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Serine protease inhibitors (Serpins) are a protein superfamily of protease

inhibitors that are thought to play a role in the regulation of inflammation,

immunity, tumorigenesis, coagulation, blood pressure and cancer metastasis.

Serpins is enriched in the skin and play a vital role in modulating the epidermal

barrier and maintaining skin homeostasis. Psoriasis is a chronic inflammatory

immune-mediated skin disease. At present, most serpins focus on the

pathogenesis of psoriasis vulgaris. Only a small number, such as the mutation

of SerpinA1/A3/B3, are involved in the pathogenesis of GPP. SerpinA12 and

SerpinG1 are significantly elevated in the serum of patients with psoriatic

arthritis, but their specific mechanism of action in psoriatic arthritis has not

been reported. Some Serpins, including SerpinA12, SerpinB2/B3/B7, play multiple

roles in skin barrier function and pathogenesis of psoriasis. The decrease in the

expression of SerpinA12, SerpinB7 deficiency and increase in expression of

SerpinB3/4 in the skin can promote inflammation and poor differentiation of

keratinocyte, with damaged skin barrier. Pso p27, derived from SerpinB3/B4, is an

autoantigen that can enhance immune response in psoriasis. SerpinB2 plays a

role in maintaining epidermal barrier integrity and inhibiting keratinocyte

proliferation. Here we briefly introduce the structure, functional characteristics,

expression and distribution of serpins in skin and focus on the regulation of

serpins in the epidermal barrier function and the pathogenic role of serpins

in psoriasis.
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1 Background

Serine protease inhibitors (Serpins) is a new family proposed by

Hunt et al. (1, 2) in 1980 on the basis of the conserved primary

structure of ovalbumin, a1 antitrypsin, and human antithrombin.

Many members of this family can inhibit the activity of serine

proteases such as chymotrypsin, so they are named serine protease

inhibitors (Serpins) (3, 4). Currently, approximately 1500 serpin

sequences have been identified in animals, poxvirus, plants, bacteria

and archaea (5, 6). The Serpins family contains a group of structurally

similar but functionally distinct proteins, making it the largest andmost

functionally diverse family of protease inhibitors. Serpins are involved

in inflammation, immunity, tumorigenesis, blood coagulation, blood

pressure and cancer metastasis (7).

Psoriasis is a chronic, recurrent and inflammatory immune-

mediated skin disease induced by genetic and environmental

interaction (8). Psoriasis is characterized by excessive proliferation

and poor differentiation of keratinocytes, immune cell infiltration, skin

inflammation as well as impaired epidermal barrier (8–10). According

to the clinical characteristics of psoriasis, psoriasis can be divided into:

psoriasis vulgaris, psoriasis arthropathica, psoriasis erythrodermic and

psoriasis pustulosa (11), of which vulgaris is the most common type,

and other types are mostly converted from psoriasis vulgaris (12, 13).

Pustular psoriasis can be further divided into localized (e.g.

palmoplantar pustulosis) and generalized pustular psoriasis (GPP)

(14). In the skin, the epidermis is an abundant source of proteases

and protease inhibitors (15). Endogenous and exogenous proteases,

such as caspases, cathepsins, kallikreins and proteases from

microorganisms, play important roles in the desquamation and

defense regulation of the stratum corneum. Protease inhibitors

contribute to skin integrity and protective barrier function by

regulating their proteolytic activity (16). An imbalance of proteases/

protease inhibitors in the skin can lead to changes in protease

hydrolysis of target proteins such as filaginins, cytokines, and

receptors, inducing skin inflammatory responses and barrier

dysfunction (16). Serpins are the most diverse superfamily of

protease inhibitors (1). Serpins are abundant in skin and play an

important role in maintaining skin homeostasis. In recent years, a

growing body of literature have shown that some serpins are

differentially expressed genes in psoriasis lesions (17, 18), gene

polymorphisms and mutations of some serpins are also involved in

psoriasis pathogenesis (19, 20). These genetic changes in serpins lead to

changes in their target protease activity and proteolysis of target

proteins, which contribute to psoriatic inflammation and skin barrier

dysfunction. Here we briefly introduce the structure, functional

characteristics, expression and distribution of serpins in skin and

focus on the regulation of serpins in the epidermal barrier and the

pathogenic role of serpins in psoriasis.
2 Structural, functional characteristics
of serpins in skin

Serpin is a single chain protein, consisting of 350 ~ 400 amino

acids. The serpins have a core structure of about 380 amino acids,
Frontiers in Immunology 02
which folds into a very conservative, typical three-dimensional

structure in a metastable state. This structure consists of 8 ~ 9 a
helices (hA ~ hI) and 3 b sheets (A-b, B-b, C-b) (21) (Figure 1). The
region of interaction with the target enzyme is a bare ring motif, also

known as the reaction center ring (RCL) (Figure 1), which is spread

on the serpin scaffold and contains the protease recognition site P1

(5). The Serpin protein superfamily is divided into groups called

clades based on their sequence similarity. Clades are classified into

A-P, and human serpins are phylogenetically classified into clades

A-I (21, 22). In the human genome, there are 36 protein-coding

genes of serpins (21) and the two largest clades of the 36 identified

serpins are extracellular “clade A” (12 members located on

chromosomes 14, and X) and intracellular “clade B” (13 members

located on chromosomes 6 and 18) (22–24). Clade C (serpinC1) is

located on chromosome 1. Clade D (serpinD1) is located on

chromosome 22. Clade E (3 members) are located on

chromosome 2, 7 and 13. Clade F (2 members) are located on

chromosome 17. Clade G (serpinG1) and Clade H (serpinH1) are

both located on chromosome 11. Clade I (2 members) are located

on chromosome 3.

Although Serpins have similar structural characteristics, their

modes of action are very different. According to these characteristics,

Serpin superfamily members are divided into inhibitory and non-

inhibitory serpins. The inhibitory serpins can suppress the serine

proteases, caspases and papain-like cysteine proteases by an

irreversible suicidal mechanism (21, 25, 26) and we summarized the

target enzymes inhibited by each human serpin member in Table 1.

However, the non-inhibitory serpins exhibit functions unrelated to

inhibiting catalytic activity, such as hormone transport or blood

pressure regulation (5, 6, 21, 107). For example, SerpinA8 is a blood

pressure regulator (108). SerpinA6 and A7 are responsible for the

transport of cortisol (109) and thyroid hormone (46), respectively. In

humans, most (24 out of 36) serpins are inhibitory (Table 1). The

inhibitory serpins plays an important role both intracellular and

extracellular, including coagulation regulation (110), inflammatory

response, complement activation (102) and immune regulation. A

number of serpins play vital roles in the inflammation and immunity.

In Clade A, there are some inhibitory serpins containing anti-

inflammatory molecules (SerpinA1, A3, A4, A12) (111–115) and

non-inhibitory serpins containing inflammatory molecule(SerpinA6,

8) (20, 47, 109, 170). The inhibitory SerpinA9 is involved in maturation

and maintenance of naïve B cells (50). In Clade B, there are some

inhibitory serpins containing anti-inflammatory molecules (SerpinB1,

B2, B6) (116, 117) and pro-inflammatory molecules (SerpinB3/B4,

B10) (78, 118) (Table 1). Act as potent inhibitors of proteases in

neutrophils, SerpinA1 (21), A3 (33, 34), B1 (116) and B6 (80) are

thought to protect monocytes, neutrophils, and onlookers from ectopic

neutrophil-derived proteases during inflammation (82, 119). SerpinB1

is a protective immunomodulatory that protects the host’s

antimicrobial defenses and prevents tissue damage (61, 120).

SerpinB9 is a potent inhibitor of granzyme B, which is located in the

same subcellular compartment of cytotoxic lymphocytes as granzyme

B, and can protect cytotoxic lymphocytes from the destruction of

granzyme B (89). SerpinB9 also inhibits IL-1bmaturation by inhibiting

Caspase-1. Mutations in the SerpinB9 gene may contribute to the

development of autoinflammatory diseases (121). Some serpins are
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important hemostatic regulators, including SerpinA5 (42), SerpinA10

(51), SerpinC1 (98), SerpinD1(heparin cofactor II) (122), SerpinE1

(PAI1) (122), SerpinE2 (100) and SerpinF2 (122). SerpinC1 not only

has anticoagulant and anti-inflammatory effects (98), but also has the

effect of inhibiting liver cancer (123) (Table 1). Human Serpins also

contain some tumor suppressor genes, including A5 (124), A11 (52),

and B5 (125), which may inhibit tumor growth by inhibiting

tumor metabolism.

Some serpins are commonly expressed in various human tissues

and cells and some serpins are expressed specifically in certain

tissues, which we have summarized in Table 1. Serpins are abundant

in expression and distribution in the skin. In the Clade A,

SerpinA12 is mainly expressed in the skin and keratinocytes in

the skin has been identified as a rich source of vaspin (serpinA12)

(55). AGT is an important part of the renin-angiotensin system

(RAS). Steckelings UM et al. found that the complete renin-

angiotensin system exists in human skin (48). The majority of

serpins containing(B1-8, B12, B13) in Clade B are expressed in the

skin (35). SerpinB2 is expressed in keratinocytes of the skin and one

study suggested that SerpinB2 (cross-linked to the cornified

envelope) was present in the stratum corneum (71). In skin,

SerpinB3 is expressed in the spinous and granular layers of

normal epithelium (126). In normal skin, SerpinB13 expression is

mainly confined to the basal layer, while in diseased skin, it is

mainly distributed in the outermost layers of granular and upper

spinous layers (127). In other branches, SerpinE3 and SerpinG1 are

also expressed in the skin (35).
3 Serpins regulate epidermal barrier
and maintain skin homeostasis

The exposed epidermis is a laminated squamous epithelium

composed of multiple layers of keratinocytes. Epidermis is the

physical barrier of our human skin, protecting us from moisture

loss and mechanical damage. It is complemented by a chemical
Frontiers in Immunology 03
barrier composed of antimicrobial peptides and proteins to protect

the host from the surrounding microbiota (16). Profilaggrin

metabolism, the formation of cornified envelope, desmosomes,

intercellular lipid lamellae and zonula occludens, desquamation

play important roles in the integrity of the epidermal barrier (128–

130). The differentiation of keratinocytes affects the formation of

the cornified envelope that is an insoluble protein and lipid

structure with barrier functional properties (131, 132). As

mentioned earlier, many members of the serpin family are

expressed in the skin, which play a an important role in

regulating epidermal barrier and maintain skin homeostasis.

Reduced expression of SerpinA12 leads to decreased expression of

the desmosomal proteins, the cornified envelope proteins, and

keratins (55) that results in reduced impaired skin barrier. As a

predominantly expressed adipokine in the skin (55, 115), SerpinA12

may alter its expression or functional activity by inhibiting

kallikrein 7 (KLK7), which KLK7 controls desquamation and is a

key molecule in the maintenance of skin barrier function (53, 133–

135). Reduced expression of SerpinA12 in keratinocyte has been

reported to decreased expression of the desmosomal proteins,

cornified envelope proteins, and keratins (55) which are proteins

that maintain the integrity of the epidermal barrier. The decrease of

SerpinA12 expression may weaken the inhibition of KLK7 activity.

Abnormal KLK activity impairs epidermal barrier function (136).

So we hypothesized that reduced SerpinA12 expression may lead to

impaired epidermal barrier by inhibiting KLK7 activity.

SerpinB2 is considered to be one of the precursors of the

envelope and is involved in the formation of the cornified

envelope (64, 71). SerpinB2 deficiency was found to cause

stratum corneum defect and more susceptible to topical

application of inflammatory agents. The function of SerpinB2 in

keratinocytes is to protect the stratum corneum from proteolysis by

inhibiting urokinase, thereby maintaining integrity of the stratum

corneum and its barrier effect, especially during skin inflammation

(71). Epidermis with high SerpinB3 expression level increase

sensitivity to barrier destruction by external stimuli, suggesting

that SerpinB3 plays an important role in inducing epidermal barrier

disruption (137). As a molecule elevated in both psoriasis and

atopic dermatitis patients, SerpinB3/4 has been shown to cause

epidermal barrier dysfunction in experimental mouse models of

atopic dermatitis (78). As a common target of SerpinB3 and

SerpinB13, cathepsin L is the elusive enzyme that processes and

activates transglutaminase 3(TGM3) (138). The TGM is involved in

formation of cornified envelope in the epidermis and plays an

important role in epidermal barrier (138). Both SerpinB3 and

SerpinB13 are highly expressed in psoriasis lesions (18, 139).

Psoriasis showed impaired epidermal barrier function (140). So

we hypothesize that increased SerpinB3/B13 expression suppress

TGM3 activation by inhibiting cathepsin L activity, thereby

affecting cross-linking of the stratum corneum and resulting in

impaired skin barrier. SerpinB7 deficiency can cause epidermal

barrier dysfunction in IMQ-induced psoriasis like models (85).

SerpinB12 is a gene associated with epidermal permeability barrier,

and its expression is decreased in atopic dermatitis model mice (95).

Impaired epidermal function is a significant feature of atopic
FIGURE 1

The 3D structure of SerpinA1. SERPINA1 with labeled structural
elements: a helices, b sheet and reactive center loop (RCL).
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TABLE 1 Target protease and expression of human serpins.

The function in psoriasis Regulation in the
epidermal barrier
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function in psoriasis Regulation in the
epidermal barrier
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C SerpinC1 antithrombin III (ATIII) Inhibition of coagulation
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Liver (35)
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dermatitis (78). However, it is unclear whether SerpinB12 is a key

molecule and specific mechanism that regulates impaired epidermal

barrier function in atopic dermatitis, and further research is needed.
4 Pathogenic roles of serpins
in psoriasis

At present, the majority of serpins focus on the pathogenesis of

psoriasis vulgaris. SerpinA12 and SerpinG1 is significantly elevated

in the serum of patients with psoriatic arthritis (141, 142), but its

specific mechanism of action in psoriatic arthritis has not been

reported. Next, we summarized the pathogenic role of serpins

in psoriasis.
4.1 Modulation of keratinocyte hyper-
proliferation and differentiation

Although the clinical features of psoriasis differ in different

psoriasis types, most types of psoriasis lesions are characterized by

erythema, thickening, and scale (13). Thickening and scale are

associated with excessive proliferation of keratinocytes (143).

Parakeratosis, the persistence of nuclei in the stratum corneum, is

one of the histopathological features of psoriasis (144) and is related

to excessive proliferation and poor differentiation of keratinocytes

(145). Poor keratinocyte differentiation also promotes impaired

skin barrier function (146).

SerpinA12 expression is significantly reduced in the lesional

skin of psoriasis patients (115). Reduced expression of SerpinA12 in

psoriatic keratinocytes leads to decreased expression of

differentiation-related genes (Loricrin, Involucin, Keratin1 and

10) (55), which cause poor differentiation. SerpinB2 and B3 are

highly expressed in the epidermis of psoriatic patients (18, 117).

SerpinB2 can inhibit the proliferation of human keratinocytes (62).

SCCA1 is always found in parakeratotic epidermis (137), which

suggests that it may be related to the proliferation and

differentiation of keratinocytes. SerpinB7 and SerpinB13 are both

keratinocyte differentiation regulators (147, 148). As mentioned

earlier, SerpinB13 is highly expressed in psoriasis lesions (139).

Overexpression of SerpoinB13 in keratinocytes can decrease UV-

induced apoptosis by inhibiting cathepsin L (96). SerpinB7 has been

identified as a skin-specific endogenous protease inhibitor and a

novel psoriatic-associated gene that is highly expressed in

keratinocytes of psoriatic patients and imiquimod-induced

psoriatic lesions in mice (85, 149). However, one study found that

SerpinB7 expression was down-regulated in psoriatic skin lesions,

and its expression level is negatively correlated with the severity of

the patient’s disease (150). Zheng H et al. (85) found that SerpinB7

deficiency down-regulates the expression of differentiation-related

genes (Keratin 10, Loricrin, Filaggrin, Involucrin) and increased

keratinocyte proliferation by decreasing the calcium ion influx (85).

The expression of SerpinB7 in psoriatic lesions is controversial.

Whether SerpinB7 has a positive or negative effect on the

pathogenesis of psoriasis depends on its expression level, which

needs to be further verified. SerpinB8 is a susceptibility gene for
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psoriasis (88), but the exact mechanism has not been studied.

SerpinB8 inhibit its amidolytic activity by forming an SDS stable

complex with furin (151). Furin is a prohormone convertase

involved in inflammation, prohormone processing, and

extracellular matrix remodeling (86). Furin is involved in the

cleavage of the precursor protein profilaggrin into the monomer

filaggrin, and filaggrin plays an important role in keratinocyte

differentiation (130). So we hypothesized that SerpinB8 might be

involved in keratinocyte differentiation by regulating furin activity,

but this has not been studied.
4.2 Contribution to immune response
and inflammation

Psoriasis vulgaris is a chronic inflammatory skin disease caused

by the interaction of keratinocytes and immune cells (145), and is

thought to involve self-perpetuating inflammatory mechanisms via

the IL-23/Th17 axis (13). Munro microabscesses filled with

neutrophils in psoriatic skin lesions are considered to be typical

histopathological markers of psoriasis. Neutrophils communicate

and interact with antigen-presenting cells and lymphocytes at the

site of inflammation (152, 153). Circulating neutrophils are

recruited to the site of inflammation after inflammatory signals or

bacterial induction in skin, and are then activated to produce

respiratory bursts that produce large amounts of ROS,

degranulation and neutrophil extracellular trap(NET) production,

which contributes to the pathogenesis of psoriasis (154). In patients

with psoriasis, neutrophils are pre-activated and form a NET in

psoriatic skin lesions (155, 156) NET promote keratinocyte to

secrete high levels of proinflammatory factors (LCN2, IL-36g,
CXCL8, and CXCL1) by activating TLR4/IL-36R crossers and the

downstream MyD88/NF-kB signaling pathway (156). These

chemokines include LCN2, CXCL8, and CXCL1, which in turn

promote neutrophil migration to the skin (154). NET chromatin in

psoriatic plaques, together with the antimicrobial peptide LL-37

released by keratinocytes, often stimulates the secretion of

inflammatory factors such as IL-12 and IL-23 by dendritic cells

(157, 158), which then activates the differentiation of T cells into

Th1, Th17 and Th22, and promotes them to secrete of TNF-a and

IFN-g, IL-17, IL-22, respectively (13). IL-17 secreted by Th17 cells is
the main effector of psoriasis. IL-17 not only activates neutrophils

but also promotes the proliferation of keratinocytes and the

production of inflammatory chemokines(CXCL1, CXCL8, CCL20,

TNF) by binding to IL-17 receptors. CCL20 and TNF are

chemokines of T cells and dendritic cells, respectively (154),

which in turn leads to a T cell immune response. IL-23 plays an

significant role in the survival and proliferation of Th17 and Th22,

and the Th17 pathway mediated by IL-23 is considered to be the

main pathway in psoriasis (13). The release of LCN2 and MPO

during neutrophil degranulation exacerbate skin inflammation in

psoriasis by participating in the activation of neutrophils (154, 159).

ROS produced during respiratory bursts activate mitogen-activated

protein kinase (MAPK), nuclear factor-kB (NF-kB), or Janus

kinase-signal transducer and activator of transcription proteins

(JAK-STAT) (JAK-STAT) associated inflammatory pathways
Frontiers in Immunology 08
(160), which induce the proliferation and inflammation of

keratinocytes (47, 161). In general, neutrophils play an important

role in the initiation and maintenance of psoriasis through ROS

production, degranulation and NET formation.

Like SerpinB2, B3, SerpinB1 is elevated in lesional skin of

psoriasis patients (18, 67, 117, 162). SerpinB1 is also found to be

abundant in the cytoplasm and granules of neutrophils (163).

SerpinB1, a potent inhibitor of NE, has recently been shown to

limit neutrophil extracellular trap(NET) production (58) and has

also been found to limit the undesirable proliferation of

lymphocytes with the Th17 phenotype (61),. The expression levels

of SerpinB2 in the psoriasis-involved skin are positively correlated

with the severity of psoriasis (67, 117). There is evidence that RNA

silencing of SerpinB2 in keratinocytes leads to upregulation of IL-8,

CXCL5 and CCL5 and increased neutrophil migration (117).

Expressions of IL-8, CXCL5 and CCL5 are all increased in

psoriatic lesions, where CXCL5 and IL-8 are neutrophil

chemokines that drive neutrophils to the skin, and CCL5 is a

chemokine of Th1 cells that produce IFNg (68–70). IFNg, in turn,

stimulates the activation of dendritic cells, which triggers a T cell

immune response (13). These studies suggest that SerpinB2

depletion is involved in the pathogenesis of psoriasis by

increasing inflammatory chemokines to enhance the chemotaxis

and immune response of immune cells. As an anti-inflammatory

miRNAs, miR-146a/b can indirectly iinhibit SerpinB2 expression by

targeting IL-1 receptor-associated kinase 1(IRAK1) and caspase

recruitment domaincontaining protein 10(CARD10) in human

primary keratinocytes (117). The expression of MiR-146a/b in

psoriatic lesions was negatively correlated with the expression of

SerpinB2. MiR-146a/b collaborates with serpinB2 in keratinocytes

to regulate inflammation in psoriasis. These studies show that

SerpinB1and B2 may play a negative regulatory role in the

pathogenesis of psoriasis. The literature shows that pro-

inflammatory cytokines secreted by infiltrating immune cells in

the skin can induce SERPINB3 to be highly expressed in psoriatic

skin (72). The SerpinB3/4-derived protein Pso p27, an autoantigen

in psoriasis and other chronic inflammatory diseases, is only

expressed in the psoriasis involved skin, not in uninvolved skin.

In psoriasis, SerpinB3/4 are synthesized by skin fibroblasts and

keratinocytes, and then taken up by mast cells to form Pso p27

through cleavage of chymase in mast cells (18). Pso p27 can bind to

either IgG or complement factor C1q in the skin lesions of psoriasis

patients to form and activate immune complexes (73, 74), which

boosts the skin’s immune response. TEA domain family member 4

(TEAD4), as a transcription factor (75), is overexpressed in

keratinocytes of psoriasis (76). Silencing of TEAD4 in

keratinocytes leads to reduced expression of SerpinB3/4, which

suggests TEAD4 can transcriptionally regulate the expression of

SerpinB3/4 (76). Decreased expression of SerpinB3/4 inhibits the

expression of immune cell chemokine (CXCL1,5,8) in keratinocytes

(76). TEAD4 silencing in keratinocytes reduces T migration and the

secretion of IL-17 and IL-22 in T cells, which in turn reduces the

secretion of CXCL1,5,8 in keratinocytes (76). One Study have

shown that SerpinB3/4 stimulates keratinocytes to produce

inflammatory chemokines and promote CD4 +T cell migration

by activating the NF-kB signaling pathway (77). These results
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suggest that TEAD4 may increase the crosstalk of keratinocyte and

T cell by enhancing the expression of SerpinB3/4, thereby

promoting the cytokine secretion of keratinocyte and T cell, and

T cell migration. SerpinB5, as an autoantigen of an autoimmune

response induced by streptococcus, is the target of an enhanced T-

cell response in psoriasis (79).

SerpinB7 deficiency significantly increased the expression of

chemokines (TNF-a, IL-1b, IL-23, CXCL2 and IFN-g), neutrophil
markers Ly6G, and antimicrobial peptide S100A8, thereby

exacerbating skin inflammation (85). SerpinB7 deficiency

promote the expression of inflammatory mediators by decreasing

the calcium ion influx (85) However, as mentioned earlier, the

expression of SerpinB7 in psoriatic lesions is reversed in different

studies, and its regulation of inflammation depends on its

expression level in psoriatic lesions, which needs to be confirmed

by further research.

As mentioned earlier, SerpinA12 expression is significantly

reduced in the lesional skin of psoriasis patients (115). Reduced

expression of SerpinA12 in psoriatic keratinocytes leads to

increased expression of the interferon-inducible (56, 57) and

psoriasis related inflammatory genes (chemokine ligand 20, IL-6,

IL-8, and S100 proteins) (55). Reduced expression of SerpinA12 in

keratinocytes stimulated co-cultured dendritic cells, macrophages,

monocytes, and neutrophils to secrete tumor necrosis factor-a, IL-
1b, IL-6, IL-8, and monocyte chemotactic protein-1 (55). The

reduced expression of SerpinA12 in human epidermis enhance

the communication between keratinocytes and immune cells (55).

Immunohistochemical studies have shown that the serine protease

KLK7 and KLK14 is increased in psoriasis lesions compared to

normal skin (164, 165). As the main target protease of SerpinA12,

KLK7 controls the process of the activation of pro-inflammatory IL-

1b and prochemerin, all of which are involved in the pathogenesis

of psoriasis (133, 134, 166). KLK7 also controls the enzymatic

processing of antimicrobial peptide precursors in the skin and

regulates the function of antimicrobial peptides, which act as

immunomodulators in psoriasis (167). Antimicrobial peptides,

such as LL-37, proteins ADAMTSL5, K17, and hsp27, may act as

autoantigens to promote differentiation of autoreactive

lymphocytes and unleash chronic inflammatory responses (168).

Uncontrolled activity of KLK7 can lead to psoriasis (169).

SerpinA12 and KLK7 are co-located in the skin (134). Based on

these results, we hypothesize that SerpinA12 inhibits KLK7 in

normal skin, but decreased SerpinA12 expression in psoriatic

lesions reduces the inhibition of KLK7 activity, thereby

exacerbating the inflammatory response and immune response.

But this requires further direct verification (Figure 2).

Transcriptome analysis showed that SerpinA8 (AGT) is one of

the differentially expressed genes in mild psoriasis (17). As an

inflammation gene, the gene polymorphism of SerpinA8 is

associated with plaque psoriasis and a positive family history of

psoriasis (20), however the specific mechanism of SerpinA8’s

involvement in psoriasis has not been studied. SerpinA8 is the

only precursor of all angiotensin peptides. As an important product

of AGT, AngII not only plays an important role in the regulation of

blood pressure, but also plays a dual role in the regulation of
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inflammation. AngII has the opposite effect by activating AT1R and

AT2R, respectively. Ang II interacts with AT1R to play a pro-

inflammatory role, while Ang II and AT2R play an anti-

inflammatory role (47, 170). Preliminary studies have shown that

keratinocytes have the ability to produce Ang II (and potentially

other angiotensin) independently of the supply of systemic RAS

components. Ang II can induce potent inflammation associated

with IL-17 (47, 171). IL-17 is a major effector of psoriasis that

activates the NF-kB signaling pathway (172). Ang II induces

reactive oxygen species (ROS) production by stimulating NADPH

oxidase (NOX) (47, 173). So we hypothesize that SerpinA8 gene

polymorphisms induce inflammation and keratinocyte

proliferation by regulating Ang II expression, and thus participate

in the pathogenesis of psoriasis.
5 Involvement of serpins in
generalized pustular psoriasis (GPP)

GPP is a severe form of psoriasis, which is characterized by

large, visually visible pustules on the non-extremity skin, with or

without systemic symptoms such as fever, neutrophilism, and

elevated serum C-reactive protein levels (12).

Kantaputra P et al. (72) found that the skin of GPP patients with

SerpinB3 mutation showed high expression of SerpinB3. The

mutations in both SerpinA1 and SerpinA3 are likely to be

predisposing risk factors of generalized pustular psoriasis (GPP)

(19). A heterozygous missense mutation of SerpinA1 occurs in

patients with GPP (19). SepinA1 can inhibit the activity of elastase

in neutrophils (28), and it has been found that SepinA1 mutation

can cause overactivity of elastase (29). The overactivity of

neutrophil elastase can promote the activation of IL-36a, and the

activated IL-36a can enhance the ability of keratinocytes to produce

chemokines (30). The inhibitory capacity of SerpinA1 is reduced in

symptom-free and in those with stationary lesions patients with

psoriasis (31). Barszcz D et al. (31) suggested that the abnormal

function of SerpinA1 may be related to the pathogenesis of

psoriasis. Frey S, et al. found a rare loss of function mutation in

the entire reactive center loop of SerpinA3 in a small number of

patients with GPP (36, 37). Liu Y, et al. (38) identified four novel

mutations in SerpinA3 in seventy children with GPP and

demonstrated that three of these mutations lead to loss of

function of ACT (the protein encoded by SerpinA3), thereby

reduce the inhibition of ACT on Cathepsin G. Cathepsin G (a

protease produced by infiltrating neutrophils in the epidermis) can

activate IL-36g in the epidermis of patients with GPP, and activated

IL-36g induces an increased ability of keratinocytes to produce

chemokines (CXCL1, CXCL2 and CXCL8) and enhance

recruitment of neutrophils, thereby exacerbating skin

inflammation (30, 39). In the skin of GPP patients, the expression

and activity of IL-36a and IL-36g is elevated in keratinocytes

located around neutrophil microabscesses (30). Therefore, we

speculate that similar to SerpinA3, SerpinA1 is involved in the

pathogenesis of GPP through loss-of function mutations, but

further studies are needed to confirm it (Figure 2).
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6 The potential therapeutic strategies
targeting serpins in psoriasis

In summary, the changes in the expression of some serpins in

the skin participate in the pathogenesis of psoriasis by regulating the

inflammation, differentiation and interaction with immune cells of

keratinocytes. When the expression of some serpins increases, their

transcriptional regulators that inhibit serpin expression or

corresponding antibodies can be developed to reduce the

expression of serpins. When the expression of some serpins

reduces, psoriasis can be treated with its recombinant protein. For

example, in an animal model of psoriasis, the application of

recombinant vaspin (SerpinA12) reduced infiltration by myeloid

cells into the skin (55).

Mutations and polymorphisms of some serpins are also

involved in the pathogenesis of psoriasis, and we can use their

downstream product related antagonists to treat psoriasis. For

example, losartan act as an angiotensin receptor (AT1R)
Frontiers in Immunology 10
antagonist, attenuates imiquimod-induced psoriasis-like

inflammation (171).
7 Conclusions

Serpins play an complex role in regulation of the epidermal

barrier and the development of psoriasis. Some serpins, including

SerpinA12, SerpinB2/3//7 play multiple roles in skin barrier

function and pathogenesis of psoriasis. The decrease in the

expression of SerpinA12, SerpinB7 deficiency and increase in

expression of SerpinB3/4 in the skin can promote inflammation,

poor differentiation of keratinocyte and damaged skin barrier. Pso

p27, derived from SerpinB3/B4, is an autoantigen that can enhanced

immune response in psoriasis. However, whether SerpinB3 is

participating in the pathogenesis of psoriasis by itself or by

hydrolyzing into Pso p27 has not been investigated. The

expression of SerpinB7 in psoriasis is controversial, which
FIGURE 2

Schematic representation of the regulatory mechanism of Serpin protein in psoriasis. A neutrophil extracellular trap(NET) structure formed after
neutrophil necrosis or apoptosis exposes neutrophil elastase and cathepsin G to the extracellular environment. SerpinA1 and SerpinA3 inhibit
neutrophil elastase and cathepsin G, respectively. Normally, elastase and cathepsin G activate IL-36a and IL-36g, respectively, thereby activating the
MAPK and NF-kB signaling pathways of keratinocytes, resulting in increased expression of CXCL1, CXCL2, and IL-8 and increased recruitment of
neutrophils. SerpinA12, as an anti-inflammatory factor, is reduced in the skin lesions of psoriasis patients. The reduction of SerpinA12 leads to an
overactivation of KLK7 and thus an excessive loss of corneocytes, which impair epidermal barrier. Reduced expression of SerpinA12 in KC reduces
keratinocyte differentiation and exacerbates inflammation by reducing the expression of differentiation-related genes and psoriasis related
inflammatory gene. The expression of SerpinB2 in keratinocytes is up-regulated under the stimulation of the TNF-a and IFN-g. As an anti-
inflammatory miRNAs, MiR-146a/b collaborates with serpinB2 in keratinocytes to inhibit inflammation in psoriasis. SerpinB2 deficiency leads to
upregulation of IL-8, CXCL5 and CCL5 and increased neutrophil migration. SerpinB3/B4 are taken up by mast cells to form Pso p27 through
cleavage of chymoenzymes in mast cells. TEAD4 may modulate keratinocyte and T cell crosstalk by targeting SerpinB3/4, thereby affecting
keratinocyte and T cell cytokine secretion and T cell migration. SerpinB5 is an autoantigen of an autoimmune response and is the target of an
enhanced T-cell response in psoriasis. SerpinB7 deficiency significantly increased the expression of chemokines, neutrophil markers Ly6G, and
antimicrobial peptide S100A8, thereby exacerbating skin inflammation. SerpinB7 deficiency inhibits keratinocyte differentiation and promotes the
expression of inflammatory mediators by decreasing the calcium ion influx.
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requires further studies to confirm. SerpinB2 plays a role in

maintaining epidermal barrier integrity and inhibiting

keratinocyte proliferation. Some anti-inflammatory serpins

(SerpinB1, B2) are highly expressed in psoriasis, which may be

the body’s response to the development of the disease. Some serpins

(SerpinA1, A3, B3) cause GPP through a genetic mutation that

triggers skin inflammation. AGT(SerpinA8) and SerpinB8 are

susceptibility gene for psoriasis, but the specific mechanism has

not been studied. Based on the relevant literatures, we summarized

the possible mechanism of AGT and SerpinB8 to provide reference

for future research. The underlying mechanisms of serpins have not

been fully elucidated and needs to be further explored. The study of

serpins in the pathogenesis of psoriasis may provide a novel

therapeutic target for the treatment of psoriasis.
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