathological feature of PMOP, with the Th17/Treg

cell balance and associated cytokine networks orchestrating bone

remodeling. Treg cells inhibit bone resorption through two

mechanisms: secretion of anti-resorptive factors such as IL-10

and transforming growth factor-b (TGF-b), and interaction of

their surface cytotoxic T-lymphocyte-associated protein 4 with

CD80/CD86 on osteoclast precursors, which activates

indoleamine-2,3-dioxygenase. This activation triggers tryptophan

catabolism, inducing precursor cell apoptosis (24). Conversely,

Th17 cells enhance osteoclastogenesis by expressing RANKL and

secreting IL-17, which stimulates macrophages to produce pro-
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inflammatory mediators, including TNF-a and IL-6, further

upregulating RANKL expression in osteoclast-supporting cells (22).

Estrogen deficiency disrupts the Th17/Treg balance. In

estrogen-depleted conditions, heightened Th17 cell activity

increases IL-17 production, promoting bone marrow

mesenchymal stem cel l prol i ferat ion and osteogenic

differentiation while inducing macrophage colony-stimulating

f ac to r and RANKL sec r e t ion , the r eby acce l e r a t ing

osteoclastogenesis (22, 25). Clinical studies report significantly

elevated IL-17 levels in postmenopausal osteoporotic vertebral

compression fracture patients (26). Additionally, Interleukin-23

exacerbates bone loss through two mechanisms: enhancing Th17

cell activity and inducing T cell RANKL expression. Targeting these

pathways offers therapeutic potential, as anti-IL-17 antibodies

promote bone regeneration via forkhead box o1 and activating

transcription factor 4 activation (27), while anti-Interleukin-23

antibodies prevent estrogen deficiency-induced bone loss (28).

Recent studies show that B10 cell adoptive transfer reduces Th17

cell populations and inhibits alveolar bone osteoporosis in

ovariectomized mice (29). At the molecular level, estrogen

stimulates Treg cells to produce IL-10 and TGF-b1, suppressing
osteoclast differentiation and bone resorption. TGF-b, a key bone

repair regulator, balances osteoblast differentiation and osteoclast
Frontiers in Immunology 03
formation (30). Molecular studies reveal that TGF-b1 enhances

osteoblast survival, differentiation, and migration by activating the

phosphatidylinositol 3-kinase/protein kinase B/mechanistic target

of rapamycin/ribosomal protein S6 kinase beta-1 signaling pathway

(31). These findings suggest that targeting Treg cell activity may

provide effective therapeutic strategies for bone protection in

inflammatory conditions.
3 Intestinal homeostasis affects the
development of PMOP

PMOP is the most common form of primary osteoporosis and

is characterized by its complex pathogenesis. Recent research has

underscored the critical role of the gut microbiota in the

development and progression of this condition. PMOP is

associated with significant alterations in gut microbiota

composition, including an inverse relationship between the

abundance of proteobacteria and bone mass. Additionally, the

relative abundances of bacteroides, parabacteroides, and

lactobacillus are significantly increased. These microbial changes

are thought to aggravate bone loss by influencing bone metabolism

and promoting inflammatory responses, thus accelerating disease
FIGURE 1

Immunopathological Mechanism of PMOP. B cells differentiate into osteoclasts, leading to bone loss. In the estrogen-deficient state, hypoxia-
inducible factor-1a signaling is activated in B cells, enhancing RANKL expression and promoting osteoclastogenesis, thereby inducing PMOP. T cells
normally exhibit bone-protective functions in basal bone metabolism. However, following ovariectomy, CD4+ and CD8+ T cells become activated
and secrete RANKL and other osteoclastic factors. Treg cells secrete IL-10, TGF-b, and other anti-resorptive cytokines, whereas Th17 cells produce
IL-17, which stimulates osteoclastogenesis. Additionally, IL-17 triggers mesenchymal stem cells to release osteoclast differentiation factors. Thus,
estrogen modulates bone metabolism by regulating the balance between Th17 and Treg cells.
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progression.The gut microbiota is a critical regulator of immune

system homeostasis, modulating immune cell activity and cytokine

networks (32–35). Accumulating evidence indicates that gut

microbiota dysbiosis significantly contributes to the pathogenesis

of PMOP, primarily by disrupting the Th17/Treg cell balance. This

immunological equilibrium is precisely governed by the gut

microbiota and its metabolic products (36, 37).

The gut microbiota influences PMOP through two distinct

immunological mechanisms. In adaptive immunity, specific

bacterial populations exhibit unique immunomodulatory

functions. For instance, segmented filamentous bacteria (SFB)

promote intestinal Th17 cell development through defined

pathways, with SFB-mediated Th17 responses enhancing barrier

integrity by inhibiting bacterial translocation in constitutively

myosin light chain kinase-activated mouse models (38). Notably,

intestinal Th17 cells display significant functional heterogeneity:

SFB-induced Th17 cells maintain gut homeostasis, while

citrobacter-induced Th17 cells exhibit pro-inflammatory

characteristics (39). Additionally, clostridium species produce

immunomodulatory metabolites that stimulate Treg cell

development, thereby establishing immune tolerance (40–42).

In innate immunity, gut-associated lymphoid tissue-resident

cells serve as the primary defense against exogenous antigens.

Disruption of gut microecological homeostasis abnormally
Frontiers in Immunology 04
activates innate immune cells, increasing pro-inflammatory

mediators such as IL-12, Interleukin-23, and type I interferons

and reducing anti-inflammatory factors such as TGF-b and IL-10

(36). This dysregulation enhances antigen presentation to CD4+ T

cells by dendritic cells and macrophages, promoting differentiation

into inflammatory T cell subsets (43). Under specific

microenvironmental conditions, CD4+ T cells can alternatively

differentiate into immunosuppressive Treg cells, forming complex

regulatory networks (44, 45). System is shown in Figure 2.

The gut microbiota also regulates bone metabolism through

endocrine signaling pathways. Intestinal epithelial cells activate

mitogen-activated protein kinase signaling via estrogen receptors

(46), triggering nitric oxide/cyclic guanosine monophosphate

cascades that enhance osteoblast different iat ion and

osteoprotegerin secretion while inhibiting osteoclastogenesis (47).

Furthermore, clostridium species maintain estrogen homeostasis

through b-glucuronidase-mediated enterohepatic circulation (48),

directly linking estrogen levels to microbiota composition. During

PMOP progression, the gut microbiota modulates disease

development by influencing estrogen deficiency-induced

inflammation. Decreased estrogen levels impair intestinal barrier

integrity, enhancing Th17 cell differentiation. These activated Th17

cells produce pro-inflammatory mediators such as TNF-a, RANKL,
and IL-17, creating a positive feedback loop that promotes
FIGURE 2

Gut Homeostasis and Immune Regulation. Gut homeostasis plays a pivotal role in maintaining immune equilibrium. Disruption of the gut microbiota
and damage to the intestinal barrier can lead to immune dysregulation, characterized by the abnormal activation of innate immune cells, including
dendritic cells and macrophages. This activation induces the production of elevated levels of pro-inflammatory cytokines, such as IL-12, IL-23, and
type I interferons, while anti-inflammatory cytokines, including TGF-b and IL-10, are suppressed. Activated antigen-presenting cells, like dendritic
cells and macrophages, present microbial antigens to CD4+ T helper cells, driving their differentiation into various pro-inflammatory T cell subsets,
including Th1, Th2, and Th17.
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osteoclastogenesis and bone loss (49). These mechanisms highlight

the therapeutic potential of targeting the gut microbiota-immune-

endocrine axis in PMOP treatment.
4 Mechanisms by which gut
homeostasis regulates the Th17/Treg
cell balance and its impact on PMOP

Gut homeostasis is a multi-layered defense system comprising

the gut microbiota, mucus layer, single-layer epithelium, and

immune cells within the lamina propria (50). The mucus layer

and epithelial cells form a physical barrier that prevents bacterial

adhesion (51). The lamina propria and submucosa play critical roles

in immune responses, protecting the host from both commensal

and pathogenic microbial invasion (52). Epithelial cells regulate

trans-epithelial permeability through tight junctions, thereby

maintaining epithelial barrier integrity (53, 54). Disruption of gut

homeostasis in PMOP is primarily mediated by the immune-

modulating effects of microbial metabolites (55, 56). When gut

homeostasis is compromised, pathogenic microbes proliferate, and

excessive production of metabolites such as lipopolysaccharides

(LPS) damages the intestinal barrier. This increases mucosal

permeability and exacerbates both intestinal and systemic
Frontiers in Immunology 05
inflammatory responses. Under these conditions, Th17 cell

activity is elevated while Treg cell function is suppressed, creating

an imbalance that accelerates osteoclast formation and bone

resorption. This process ultimately contributes to bone loss and

PMOP progression. Figure 3 illustrates the impact of gut

homeostasis on the Th17/Treg balance in PMOP.
4.1 The gut microbiota-Th17/Treg-
PMOP axis

In patients with PMOP, an increased abundance of clostridium

species has been observed, with its relative abundance negatively

correlated with bone mineral density (BMD) (57). Research

suggests that clostridium activates the protein kinase B beta

signaling pathway, promoting M1 macrophage production,

thereby triggering inflammation and accelerating osteoporosis

progression (58, 59). In a randomized trial involving

postmenopausal Japanese women, participants treated with the

probiotic Bacillus subtilis showed a significant increase in total

hip BMD compared to the placebo group (60). After 12 and 24

weeks of Bacillus subtilis treatment, the abundance of clostridium

species significantly decreased, potentially improving BMD by

reducing pro-resorptive cytokines (60). Additionally, lactobacillus
FIGURE 3

Gut Homeostasis Regulates Th17/Treg Balance and Influences PMOP. (A) The gut microbiota modulates the balance between Th17 and Treg cells, as
well as cytokine levels, affecting the development and progression of PMOP. (B) Microbial-derived metabolites from the gut regulate multiple
immune cells, causing an imbalance between osteoblasts and osteoclasts, which contributes to PMOP. (C) Intestinal barrier damage increases
permeability and disrupts tight junctions, triggering inflammation and promoting osteoclast differentiation, thereby accelerating the onset and
progression of PMOP.
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reuteri (american type culture collection PTA-6475) has been

shown to reduce bone loss in elderly women with low BMD (61).

Lactobacillus acidophilusmitigates bone loss and enhances bone

heterogeneity in osteoporotic mice by modulating the Treg-Th17

cell balance (62). Similarly, lactobacillus rhamnosus reduces bone

loss and preserves bone health in ovariectomized mice (63).

Probiotics such as Bifidobacterium and clostridium species

promote Treg cell differentiation, thereby inhibiting excessive

bone resorption. Intervention with Bifidobacterium longum

significantly increases Breg cell proportions and the levels of IL-

10 and interferon-gamma while decreasing the production of TNF-

a, IL-6, and IL-17. Clostridium-stimulated Bregs also significantly

enhance Treg cell proportions and IL-10 expression while reducing

Th17 cells and IL-17 levels, indicating a potent regulatory role in

Th17/Treg differentiation. Pathogenic bacteria such as clostridium

and Ruminococcus are associated with Th17 cell activation,

exacerbating osteoclastogenesis and bone resorption (64). Toxins

produced by Bacteroides fragilis activate intestinal Th17 cell

recruitment via the JAK-STAT3 pathway (65–67). Thus,

alterations in gut microbiota composition disrupt the Th17/Treg

balance, affecting bone metabolism and contributing to

osteoporosis progression (68).
4.2 The gut metabolites-Th17/Treg-
PMOP axis

Gut microbiota-derived metabolites play a pivotal role in

regulating immune cell development and function, including both

adaptive and innate immune responses. IL-10, produced by effector T

cells, acts as a key self-regulatory mechanism for maintaining

immune homeostasis (68). Short-chain fatty acids (SCFAs) enhance

IL-10 production in differentiated Th1 cells via a G-protein-coupled

receptor 43-dependent pathway and induce IL-10 during Th1 and

Th17 cell differentiation by inhibiting histone deacetylase activity

(69). SCFAs and other metabolites directly influence osteoblast and

osteoclast differentiation and activation, with butyrate playing a

crucial role in osteoclast metabolism regulation (33). Butyrate-

treated dendritic cells induce the expression of immunosuppressive

enzymes, such as indoleamine 2,3-dioxygenase 1 and aldehyde

dehydrogenase 1 family member A2, in a solute carrier family 5

member 8-dependent manner. This promotes Treg differentiation

while inhibiting Th1 differentiation (70). Microbial tryptophan

metabolites, such as indole and its derivatives, bind to aryl

hydrocarbon receptors, influencing B cell development (71),

differentiation (72), and cytokine regulation (73) via aryl

hydrocarbon receptor signaling. LPS, components of Gram-

negative bacteria, trigger cytokine cascades driving T cell-mediated

inflammation (74). LPS also inhibits osteoblast maturation and

activates osteoclasts, enhancing bone resorption and exacerbating

PMOP progression. Additionally, bile acids and their metabolites

regulate host immune responses by modulating the Th17/Treg cell

balance (75). These metabolites provide mechanistic insights into the

interplay between gut homeostasis and immune regulation.
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4.3 The gut barrier-Th17/Treg-PMOP axis

Disruption of gut barrier function can lead to leakage of intestinal

contents, creating a pro-inflammatory environment (76). In mouse

models, elevated zonulin levels degrade essential tight junction proteins

and increase the expression of claudin-2 and claudin-15,

compromising tight junction integrity and severely impairing gut

barrier function Increased intestinal permeability triggers T cell-

mediated mucosal inflammation and facilitates the migration of

autoreactive T cells, such as Th1 and Th17 cells, from the gut to

other sites like joints, potentially contributing to PMOP onset (77).

Estrogen plays a key role in maintaining intestinal epithelial barrier

function, and its deficiency increases gut permeability (78). This

enhanced permeability triggers inflammatory responses that promote

osteoclast formation, ultimately leading to bone loss (79, 80). Sufficient

estrogen levels activate Tregs, inhibit osteoclastogenesis, and prevent

osteoblast destruction, contributing to the maintenance of bone mass

(79, 81, 82). Tight junctions between intestinal epithelial cells are

essential for preserving gut barrier integrity. Lactobacillus rhamnosus

supports epithelial integrity through carbohydrate transport and

metabolism (83). Specifically, lactobacillus rhamnosus GG regulates

both the gut microbiota and gut barrier, modulating the Th17/Treg

balance and alleviating osteoporosis induced by estrogen deficiency.
5 PMOP treatment strategies based on
gut homeostasis regulation

Current clinical treatments for PMOP, including calcium

supplements, calcitonin, bisphosphonates, and estrogen, often

have limited efficacy and are associated with significant side

effects. Consequently, there is a pressing need for safe, effective,

and low-risk therapeutic options for PMOP patients. In recent

years, increasing research into the relationship between gut

microbiota and bone metabolism has highlighted the potential of

strategies targeting gut homeostasis for preventing and treating

PMOP. The interaction between gut microbiota and bone

metabolism offers a novel approach to osteoporosis management.

By modulating the host’s immune, metabolic, and endocrine

systems, the gut microbiota can directly or indirectly regulate

bone homeostasis, presenting new possibilities for the

comprehensive treatment of PMOP.
5.1 Gut microbiota modulators

Probiotics have demonstrated potential to enhance the growth

and metabolic activity of beneficial bacteria, offering significant

benefits for bone health (16). They produce metabolites and genetic

products that directly interact with epithelial and immune cells,

improving gut function, reducing inflammation, lowering intestinal

pH to promote calcium absorption, and preventing the colonization

of harmful bacteria. Collectively, these effects support osteoblast

activity and contribute to the maintenance of bone health (84, 85).
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Probiotic supplementation has been shown to increase bone density

and promote fracture healing. Animal studies have further

demonstrated that probiotics enhance bone mass by inhibiting

CD4+ T cell proliferation in the bone marrow and reducing the

expression of pro-inflammatory cytokines such as TNF-a (11, 86).

Additionally, the gut microbiota regulates immune balance and

microbial stability through tryptophan and its metabolites,

including indole and serotonin (87). Exogenous supplementation

of tryptophan metabolites, such as indole acetic acid and indole-3-

propionic acid, effectively restores intestinal barrier integrity in

ovariectomy -induced PMOP mouse models and alleviates

osteoporosis. This process critically depends on the activation of

the aryl hydrocarbon receptor. Mechanistically, tryptophan

metabolites, particularly indole acetic acid, activate intestinal

AhR, which, in turn, stimulates the Wnt/b-catenin signaling

pathway to restore intestinal barrier function. indole acetic acid

and indole-3-propionic acid supplementation also enhances M2

macrophage secretion of IL-10, which diffuses from the intestinal

lamina propria to the bone marrow, promoting osteogenesis while

suppressing osteoclast formation. Notably, the therapeutic effects of

tryptophan metabolites on intestinal homeostasis and osteoporosis

symptoms are significantly reduced in ovariectomy mice lacking

intestinal AhR. These findings highlight gut microbial tryptophan

metabolites as promising therapeutic candidates for osteoporosis by

modulating the AhR-mediated gut-bone axis.

By modulating the immune system, the gut microbiota influences

bone metabolism, potentially affecting bone density and turnover. This

highlights the gut microbiota as a novel therapeutic target for

osteoporosis treatment and fracture prevention (5). For example,

Lactobacillus casei modulates gut microbiota composition, reduces

pro-inflammatory cytokines such as IL-17, interleukin-1b, IL-6, and
TNF-a, and adjusts the Th1/Th17 ratio, thereby inhibiting the onset

and progression of PMOP (88). Another byproduct of colonic

microbial fermentation, hydrogen gas, is produced in significant

amounts by certain strains of clostridium and may have potential

effects on gut and bone health (89–91).
5.2 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) has been shown to

reshape gut microbiota and mitigate bone loss in ovariectomy-

induced osteoporotic mice. The mechanisms underlying these

effects include correcting gut microbiota dysbiosis, elevating SCFAs

levels, improving gut permeability, and inhibiting the release of pro-

osteoclastogenic factors, collectively suppressing excessive osteoclast

formation (92). The circulatory system serves as a bridge connecting

osteoclastogenic factors, transgenic cells, SCFAs, and the skeletal

system. FMT effectively prevents ovariectomy-induced bone loss by

limiting osteoclast overactivity (93). Compared to ovariectomized

controls, FMT-treated mice exhibited increased expression of tight

junction proteins such as occludin and reduced secretion of pro-

osteoclastogenic factors, including TNF-a and interleukin-1b (94).

Furthermore, FMT optimized gut microbiota composition and

abundance, while increasing fecal SCFAs levels, particularly acetate

and propionate (95). Consequently, FMT represents a promising
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alternative therapy and a potential strategy for preventing and

treating PMOP in the future.
5.3 Maintaining gut barrier integrity

The integrity of the gut barrier is essential for the prevention and

treatment of PMOP. An intact mucosal barrier prevents harmful

substances, such as bacterial LPS, from entering systemic circulation

(94). This, in turn, suppresses activation of the toll-like receptor 4

receptor signaling pathway in macrophages, thereby reducing the

release of pro-inflammatory cytokines like TNF-a and inhibiting

osteoclast differentiation and activation, which would otherwise

accelerate bone resorption (96, 97). Additionally, a healthy gut

microbiota produces beneficial metabolites, including SCFAs, that

regulate bone metabolism. SCFAs inhibit osteoclast activity by

downregulating key molecules such as TNF receptor-associated

factor 6 and nuclear factor of activated T-cells 1, while

simultaneously promoting bone formation by upregulating osteoblast

differentiation-related genes (61, 98). Butyrate, a major SCFAs,

promotes the differentiation of bone-protective Tregs, which, in turn,

induce CD8+ T cells to release Wnt10b, activating the Wnt signaling

pathway in osteoblasts (99, 100). Lucas et al. demonstrated that SCFAs

supplementation or a high-fiber diet can prevent menopause and

inflammation-induced bone loss, significantly increasing bone mass

(70). Vegetarians and individuals adhering to amediterranean diet tend

to have higher SCFA levels, which are associated with improved bone

health (101). Dietary supplementation with oligosaccharides enhances

SCFA production, contributing to increased BMD (102). In antibiotic-

treated mice, SCFA supplementation reduced bone loss without

affecting bone turnover rates (103). Thus, maintaining gut barrier

integrity and regulating gut microbial metabolites are critical for

inhibiting bone resorption and promoting bone formation effectively.
6 Conclusion

PMOP is a complex metabolic bone disorder characterized by

estrogen deficiency, which leads to bone loss and structural

deterioration through disruptions in the immune-endocrine network.

Recent research highlights the central role of intestinal homeostasis in

PMOP development by regulating immune and endocrine systems.

Dysregulation of the gut microbiota-Th17/Treg-bone metabolism axis

has emerged as a key pathogenic mechanism. Disrupted microbial

balance alters Th17/Treg homeostasis, stimulates osteoclast formation,

and increases bone resorption, ultimately compromising bone integrity.

Microbial metabolites influence bone cell function through immune

activation and Th17/Treg modulation, driving disease progression.

Impaired gut barrier function further initiates inflammation,

accelerating bone loss.

These findings suggest that therapeutic strategies targeting gut

microbiota and barrier function could regulate metabolic and immune

systems, offering new opportunities for PMOP treatment. However, the

specific mechanisms through which microbial species or metabolites

regulate signaling pathways and immune responses in PMOP remain

poorly understood, and their clinical potential requires further
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validation. Future research should prioritize clinical studies exploring

the efficacy and mechanisms of gut microbiota regulation in PMOP

prevention and treatment. Investigating the roles of specific probiotics

or metabolites, developing novel gut microbiota-targeted therapies, and

combining traditional pharmacological treatments with lifestyle

interventions could provide innovative approaches for the

comprehensive management of PMOP. As the field of

osteomicrobiology advances, future studies should also examine the

interactions between gut microbiota and drug metabolism in PMOP

patients, as well as the potential of gut homeostasis regulation in PMOP

therapy. These efforts could lead to novel therapeutic strategies and

targets, better addressing patient needs, improving treatment

outcomes, and enhancing quality of life.
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