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Soluble CD52 mediates
immune suppression by
human seminal fluid
Leonard C. Harrison1,2*, Natalie L. Stone1,2,
Esther Bandala-Sanchez1,2, Nicholas D. Huntington1,2,
Robert I. McLachlan3, Jai Rautela1,2 and Moira K. O’Bryan4

1Population Heath and Immunity Division, Walter and Eliza Hall Institute of Medical Research,
Parkville, VIC, Australia, 2The University of Melbourne, Department of Medical Biology, Parkville,
VIC, Australia, 3Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia,
4School of Biosciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science,
The University of Melbourne, Melbourne, VIC, Australia
Seminal fluid provides for the carriage and nutrition of sperm, but also modulates

immunity to prevent allo-rejection of sperm by the female. Immune suppression

by seminal fluid has been associated with extracellular vesicles, originally termed

prostasomes, which contain CD52, a glycosylated glycophosphoinositol-

anchored peptide released from testicular epithelial cells. Previously, we

reported that human T cell-derived CD52, bound to the danger-associated

molecular pattern protein, high mobility group box 1 (HMGB1), suppresses T

cell function via the inhibitory sialic acid-binding immunoglobulin-like lectin-10

(Siglec-10) receptor. Here we show that human seminal fluid contains high

concentrations of CD52 complexed with HMGB1, which mediates T cell

suppression indirectly via Siglec-7 on antigen-presenting cells. Proliferation of

natural killer (NK) cells, which express Siglec-7 and play a key role in the immune

defence of the uterus, was directly suppressed by seminal fluid CD52. These

findings elucidate a critical function of seminal fluid to suppress cellular immunity

and facilitate reproduction.
KEYWORDS
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Introduction

Since the first reports of suppression of lymphocyte activation (1, 2), immune

modulation by seminal fluid has been ascribed to prostaglandins, spermine, complement

inhibitors, soluble Fc receptors and transforming growth factor (TGF)-b, and associated

with membrane-bound extracellular vesicles (EVs) originally termed prostasomes

(reviewed in 3, 4). Initially, inhibition of lymphocyte activation and NK cell function

was attributed to prostaglandins of the E series (PGEs) present in high concentration in

seminal fluid (5–7). Seminal fluid was then shown to contain TGF b (8), which elicited
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protective immune responses in the female and, in concert with

PGEs, deviated T-cell differentiation towards Th2 (IL-4-secreting)

or Th3 (IL-10-secreting) T cells (9). In addition, inhibition of

lymphocyte function was also shown to be associated with

prostasomes, but the molecular mediator was not identified (10).

Prostasomes contain several glycophosphatidylinositol (GPI)-

linked membrane proteins, including CD52 and the complement

inhibitor CD59 (11).

CD52 is a small glycoprotein attached by a GPI anchor to the

surface of lymphoid cells, originally identified as the target of the

lymphocyte-depleting rat monoclonal antibody Campath (12, 13).

CD52 is also found in the male reproductive tract, where it is

released by epithelial cells of the epididymis into the seminal fluid

and becomes incorporated into the sperm cell membrane (14) and

prostasomes (11). Prostasomes are a heterogenous population of

EVs, reflecting different cells of origin. Those derived from the

epididymal epithelium, and containing CD52 (11), have been

referred to as epididymosomes (15). The structure of the N-

linked sialoglycan of CD52 on sperm is similar, but not identical,

to that on T cells (16–18). CD52 on sperm was shown to be the

target of sperm-immobilizing antibodies in the serum of a minority

of infertile women (19).

We reported that soluble CD52 is released from activated

human CD4+ T cells and suppresses T cells by binding to the

inhibitory receptor, sialic acid-binding immunoglobulin-type lectin

(Siglec)-10 (20), expression of which is increased upon T cell

activation (21). Furthermore, we found that to bind Siglec-10

soluble CD52 had to first complex with the pro-inflammatory

Box B domain of high-mobility group box 1 (HMGB1) (22), a

damage-associated molecular pattern (DAMP) protein present in

serum (23). Of interest, an early study (6) found that the effect of

human seminal fluid to suppress T cell activation required the

presence of serum in the culture medium. Soluble lymphoid CD52

also suppressed NF-kB-mediated signalling by innate immune cells

(monocytes, macrophages, dendritic cells), which required HMGB1

but did not appear to be mediated by Siglec-10 (24). In the present

study, we show that soluble CD52 bound to HMGB1 largely

accounts for the capacity of human seminal fluid to suppress the

activation and proliferation of T and NK cells.
Materials and methods

Samples

Coded, anonymous donor semen samples were provided in

several batches by Monash IVF, Melbourne, under approval by

Monash Health Human Research Ethics Committee (#15172 M).

Samples chosen at random were centrifuged at 10,000 x g for 10 min

to pellet sperm cells. Seminal fluid supernatants were inspected

microscopically to ensure the absence of cells, and stored at -80°C.

Heparinised blood samples were obtained with informed consent

from healthy adult donors in the Walter and Eliza Hall Institute
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(WEHI) Volunteer Blood Donor Registry and studies were

approved by the WEHI Human Research Ethics Committee.
Antibodies and other reagents

Mouse monoclonal antibody (mAb) to human CD52 (clone

CF1D12) and its IgG3 isotype control (against a Plasmodium

falciparum antigen), and Protein G-Sepharose, were supplied by

the WEHI Monoclonal Antibody Facility; rat mAb to CD3 (clone

OKT3) and mouse mAbs to CD28 (clone 28.2), human CD4 (clone

RPA-T4) and human CD52 (IgM, cat# 338202) were from

Biolegend (San Diego, CA); mouse mAbs to human Siglec-7

(clone QA79), human Siglec-9 (clone K8) and human Siglec-10

(clone 5G6), unconjugated and phycoerythrin (PE)-conjugated, and

to CD56 (clone MEM-188) fluorescein isothiocyanate-conjugated,

were from Thermo-Fisher (Scoresby, VIC, Australia); goat affinity-

purified polyclonal antibodies to human Siglec-7 and Siglec-10 were

from R&D Systems (Minneapolis, MN). Alemtuzumab, the

humanized form of Campath-1 rat mAb to human CD52, which

binds to the junction of the CD52 peptide and its GPI anchor in

lymphoid CD52 (12), was from Bayer Healthcare (Pymble,

Australia); rabbit polyclonal HRP-labelled antibody to HMGB1

(ab128129) was from Abcam (Cambridge, UK); mouse mAb to

human IFN-g (clone 1-D1K) was from Mabtech (Nacka Strand,

Sweden); Mini-Leak Medium matrix, divinyl sulfone-activated

agarose, was from Kem-En-Tec (Copenhagen, Denmark). Anti-

CD3/CD28 Dynabeads were from ThermoFisher. Other reagents

included: enhanced chemiluminescence (ECL) kit (GE

Healthcare, Rydalmere, NSW, Australia), anti-human CD3-FITC,

anti-human CD4-biotin, anti-FITC, anti-biotin microbeads and LS

columns (Miltenyi Biotec, North Ryde, NSW, Australia),

FlowCheck beads (Beckman Coulter, Gladesville, NSW,

Australia), carboxyfluorescein diacetate succinimidyl ester

(CFSE), bovine serum albumin (A7906) (BSA), 3,3’,5,5’-

tetramethylbenzidine (TMB) and horse radish peroxidase (HRP)

substrate solution (T2885) (Sigma-Aldrich, Sydney, NSW,

Australia), 3H-thymidine (ICN, Sydney, NSW, Australia), and

tetanus toxoid (tetanus) (generously provided by CSL, Parkville,

VIC, Australia). Recombinant CD52-Fc fusion protein was

produced in Expi293 cells and purified as previously described (20).
CD52 ELISA

Mouse IgM anti-human CD52 capture antibody at 5 mg/ml in

phosphate-buffered saline (PBS) was added (50 ml) to wells of a Nunc

Maxisorp plate (ThermoFisher) and incubated overnight at 4°C. Wells

were washed x3 with PBS-0.05% Tween-20 (PBST), then x3 with PBS.

Blocking solution, 5% BSA in PBS, was added (150 ml/well) for 1 h at

room temperature (RT), and wells washed again. Dilutions of seminal

fluid (in 50 ml) were added in triplicate wells and incubated at RT for 3

h; blanks were blocking solution only. Wells were washed again before
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1497889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Harrison et al. 10.3389/fimmu.2024.1497889
addition of horse radish peroxidase (HRP)-labelled alemtuzumab anti-

CD52 antibody (2.8 mg/ml) in 5% BSA-PBS (100 ml/well). After 1.5 h at
RT, wells were washed, before addition of chromogenic TMB substrate

solution (100 ml/well). Colour development was terminated by addition

of 0.5M H2SO4 (50 ml/well), and absorbance read at 450nm in a

Thermo Labsystems Multiskan Ascent spectrophotometer.
Immunodepletion of CD52

Protein G-Sepharose (100 mg) in 35 ml PBS was mixed with 1

mg anti-CD52 Ab (alemtuzumab) or 1 mg control IgG each in 35 ml
PBS on a rotator for 2 h at RT. After centrifugation, the pellets were

washed x3 in PBS and resuspended in 200 ml PBS. 20 ml seminal

fluid diluted 1:2 in PBS was added to each, before rotation for 2 h at

4°C. After centrifugation, the supernatant was saved and the pellet

boiled in SDS sample buffer and retained for immunoblotting.

Alternatively, alemtuzumab (3 mg) or control human

immunoglobulin was covalently coupled to Mini-Leak agarose

beads (1ml) overnight at RT, blocked and washed, according to

the manufacturer’s instructions. The beads were incubated with 160

ml seminal fluid + 640 ml PBS by gentle rotation overnight at 4°C.

After centrifugation, the supernatant was collected, analysed by

Western blotting and tested in cell assays.
Immunoblotting

Proteins were fractionated in a 4-20% NuPAGE gel

(ThermoFisher) and blotted onto PVDF membranes. Membranes

were washed in Tris-buffered saline with 0.1% Tween 20 detergent

(TBST) then blocked in TBST-5% skim milk powder for 1 h at RT,

before incubation for 1 h at RT with horseradish peroxidase (HRP)-

labelled alemtuzumab (1.5 mg/ml) diluted in blocking buffer. After

washing in TBST, proteins were detected by ECL chemiluminescence.
Ultracentrifugation

Semen was initially centrifuged at 10,000 x g for 10 min to

remove sperm cells. The seminal fluid supernatant was then

ultracentrifuged for 1 h at 100,000 x g to deplete extracellular

vesicular prostasomes (10, 11). The pellet containing prostasomes

was reconstituted to the original volume and together with the

soluble supernatant tested for suppression of tetanus-stimulated

IFN-g production.
Cells

Peripheral blood mononuclear cells (PBMCs) were isolated from

heparinised blood on Ficoll/Hypaque (Amersham Pharmacia,

Uppsala), washed in phosphate buffered saline (PBS) and

resuspended in Iscove’s modified Dulbecco’s medium (Gibco,
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Melbourne, Australia) containing 5% pooled, heat-inactivated human

AB serum, 100 mM non-essential amino acids, 2 mM glutamine and 5

x 10-5 M 2-mercaptoethanol (IP5 medium). The Raji (human Burkitt

B-cell lymphoma) and Jurkat (CD4+ human T-cell leukaemia) cell lines

were obtained from the WEHI Monoclonal Antibody Facility. CD4+ T

cells were purified from PBMCs by negative immunomagnetic

selection with a Dynabeads™ Untouched Human CD4 T Cell Kit

(ThermoFisher). Following purification, flow cytometry demonstrated

that CD4+ T cells were >96% pure. Untouched NK cells were purified

from freshly prepared PBMCs by immunomagnetic negative selection

(Miltenyi Biotec) and suspended in NK MACS medium (Miltenyi

Biotec) containing 5% pooled, heat-inactivated human AB serum.
Dye dilution T-cell division assay

PBMCs from healthy donors were labelled with the cell

division-tracking dye CFSE (0.1 mM) and cultured in IP5 medium

at 2x105 in 200 ml/well of round-bottom 96-well plates for 7 days, in

triplicate with different dilutions of seminal fluid and other agents

as shown. Viable (propidium iodide negative) CD4+ T cells that had

divided (CFSEdim) were analysed in a FACSAria (BD Biosciences)

and the cell division index (CDI) calculated, based on the number of

CD4+ cells that had divided per 20,000 undivided CD4+ cells (25).
Enzyme-linked immunospot assay

PBMCs (2x105/well) or purified CD4+ T cells 1x104/well) were

incubated in 200 ml IP5 medium in replicates of three in 96-well

ELISpot plates (MultiScreen HTS, Millipore, Bayswater, VIC,

Australia) for 18-24 h at 37°C in 5% CO2 air. Wells had been

conditioned by washing with 35% ethanol before being coated with

anti-human IFN-g mAb (10 mg/ml) in PBS overnight at 4°C.

PBMCs were incubated with tetanus (10 LFU/ml) and PBMCs or

purified CD4+ T cells with anti-CD3/28 Dynabeads (1 bead/cell) +/-

seminal fluid. After 24 h, cells were lysed with water and discarded.

Wells were washed with PBS between sequential incubations with

biotinylated anti-human IFN-g (1mg/ml), streptavidin-alkaline

phosphatase (Mabtech) and 5-bromo-4-chloro-3-indolyl-

phosphate/nitro blue tetrazolium substrate solution (Mabtech).

The colour reaction was stopped by addition of water and IFN-g
spots counted with an AID ELISpot Reader (Autoimmun

Diagnostika Gmbh, Strassberg, Germany).
3H-thymidine uptake assay

Jurkat leukaemia CD4+ T cells or Raji human B-cell lymphoma

cells, grown to ~4x106 cells/ml in RPMI/10% FCS medium, were

incubated with seminal fluid (1/40 dilution) in a total volume of 200

ml, at 37°C in 5% CO2-air, as described in figure legends. 3H

thymidine (37 kBq) was added to wells during the last 16h of

incubation; the cells were then collected on glass fibre filters,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1497889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Harrison et al. 10.3389/fimmu.2024.1497889
washed, dried and counted in scintillant in a beta-counter to

measure proliferation.
Statistics

Except for measurement of T-cell division by CFSE dye

dilution, experiments were performed in replicates of 3 or 6 and

results expressed as mean ± standard deviation (SD). Significance

between groups was determined by unpaired or paired t tests (2-

tail) using GraphPad Prism (GraphPad Software Inc., San

Diego, CA).
Results

Seminal fluid contains high concentrations
of CD52

CD52 was previously identified in seminal fluid by

immunoblotting and flow cytometry (26) but not directly

quantified. By ELISA, we detected CD52 in seminal fluid out to

1:10,000 dilution (Figure 1). Its concentration varied widely but

appeared to be remarkably high overall compared to recombinant

human CD52-Fc dimer as a ‘standard’ (Figure 1, inset). Absolute

quantitation was not possible because the glycosylation and

immunoreactivity of native compared to recombinant CD52 is

unknown; furthermore, the molecular mass of CD52 cannot be

determined accurately because it is predominantly glycan, and its

small peptide does not react with protein staining reagents.

Nevertheless, the mean absorbance ± SD at 1:100 dilution (in the

linear section of the dilution curves) is 1.053 ± 0.626. Read off the

CD52-Fc ‘standard curve’, this equates to an equivalent CD52-Fc

concentration of 420 mg/ml, or 42 mg/ml after correcting for

dilution. However, CD52 comprises only 3% of the CD52-Fc
Frontiers in Immunology 04
construct and when this is taken into account the CD52-Fc

equivalent concentration = 1,260 mg/ml.
Seminal fluid CD52 is bound to HMGB1

The immune suppressive activity of recombinant CD52-Fc

requires its binding to HMGB1 (22). We surmised therefore that

if CD52 contributed to the immune suppressive activity of seminal

fluid then HMGB1 may be present in seminal fluid.

Immunoprecipitation with anti-CD52 antibody, alemtuzumab,

followed by blotting with anti-HMGB1 antibody demonstrated

that HMGB1 is present and bound to CD52 in seminal fluid

(Supplementary Figure 1). Immunoreactive HMGB1 was not

detected after depleting CD52 from seminal fluid, indicating that

CD52 is in relative excess and able to bind all available HMGB1.
Seminal fluid suppresses T-cell
proliferation and function

Multiple individual seminal fluid samples diluted out to 1:200

or more suppressed proliferation of CD4+ T cells in response to

tetanus, determined by dilution of CFSE dye labelled PBMCs

(Figure 2A) and suppression of IFN-g production by PBMCs in

response to tetanus, determined by ELISpot assay (Figure 2B).
CD52 mediates T-cell suppression by
seminal fluid

The contribution of CD52 to T-cell suppression by seminal fluid

was examined by antibody blocking and immunodepletion.

CF1D12 is a mouse monoclonal antibody directed to the

bioactive glycan moiety of lymphoid CD52 (13). In the presence

of CF1D12, suppression by seminal fluid of CD4+ T-cell

proliferation in PBMCs in response to tetanus was abolished

(Figure 3A). In the absence of seminal fluid, CF1D12 alone

increased CD4+ T-cell proliferation in response to tetanus, which

we attribute to blocking by CF1D12 of soluble CD52 released upon

T-cell activation (20). The humanized anti-CD52 antibody,

alemtuzumab, coupled covalently to Mini-Leak agarose beads

depleted almost all CD52 from seminal fluid, as determined by

immunoblotting (Supplementary Figure 2). Suppression by seminal

fluid of proliferation of Jurkat human CD4+ T-cell leukaemia cells

(Figure 3B) or the IFN-g response of PBMCs to tetanus (Figure 3C)

was not observed after depletion of CD52.
Immune suppression is mainly associated
with the soluble seminal
fluid compartment

Previously, suppression of lymphocyte proliferation by seminal

fluid was shown to be associated with prostasomes (10), which were
FIGURE 1

Seminal fluid contains high concentrations of CD52. Individual
seminal fluid samples (n=25) were diluted as shown and assayed for
CD52 by ELISA. Inset: titration of recombinant human CD52-Fc.
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later found to contain CD52 (11). Initially, to clarify seminal fluid we

centrifuged samples at 10,000 x g for 10 min to remove sperm cells,

but this would not have depleted prostasomes (10). To determine the

contribution of prostasomes to immune suppression attributed to

CD52, compared to the soluble compartment of seminal fluid, we

subjected seminal fluid samples to ultracentrifugation, which depletes
Frontiers in Immunology 05
prostasomes (10, 11). The pellet containing prostasomes was

reconstituted to the original volume and together with the soluble

supernatant tested for suppression of tetanus-stimulated IFN-g
production. Compared to the original non-centrifuged seminal

fluid, suppressive activity was present predominantly in the

supernatant (Supplementary Figure 3). This result is like that of
FIGURE 3

Blocking or depletion of CD52 prevents T-cell suppression by seminal fluid. (A) CD4+ T-cell proliferation in PBMCs measured by CFSE dye dilution
(see Figure 2A) in response to tetanus in the presence of seminal fluid and either IgG3 isotype control or CF1D12 (10 mg/ml) anti-CD52 glycan
antibody. (B) Proliferation of Jurkat T cells incubated in triplicate for 48 h in the presence of seminal fluid (final dilution 1:40) ‘depleted’ by either
agarose-bound human control IgG or humanized anti-CD52 antibody, alemtuzumab. 3H-thymidine was added for the last 16 h of incubation, and
the cells then washed and analysed by scintillation counting. Data are mean ± SD. (C) IFN-g ELISpots in PBMCs in response to tetanus (see Methods)
in the presence of seminal fluid (final dilution 1:40) ‘depleted’ by either agarose-bound human control IgG or alemtuzumab anti-CD52 antibody.
Data are mean ± SD. Individual seminal fluid samples are numbered.
FIGURE 2

Seminal fluid suppresses T-cell proliferation and function. (A) Proliferation of CD4+ T cells in response to tetanus in the absence or presence of 26
individual, serially diluted seminal fluid samples. PBMCs were labelled with CFSE dye and incubated for 7 days in the absence or presence of tetanus
toxoid (10 LFU/ml) and seminal fluid samples. After staining for CD4, divided (CFSEdim) CD4+ cells were expressed as the cell division index. (B) IFN-g
ELISpots in PBMCs in response to tetanus in the absence and presence of individual seminal fluid samples. PBMCs were incubated in triplicate in an
ELISpot plate coated with anti-IFN-g antibody, for 18 h at 37°C in 5% CO2 air, in the presence of tetanus (10 LFU/ml) and seminal fluid samples.
CD52-Fc (10 mg/ml) was included as a positive control. Data are mean ± SD.
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Rooney et al. (11), who showed that while some GPI-linked

glycoproteins were associated with prostasomes in seminal fluid the

majority of CD52 was in a soluble, prostasome-free form.
Siglec-7 mediates immune suppression by
seminal fluid CD52

Previously, we reported that lymphoid-derived soluble CD52

complexed with HMGB1 suppressed T-cell function by binding the

inhibitory Siglec-10 receptor on T cells (20, 22). The N-linked

sialoglycan of seminal fluid CD52 is structurally distinct from that

of lymphoid CD52 (15–17) and therefore we sought to identify the

potential Siglec target for seminal fluid CD52. Initially, we screened

several cell lines for expression of multiple Siglecs. While primary

human B cells express Siglecs-2, -5, -6 and -10 (27) we found that

the Raji human B-cell lymphoma line also expressed Siglecs 7 and 9

(Supplementary Figure 4).

In the presence of either CD52-Fc or seminal fluid, proliferation

of Raji cells was almost totally suppressed (Figure 4A). Suppression

by CD52-Fc was prevented by antibody to Siglec-10, whereas

suppression by seminal fluid was prevented by antibody to Siglec-

7, but not by antibody to Siglec-9, which is 84% identical to Siglec-7

(28). Although the Raji cell line identified Siglec-7 as mediating

suppression by seminal fluid CD52, Siglec-7 RNA or protein

expression is insignificant in primary human B cells (27;

proteinatlas.org). Suppression by seminal fluid of the IFN- g
response to tetanus in PBMCs was also prevented by anti-Siglec-

7, but not by anti-Siglec-9 or -10antibody (Figure 4B). This

difference in specificity of Siglec receptors is consistent with

seminal fluid and lymphoid CD52 being structurally distinct.

Suppression by seminal fluid of the Jurkat CD4+ T-cell

leukaemia line (see Figure 3B) can be attributed to its expression

of Siglec-7 (Supplementary Figure 5). However, only a very small
Frontiers in Immunology 06
fraction of primary human T cells, specifically CD8+ T cells, are

known to express Siglec-7 (29). We confirmed that seminal fluid

had no direct effect on purified primary CD4+ T cells stimulated

though the T-cell receptor by plate-bound anti-CD3/28 antibodies

(Figure 5). An explanation is therefore needed for how Siglec-7-

mediates suppression by seminal fluid of tetanus-induced IFN- g
production in PBMCs (see Figure 4B). Siglec-7 is expressed

predominantly by antigen-presenting cells (APCs), namely

monocytes and dendritic cells (DCs) (27), and by NK cells (29).

NK cells have also been reported to act as APCs for T cells (30, 31).

The usual sources of IFN-g after antigen exposure are T cells

activated by APCs and NK cells activated indirectly by APC-

derived IL-12, IL-15 and IL-18 (reviewed in 32). Therefore,

suppression of IFN-g in PBMCs in response to tetanus could be

an indirect effect on T cells or NK cells via APCs or a direct effect on

NK cells. Consistent with a major contribution of NK cells to IFN-g
production, their depletion resulted in an 80% decrease in IFN-g
expression by PBMCs in response to tetanus, without changing the

T-cell response to anti-CD3/28 (Figure 6).

NK cells are the predominant immune cell in the non-pregnant

human endometrium and at the site of implantation of the

embryonic placental trophoblast (33). To confirm that NK cells

are a target of seminal fluid CD52, we incubated freshly isolated

blood NK cells in IL-15 supplemented expansion medium in the

presence of seminal fluid depleted or not of CD52 and quantified

viable NK cells after 72-96 h. Seminal fluid markedly decreased NK

cell proliferation, but seminal fluid depleted of CD52 had no

effect (Figure 7).
Discussion

We provide evidence that soluble CD52, acting via the immune

suppressive receptor Siglec-7, accounts for T cell and NK cell
FIGURE 4

Siglec-7 mediates immune suppression by seminal fluid. (A) Raji human B-cell lymphoma cells (1x105 per flat bottom well) were incubated in
triplicate with CD52-Fc (10 mg/ml) or seminal fluid samples (1/40 dilution) +/- anti-Siglec 10, -9 or -7 antibodies (10 mg/ml) for 9 days. 3H thymidine
was added to wells during the last 16 hours of incubation; the cells were then collected on glass fibre filters, washed, dried and counted in scintillant
in a beta-counter. (B) PBMCs were incubated in triplicate with tetanus (10 LFU/ml) and seminal fluid (1/40 dilution) +/- anti-Siglec-7, -9 or -10
antibody (10 mg/ml) in ELISpot plates pre-coated with IFN-g antibody, for 24 h at 37°C in 5% CO2 air, before development of IFN-g spots. Data are
mean ± SD.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1497889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Harrison et al. 10.3389/fimmu.2024.1497889
suppression by seminal fluid. Suppression of T-cell responses to

antigen (tetanus) by multiple different seminal fluid samples was not

observed in the presence of an antibody (CF1D12) against the

bioactive terminal glycan of CD52 (13) or after immunodepletion

of CD52 from seminal fluid with alemtuzumab, a humanized

monoclonal antibody against the C-terminus-GPI junction of

CD52 (13). In addition, CD52 in seminal fluid, evidently in relative

excess, was complexed with the danger-associated molecular pattern

(DAMP) protein, HMGB1. Previously, we found that immune
Frontiers in Immunology 07
suppression by lymphoid CD52, acting via Siglec-10 on activated T

cells, required its pre-complexing with HMGB1 (22). Sequestration of

HMGB1 by CD52 may be a means to nullify the inflammatory effects

of HMGB1 Box B (22). The requirement for HMGB1, which is

present in serum (23), may explain an early observation (6) that

suppression of T-cell activation by human seminal fluid required the

presence of bovine serum in the medium. Lymphoid CD52

complexed to HMGB1 triggers the cytoplasmic immunoreceptor

tyrosine-based inhibitory motif (ITIM) of Siglec-10 to recruit the
FIGURE 6

Depletion of NK cells from PBMCs markedly decreases IFN-g expression in response to tetanus. NK cells in PBMCs were stained with FITC antibody
to CD56 and depleted by flow sorting. Post-sort analysis demonstrated 100% depletion. PBMCs depleted or not of CD56+ cells were then analysed
by IFN-g ELISpot in response to tetanus (10Lfu/ml) or anti-CD3/28 Dynabeads as described in Methods.
FIGURE 5

Seminal fluid does not suppress the function of purified CD4+ T cells. CD4+ T cells (5x103/well), >96% pure by negative immunomagnetic selection,
were incubated with anti-CD3/CD28 Dynabeads (1 bead/cell) in the presence of seminal fluid (final dilution 1:20) in ELISpot plate wells pre-coated
with antibody to IFN-g for 24 h, before development of IFN-g spots.
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Src homology 2 (SH2) domain-containing protein tyrosine

phosphatase (SHP1), which dephosphorylates and inactivates the T

cell receptor (20). The same mechanism has been described for

Siglec-7 (34), which we show here interacts with seminal fluid

CD52. Notably, of a range of Siglecs expressed on human sperm,

Siglec-7 was conspicuously absent (35), which we suggest would allow

sperm-expressed CD52 to avoid interaction in cis with Siglec-7 (36),

thereby protecting sperm from inhibition by CD52 in seminal fluid.

CD52 was detected in a range of seminal fluid concentrations

out to >1:1,000 dilution. This variation may reflect donor factors,

but because samples were provided anonymously we were not able

to relate CD52 concentration or function to clinical parameters.

Nevertheless, it has been reported that CD52 expression is reduced

in spermatozoa from sub-fertile men (37). Our samples were

obtained from men attending an infertility clinic and therefore

the extent to which they are representative of seminal fluid in

general is a caveat. The CD52 sialoglycan on sperm has been shown

to be the antigenic target of circulating anti-sperm immobilizing

antibodies (19), detected in a minor proportion of infertile women

(18). Many studies, dating back 70 years (38), have shown that

anti-sperm antibodies are associated with decreased sperm

concentration and function (39, 40). We did not measure anti-

sperm antibodies or sperm concentration because our study was

focused on the role of CD52 in mediating immune suppression by

seminal fluid. It is possible that anti-sperm antibodies directed at

CD52 in some samples may have affected the measurement of CD52

in seminal fluid, but this would not invalidate our finding that

soluble CD52 mediates T and NK cell suppression by seminal fluid.

Given that CD52 appears to account for most of the suppressive

effect of seminal fluid on T and NK cells, how is this reconciled with

reports (3–9) of other suppressive factors in seminal fluid? Immune

tolerance to sperm in the female is critically important for reproduction

and it would not be surprising if several seminal fluid components were
Frontiers in Immunology 08
involved and acted in concert, such as those reported to condition the

female response to sperm (3, 41, 42). However, with the possible

exception of prostaglandins, there is little evidence that other seminal

fluid components directly suppress T or NK cells. Suppression of

lymphocyte and NK cell function by seminal fluid was attributed to

PGEs (3–5, 7) but the evidence was inferential, not direct, and the

relative contribution of PGEs was not clear. In addition, the original

observation that lymphocyte suppression by seminal fluid was

associated with prostasomes (10) has remained unexplained.

Prostasomes are now known to be heterogenous EVs, and those

shown to contain CD52 (11) are most likely derived from the

epididymal epithelium (15, 42). Our findings provide an explanation

for the prostasome effect, although we found that immune suppressive

activity was mainly associated with the soluble fraction of seminal fluid.

The original study (10) also found activity in the soluble fraction, but

fractionated seminal fluid initially by ammonium sulphate

precipitation, which we avoided. Our findings do not exclude the

possibility that seminal fluid components other than CD52 may

modulate immunity measured in different ways. For example, TGF-

b1 and other members of the TGF-b family in seminal fluid have been

shown to have profound regulatory and tolerogenic effects on dendritic

cells, macrophages and lymphocytes, leading to the expansion of

regulatory T cells (Treg) in the female (9, 42). Similarly,

prostaglandin E (PGE) and 19-OH-PGE 1 and 2 in seminal fluid

may contribute, in concert with TGF-b, to the induction of Treg and

may have other anti-inflammatory actions (42). The obvious limitation

of this human study is that it was performed in vitro, and could not

elucidate the role or contribution of seminal fluid CD52 to immune

tolerance to sperm in vivo. To address this question, investigation in

animal models, beyond the scope of the current study, will be required.

Nevertheless, we conclude that CD52 in seminal fluid mediates T cell

and NK cell suppression by interacting with the inhibitory receptor,

Siglec-7, on APCs and NK cells. This finding adds an important new
FIGURE 7

Seminal fluid CD52 inhibits expansion of primary human NK cells. Untouched NK cells were purified by negative immunomagnetic selection from
freshly prepared PBMCs and suspended in NK MACS medium containing 5% human AB serum. Cells were seeded at 15,000 cells/well in round-
bottom 96-well plates in a total volume of 100 ml in the presence of IL-15 (final 20ng/ml) and medium only, or seminal fluid at 1:10 dilution depleted
or not depleted of CD52. After 96 h, viable cells were enumerated against cell counting beads in a flow cytometer.
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dimension to our understanding of the critical role of seminal fluid in

facilitating reproduction.
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