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A comprehensive understanding of tumor heterogeneity , tumor

microenvironment and the mechanisms of drug resistance is fundamental to

advancing breast cancer research. While single-cell RNA sequencing has

resolved the issue of “temporal dynamic expression” of genes at the single-cell

level, the lack of spatial information still prevents us from gaining a

comprehensive understanding of breast cancer. The introduction and

application of spatial transcriptomics addresses this limitation. As the annual

technical method of 2020, spatial transcriptomics preserves the spatial location

of tissues and resolves RNA-seq data to help localize and differentiate the active

expression of functional genes within a specific tissue region, enabling the study

of spatial location attributes of gene locations and cellular tissue environments. In

the context of breast cancer, spatial transcriptomics can assist in the

identification of novel breast cancer subtypes and spatially discriminative

features that show promise for individualized precise treatment. This article

summarized the key technical approaches, recent advances in spatial

transcriptomics and its applications in breast cancer, and discusses the

limitations of current spatial transcriptomics methods and the prospects for

future development, with a view to advancing the application of this technology

in clinical practice.
KEYWORDS

spatial transcriptomics, tumor microenvironment, individualized precise treatment,
breast cancer, heterogeneity
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1 Introduction

High-throughput sequencing (HTS), also known as next-

generation sequencing (NGS), is a class of technologies that can

sequence a large number of DNA or RNA samples simultaneously.

Since its emergence, it has gradually become the most important

tool for human genetic research due to its high sequencing

efficiency, short time, low cost and ability to provide more

accurate and richer genome sequence information (1). In the

early development stage of HTS, it was mainly focused on DNA

sequencing, especially in the field of genomics (2). With the

continuous development of technology, RNA sequencing (RNA-

seq) has gradually become a popular research direction, which

promotes the research of transcriptomics and epigenetics by

determining the sequence of RNA and analyzing the information

of gene expression, transcript variants and variable splicing (3).

With the rapid development of bioinformatics, materials science

and computer science, RNA-seq technology has been applied at the

single-cell level to analyze the transcriptome expression of a single

cell, which is called single-cell RNA sequencing (scRNA-seq) (4).

scRNA-seq technology can enable researchers to elucidate the

‘time-dynamic expression’ of genes at the single-cell level through

the selection of samples collected at different time points, thus

facilitating in-depth analysis of cellular heterogeneity and

identification of different cell types (5, 6). However, the spatial

information of the tissue samples is inevitably lost in the process. To

address this issue, researchers have begun to focus on the spatial

analysis of RNA-seq.

In 2016, the concept of spatial transcriptomics (ST) was first

proposed (7). ST represents an emerging frontier technology that

follows the development of scRNA-seq. It can preserve the spatial

location of tissues and simultaneously analyze RNA-seq data of

tissue sections to locate and distinguish the active expression of

functional genes in specific tissue regions (8). As a current research
Abbreviations: AI, Artificial intelligence; ADCs, antibody-drug conjugates;

CAFs, cancer-associated fibroblasts; CNN, convolutional neural network; CNV,

copy number variation; DCIS, ductal carcinoma in situ; DEGs, differentially

expressed genes; DNB, DNA nanospheres; DSP, digital spatial profiling; ECM,

extracellular matrix; EMO, expression-morphology; FFA, free fatty acids; EMT,

epithelial-mesenchymal transition; FFA, free fatty acid; FISH, fromfluorescently-

labeled RNA sequences; GEO-seq, geographical position sequencing; HDST, igh

definition spatial transcriptomics; HRD, homologous recombination defect; ICIs,

immune checkpoint inhibitors; IFN, interferon; IMPC, invasive micropapillary

carcinomal; ISH, in situ hybridization; ISS, in situ sequencing; ITH, intratumoral

heterogeneity; K15+, keratin 15+; LAMs, lipid-associated macrophages; LCM,

laser capture microdissection; Lock-Seq, lock-probe in situ sequencing; NGS,

next-generation sequencing; OCT, optimal cutting temperature compound;

OGC, osteoclast-like giant cells; oTME, organ-type TME; pCR, pathological

complete response; PDX, patient-derived xenograft; pNR, non-response

progression; QCCs, quiescent cancer cells; RNA-seq, transcriptomics

sequencing; scRNA-seq, single-cell transcriptomics sequencing; smFISH,

single-molecule RNA fluorescence in situ hybridization; ST, spatial

transcriptomics; TIVA, transcriptomics in vivo analysis; TME, tumor

microenvironment; tomo-seq, RNA tomography; ZNF689, zinc finger

protein 689.
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hotspot of single-cellomics, ST has been rated as the annual

technical method of 2020, allowing the location of genes to be

assessed and the tissue environment and spatial properties of cells to

be tracked (9). Various sequencing technologies including RNA-

seq, scRNA-seq and ST are important tools in today’s biology and

genomics research, bringing more choices to researchers. Each has

its unique advantages and limitations for different research needs, as

shown in Table 1.

Breast cancer is one of the most common cancers in the world,

and its tumor heterogeneity and biological function require further

analysis. The spatial location of cells in tissues is closely related to

cell function. The tumor microenvironment (TME) of breast cancer

is a highly structured ecosystem, including a variety of immune

cells, cancer-associated fibroblasts (CAFs), endothelial cells and

extracellular matrix (ECM) and other components (10). In the

occurrence and development of breast cancer, in addition to

changes in cell gene expression and function, it is often

accompanied by disturbances in tissue structure and spatial

location of cells (11). ST combines complex phenotypes and

spatial information to quantify tumor spatial heterogeneity at the

single-cell level, thus achieving new breast cancer subtype

identification and spatially resolved feature analysis, which is of

great significance for understanding the occurrence and

development of breast cancer and providing new strategies for the

treatment of breast cancer (12).

In this article, we reviewed the current methods and recent

advances in ST. We also discussed the application of ST in breast

cancer research, focusing on how ST can be used to study tumor

heterogeneity and TME, and provide a reference for solving breast

cancer drug resistance.
2 Technical approaches to ST

The concept of ST was originally derived fromfluorescently-

labeled RNA sequences (FISH), which uses fluorescent probes in

combination with targets to achieve in-situ detection of genes for

qualitative and quantitative analysis and relative position analysis.

In a broad sense, technologies that can simultaneously obtain tissue

or cell transcriptomics information and spatial information are

classified as ST, including the initial in situ imaging technology and

the subsequent development of laser microdissection technology

and spatial indexing technology (13, 14). After the combination

of microarray technology and next-generation sequencing (NGS)

technology, ST goes to the detection of a large number of

spatial spot information, which greatly improves the detection

efficiency. The current ST sequencing generally refers to the high-

throughput ST technology based on NGS technology and

microarray technology.
2.1 Laser capture microdissection-
based approaches

To obtain spatial gene expression information, the target region

can first be isolated from the sample, and then the dissected single
frontiersin.org
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region is placed separately in a test tube for RNA extraction and

sequencing. The separation of target regions can be achieved by

frozen section, RNA tomography (tomo-seq), laser capture

microdissection (LCM) and other methods (15–17). Among

them, LCM is more favored by researchers due to its advantages

of high speed, high precision and versatility.

LCM is a technique for cutting, separating and collecting

selected samples under a microscope using a micromanipulation

system. It works by combining a laser with an inverted microscope

and connecting it to a computer for direct visual analysis (18, 19).

The combination of LCM and scRNA-seq allows RNA sequencing

of individual cells or tissue regions (20). On this basis, Chen et al.

constructed a geographical position sequencing (GEO-seq) method

by integrating and optimizing LCM and scRNA-seq, which can

obtain a small amount of cell transcriptomics information while

retaining the original location information of cells, so as to achieve

high-throughput gene expression (21). Geo-seq enables high-

resolution ST by using a technique that tags mRNA in situ with
Frontiers in Immunology 03
spatially barcoded probes to map gene expression across

tissue sections.

Additionally, transcriptomics in vivo analysis (TIVA) enables the

examination of ST profiles in living cells. However, its analytical

throughput is limited, with the capacity to analyze only a few single

cells at a time (22). NICHE-seq employs photoactivation to conduct

transcriptomics analysis on individual cells within a specific niche,

but its applicability is limited to model organisms due to the necessity

of genetic engineering (23). ProximID is another approach to

examine the niche within the cellular microenvironment. It

innovatively identifies protein-protein interactions within cells by

using proximity labeling and high-throughput sequencing, allowing

for spatially resolved mapping of protein interactions. Nevertheless, it

remains constrained by the limitation of low flux (24).

In conclusion, as shown in Figure 1A, this technology can be

used to obtain ST information at the cellular level; however, its

analytical throughput is typically low, and the operation is complex

and time-consuming.
TABLE 1 Comparison of the advantages and disadvantages of RNA-seq, scRNA-seq and ST techniques.

RNA-seq scRNA-seq ST

Detection content
Average transcript information of

cell populations.
Transcriptomic data of individual cells.

Gene expression data from different
spatial locations.

Sample requirements
Large sample size, typically extraction of

total RNA from tissue or cells.
Requires single cells, with high

sample requirements.
Requires tissue sections, combined with

high-resolution microscopy.

Cell type resolution
No resolution at the cell type level; provide

an overall transcriptome profile.
Provide insights into the expression profiles

of different cell types within a sample.
Correlate gene expression with specific tissue

regions or cell types.

Scope of application
Suitable for gene expression analysis of large

samples, overall genomic trends.

Suitable for studying cellular heterogeneity,
cell type classification and differences

between cell populations.

Suitable for studying the spatial distribution
and functional differences of cells at different

locations within tissues.

Advantages

1. High sensitivity, suitable for large scale
gene expression analysis.

2. Data processing is relatively simple.
3. Can analyze multiple samples.

1. Can analyze cellular heterogeneity.
2. Can discover new cell types and

subpopulations.
3. Can reveal details of gene expression

within cells.

1. Can simultaneously acquire spatial
information and transcriptomic data.

2. Suitable for studying spatial heterogeneity
within tissues.

3. Highly accurate localization of
gene expression.

Disadvantages

1. Cannot detect intercellular differences.
2. Cannot obtain spatial information.
3. Difficult to obtain detailed cell type

information in highly
heterogeneous samples.

1. Data analysis is complex and requires
significant computing resources.

2. High cost.
3. Data processing is challenging.

1. High cost.
2. Spatial resolution may be limited.

3. Sample preparation is relatively complex
and requires integration with spatial

information for interpretation.

Difficulty of
data processing

Medium, can be handled by standard RNA-
seq data analysis tools.

High, involves complex processes such as
single cell data normalization and denoising.

High, involves spatial data integration and
transcriptome analysis with

spatial localization.

Technical developments
Mature technology and wide range

of applications.
Gradual maturity of technology, faster
updating, high development potential.

Emerging technology, still in rapid
development, part of the technology is still in

the optimization stage.

Suitable fields of study
Regulation of gene expression, disease-
related genes, genome-wide association

analysis, etc.

Single cell heterogeneity research, tumor
microenvironment, immune cell

research, etc.

Tissue-specific gene expression studies,
developmental biology, tumor
microenvironment studies, etc.
Detection content: various types of gene expression data that can be detected or collected during transcriptomic studies. Sample requirements: the specific conditions and quantities of biological
material needed to conduct a particular type of analysis or experiment. Cell type resolution: the level of detail at which gene expression data can be analyzed and interpreted with respect to
different cell types in a biological sample, determining how precisely the data can identify and differentiate gene expression patterns specific to distinct types of cells. Scope of application: the
applicability of different technical methods in genomic research helps researchers select the most suitable technology to address specific research questions. Advantages: the superiority or
strengths of a particular technology or method in its application, meaning the positive benefits or characteristics it can bring. Disadvantages: the limitations or shortcomings of a particular
technology or method in its application, meaning the potential negative impacts or constraints it may bring. Difficulty of data processing: the complexity of data processing, analysis and
interpretation when using a particular technology or method. Technical developments: the stages a technology goes through in its research, application and development process, including its
maturity, rate of change and potential for future development. Suitable fields of study: the academic fields or directions of research in which a particular technology or method is best suited for
application, usually closely related to the strengths and characteristics of the technology so that its full potential can be realized.
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2.2 In situ imaging-based approaches

Imaging-based ST technology employs microscopy to observe

mRNA following the combination of a chromogenic group with a

probe for in situ imaging. In situ hybridization (ISH) and in situ

sequencing (ISS) are the two most commonly utilized methods.

ISH is continuously hybridized in the tissue by a marker probe

that is complementary to the target sequence, and then imaged and

quantitatively positioned under a microscope (25). Single-molecule

RNA fluorescence in situ hybridization (smFISH) employs multiple

shorter probes to target discrete regions of the transcriptomics,

thereby enabling quantitative measurement of the transcriptomics

(26). Subsequently, the advent of RNAscope technology enabled the

simultaneous detection of up to 12 RNA targets, facilitating the

identification of a smaller number of mRNA and protein targets

(27). Continuous fluorescence in situ hybridization increases the

signal intensity of FISH by performing multiple rounds of

hybridization of a series of probes with transcripts to achieve

high-throughput analysis (28–30). Furthermore, a novel

technology designated as DNA Microscopy was put forth in 2019

(31). This method is based on thermodynamic entropy and does not

necessitate the use of sophisticated, costly optical instrumentation.

The sample itself, in conjunction with the requisite reagents, is

capable of providing the requisite spatial information as part of the

chemical reaction, thus assisting in the clarification of the spatial

structure information present in cells and tissues (32).

In summary, ISH offers the benefits of high resolution and

extensive flux detection; however, there are still constraints,

including prolonged processing times, significant errors, and

elevated costs (Figure 1B).
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In 2013, the inaugural publication of ISS technology was

released (33). In complete tissue sections, mRNA is initially

transcribed into cDNA, and subsequently, a single-stranded DNA

molecule, referred to as a lock-probe in situ sequencing (Lock-Seq)

method, is employed to target identified genes. In comparison to

ISH, ISS exhibits superior subcellular resolution; however, the

number of targets that it can examine is restricted. Subsequently,

FISSEQ and ExSeq enhanced the capabilities of ISS by employing

two query bases to sequence circular and RCA-amplified cDNAs, as

opposed to utilizing a single query base per probe to sequence gene

barcodes (34, 35). The advantage of STARmap is that a second

primer is added to the site next to Lock-Seq, thereby avoiding the

reverse transcription step and improving efficiency and reducing

noise (36). Furthermore, the advent of technologies such as

BaristaSeq, INSTA-Seq, and HybISS have revolutionized ISS by

improving spatial resolution, throughput, and sensitivity.

BaristaSeq enables high-throughput sequencing directly from

tissue sections with enhanced precision, INSTA-Seq provides

rapid, single-molecule sequencing for faster analysis, and HybISS

combines hybridization and ISS for precise ST (37–39). These

advancements allow for more detailed, scalable, and efficient

mapping of gene expression across tissues, opening new

possibilities for studying complex tissue architectures and their

molecular dynamics in health and disease (Figure 1C).
2.3 NGS-based approaches

The ST techniques described above are based on the separation

of known tissue regions of interest, or in situ visualization of RNA
FIGURE 1

Advantages and disadvantages of different spatial transcriptomics technologies. (The green color shows the advantages of the technology, while the
yellow color shows the disadvantages.) (A) Laser capture microdissection-based approaches. (B) In situ hybridization-based approaches. (C) In situ
sequencing-based approaches. (D) Next-generation sequencing-based approaches.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1499301
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


An et al. 10.3389/fimmu.2024.1499301
molecules by hybridization or sequencing, while NGS technology is

based on in situ capture of transcripts, followed by ectopic

sequencing. This method was developed from the conceptual

innovation of the scRNA method.

In 2016, Ståhl PL et al. successfully obtained spatial-resolved

full-transcriptomics information using ST technology. This

technique captures polyadenylated RNA on the slide of the spatial

barcode microarray before reverse transcription, thereby ensuring

that each transcript can be mapped back to its original point

through a unique posit ional molecular barcode (40).

Subsequently, this innovative approach was acquired by 10×

Genomics and commercialized as a Visium space gene expression

solution (41).

In 2019, high-throughput ST sequencing emerged, with the

most representative method being high definition spatial

transcriptomics (HDST) (42–44). HDST involves embedding

silica gel magnetic beads with a diameter of 2 mm on a slide, with

a specific spatial barcode connected to the surface of the magnetic

beads to capture the mRNA of the cells at the corresponding

position for reverse transcription and transcriptomics sequencing.

As shown in Figure 1D, the limitation of ST is that the analysis

location is a small area of multiple cells, which is not a genuine analysis

of a single cell. Consequently, subsequent new technology has focused

on maintaining the resolution of a single cell or subcellular level. Seq-

Scope, based on the Illumina sequencing platform, allows for the

visualization of transcriptomic heterogeneity at the cellular and

subcellular levels in a range of tissues, with a sub-micron resolution

(45). Sci-Space combines single-cell gene expression differences with

spatial backgrounds, preserving single-cell resolution (46).

Furthermore, Stereo-Seq integrates DNA nanospheres (DNB) and in

situ RNA capture technology to facilitate high-throughput

transcriptomics analysis of tissue sections at unparalleled nanoscale

resolutions. The visual field can be extended to the centimeter level,

exhibiting high sensitivity and uniform capture rate (47). Stereo-Seq is

anticipated to become a fundamental tool for analyzing transcriptomics

heterogeneity in complex tissues and organisms.
2.4 Computer reconstruction of
spatial data

The high cost of ST precludes its extensive use in clinical

applications, particularly when evaluated against the backdrop of

alternative experimental methods. Currently, the advent of

information technology has given rise to a novel approach for

calculating spatial analysis gene expression datasets. This method

employs computer algorithms to simulate the spatial morphology of

reconstructed tissues based on single-cell transcriptomics data. To

illustrate, Seurat, an R package that is frequently employed in

single-cell data analysis (48). By integrating spatial information

and gene expression data, Seurat is able to reconstruct spatial

transcriptional profiles of tissues, revealing the spatial distribution

and functional status of cells in tissues. It can process in situ

sequencing data of spatially tagged genes for spatial clustering,

differential expression analysis and cell type annotation. In addition,

Seurat supports multimodal data integration to help researchers
Frontiers in Immunology 05
understand the dynamics of gene expression at the spatial level and

promote in-depth studies of disease mechanisms and tissue

structure (49, 50).

Furthermore, the optimization of deep learning calculation

methods can be conducted repeatedly in the context of continuous

modeling and verification. Additionally, the prediction of ST

expression can be achieved through the utilization of existing

histological images (51, 52). The toolboxes Starfysh, DeepST,

MISTy, standR, and others are based on deep generative models.

Such methods can not only analyze the spatial dynamic

characteristics of complex tissues, but also identify spatial hubs

composed of different subtypes of cells. They have become

invaluable for investigating the structural and functional

interactions of disparate spatial backgrounds in ST.

Starfysh is designed for processing spatial transcriptome data from

tissue sections. It is able to automatically identify and classify spatial

regions and reveal the spatial distribution of different cell populations

in tissues by combining image data and gene expression information.

Using deep neural networks, Starfysh accurately combines spatial

information from tissue sections with gene expression patterns to

achieve a comprehensive analysis of spatial structure and function,

which is widely used to study spatial heterogeneity of tissues and

dynamic changes in the microenvironment (53). DeepST aims to

predict the spatial location of cells in tissue sections by learning

complex patterns in spatial transcriptomic data. The tool is able to

automatically learn spatial associations between cells from the data by

combining gene expression data with tissue section image information

and using a convolutional neural network (CNN) model for spatial

reconstruction and prediction. DeepST is mainly used to study

complex tissue structures such as cell type distribution, spatial

dynamics features, and the TME, and helps to reveal the interactions

between cell function and tissue morphology (54). MISTy accurately

predicts the spatial location of cells and their transcriptional status in

different spatial regions by analyzing high-resolution images of tissue

sections in combination with spatial transcriptome data. It can reveal

the multilevel structure and dynamic changes of spatial gene

expression, and is particularly suitable for spatial gene expression

analysis of the tumor immune microenvironment and complex

tissues (55). StandR is mainly used to solve the problem of

correlation between spatial structure and gene expression of complex

tissues. It is capable of identifying cell subtypes and their distribution

patterns in different spatial locations through deep learning modeling

of spatial transcriptome data combined with tissue section image

information. standR not only supports large-scale data analysis, but

also effectively identifies spatial interactions among cells, and is widely

used in the study of tissue differentiation, tumor heterogeneity and

disease-related microenvironments (56).

The innovative calculation method can also address the issue of

ST being challenging to differentiate between similar cell

populations, thereby enhancing the efficiency of sample capture.

Artificial intelligence (AI) can identify different cell types and tissue

regions in HE staining images and assign cell type labels to each

spatial location. Combined with spatial transcriptome data, this

annotation information helps to resolve the spatial layout of

different cell populations in tissues and their association with

gene expression (57–59). Zubair A et al. employed cell type-
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specific immunofluorescence markers obtained from mouse brain

tissue sections and utilized artificial intelligence to annotate the

output of HE tissue images, which markedly enhanced the

recognition rate of clinically pertinent immune cell infiltration in

tissues and broadened the scope of ST applications (60).

In short, laser capture microdissection-based approaches and in

situ imaging-based approaches usually require expensive equipment

(e.g. laser microdissectors, high-resolution imaging microscopes) and

are therefore more costly. Both approaches also require more time for

data acquisition and are less efficient, especially for complex tissue

sections. NGS-based approaches and computer reconstruction of

spatial data, on the other hand, are relatively less costly as they rely

on high-throughput equipment and computational power, but do not

require expensive hardware support. They are more efficient when

dealing with large numbers of samples and can quickly process and

analyze large spatial data sets. In terms of accuracy of results, laser
Frontiers in Immunology 06
capture microdissection-based approaches and in situ imaging-based

approaches provide high spatial resolution and accuracy, and are

suitable for fine analysis at the cellular level. NGS-based approaches

and computer reconstruction, although capable of handling large

data sets, may not provide the same precise spatial localization as the

former two and are therefore slightly less accurate in terms of result

accuracy. Table 2 shows a comparison of the advantages and

disadvantages of the different technological tools.
3 The workflow of ST

Despite the advent of numerous technical approaches to ST

analysis, the majority of these methods are hindered by significant

limitations, including intricate operational complexity, suboptimal

detection accuracy, and constrained detection throughput.
TABLE 2 Comparison of the advantages and disadvantages of the ST approaches.

Laser capture
microdissection-
based approaches

In situ imaging-
based approaches

NGS-based approaches
Computer

reconstruction of
spatial data

A
d
van

tag
e
s

1. High accurate localization of
individual cells.
2. Ability to dissect and extract
specific regions from tissue sections
for single-cell RNA sequencing.
3. Provides a more intuitive
analysis of the spatial heterogeneity
in complex tissues.

1. Spatial gene expression
information can be directly
obtained from tissue sections,
avoiding the loss caused by cell
dissection.
2. Can efficiently acquire spatial
distribution images and gene
expression data.

1. Efficient spatial localization and
indexing of large datasets.
2. Enables spatial transcriptomics
analysis across the entire genome.
3. High throughput, suitable for
large sample analysis.

1. Can reconstruct high-resolution
spatial gene expression maps from
existing low-resolution data.
2. Can integrate multimodal data
from different sources.
3. Suitable for spatial
reconstruction to complement
existing data.

D
isad

van
tag

e
s

1. The operation is complex and
requires advanced equipment and
specialized personnel.
2. Sample loss during the dissection
process is relatively high, which
can affect data integrity.
3. Processing speed is relatively
slow, especially for large samples.

1. Imaging equipment is expensive
and requires high image resolution.
2. Data volume is large, and
processing and analysis require
high computational power.
3. Spatial resolution may be limited
by the imaging technology.

1. Spatial resolution may be lower,
especially when the indexing
resolution is coarse.
2. May lack precise localization at
the cellular level.
3. Integration of spatial
information and gene expression
requires complex
algorithmic support.

1. Reconstruction results are highly
influenced by the quality of the
original data and the precision of
the algorithm.2. Requires
significant computational and
storage resources.3. Accuracy is
limited by the reconstruction
model and data resolution.

C
o
st

High (It requires expensive laser
microdissection equipment and
subsequent scRNA-seq.)

High (It requires advanced
microscopy equipment, typically
with complex staining steps.)

Medium (It relies on high-
throughput equipment and
software, relatively low cost.)

Medium (It depends on computing
resources and existing data.)

E
fficie

n
cy

Low (Sample processing is complex
and slow.)

Medium (Imaging is fast, but data
processing is large.)

High (It can handle large samples,
and data processing is
relatively fast.)

High (Reconstruction speed is fast,
especially if based on existing data.)

A
ccu

racy

Relatively high (It can accurately
localize cells, suitable for high-
precision research.)

High (It enables gene expression
analysis with high
spatial resolution.)

Medium (Spatial localization
accuracy is lower than laser
microdissection or
imaging techniques.)

Medium (Reconstruction accuracy
depends on data quality and
algorithm precision.)
Advantages: the main advantages or strengths of different technologies and techniques used in spatial transcriptomics and related research fields, highlighting why each technique is valuable for
studying spatial gene expression, tissue architecture and cellular heterogeneity. Disadvantages: the problems or limitations that a particular technology, method or process may encounter in
practice, which can often affect the effectiveness, efficiency or reliability of the results. Cost: a relatively high cost associated with the technology or method, typically due to the need for expensive
equipment, consumables or subsequent steps. Efficiency: the technology or method has relatively low efficiency, typically because the sample processing is complex and slow, which results in
slower overall operations and difficulty in quickly handling large samples or data. Accuracy: the technology or method is capable of performing operations or measurements with a relatively high
degree of accuracy, particularly in terms of accurately localizing cells or achieving the precision required for specific research purposes.
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Consequently, they are not yet suitable for widespread implementation.

At present, 10× Genomics Visium is the only commercially available

ST sequencing scheme that offers high precision and high throughput.

The technology has a straightforward workflow, a relatively short

processing time, and a wide range of potential applications. The key

steps in the Visium experiment are illustrated in Figure 2.
3.1 Sample and slice preparation

Initially, fresh tissue samples were fixed in isopentane and frozen

in liquid nitrogen. This process was employed to safeguard the quality

of RNA and the integrity of tissue morphology, thereby ensuring an

accurate reflection of cellular and genetic distribution in space.

Optimal cutting temperature compound (OCT) is a fixative agent.

Following rapid freezing, the tissue samples must be embedded with

OCT embedding agent. This has the dual benefit of reducing wrinkles

and fragmentation during slicing and increasing the continuity of

tissues. Prior to slicing with a freezing microtome, the tissue and 10 ×

slide were placed in a −20°C freezing microtome box for

approximately 30 minutes. The thickness of the slice was typically

10 mm, with a maximum size limitation (61).
3.2 RNA capture and cDNA synthesis

After the preparation of the slices, HE staining or IF staining was

performed and photographed to detect the quality of the slices and
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patches. Subsequently, tissue permeabilization was performed and

fluorescent cDNA was synthesized. The optimal permeabilization

time was then identified according to the fluorescence intensity. The

slices were then processed according to the optimal permeabilization

time. The addition of permeabilization reagents to the slices resulted

in the mRNA of the cells being released vertically down to the slide

and bound to the capture sequence of the spatial microarray. cDNA

was then synthesized by reverse transcription of the captured mRNA.
3.3 Library construction, high-throughput
sequencing and data analysis

Following the acquisition of cDNA, the library was constructed

and sequenced using an illumina high-throughput sequencing

instrument, thereby obtaining the requisite sequencing data. The

fundamental aspect of ST data analysis is the implementation of

dimensionality reduction and clustering techniques, which are

based on the gene expression variations observed across different

spatial units on each chip. This is then correlated with the

corresponding tissue image. Concurrently, the spatial position of

each gene expression within the tissue can be determined.

In general, Seurat is employed for the analysis, visualization and

integration of spatial data sets. The field of spatial analysis

encompasses a range of techniques, including normalization,

dimensional reduction and clustering, spatially-variable features,

interactive visualization, and working with multiple slices. The steps

of ST data preprocessing are analogous to those of typical scRNA-
FIGURE 2

Experimentation workflow of the spatial transcriptomics. (Created with BioRender.com).
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seq. To address the discrepancy in sequencing depth between data

points, the data must be normalized. In contrast to scRNA-seq, the

molecular plot of a spatial dataset can exhibit considerable

variation, particularly in instances where there are notable

differences in cell density across the tissue, resulting in a

substantial degree of heterogeneity. Sctransform facilitates the

normalization of data, enabling the detection of high variation

features and the storage of data in SCT format (62).
3.4 Integration of ST and scRNA-seq data

10× Genomics Visium technology is a powerful ST tool that

enables efficient spatial localization of gene expression in tissue

sections (63, 64). However, there are some potential limitations of

this technology, especially when dealing with different types of

breast cancer samples. Firstly, the limited spatial resolution of the

Visium technique, typically 55 µm, means that it may not be able to

capture fine-scale differences between cellular subpopulations in the

TME, particularly interactions between tumor cells and immune or

stromal cells. Secondly, Visium is dependent on the quality and

integrity of the tissue sections, which may affect the accuracy of the

data for some breast cancer samples, especially those with high

tissue stiffness or heterogeneity. In addition, the technique may be

affected by background noise and technical bias when processing

complex tumor samples, requiring multiple optimizations and

algorithmic adjustments to improve data availability and

resolution. Therefore, the Visium technology still needs to be

combined with other technologies (e.g., laser microdissection or

scRNA-seq) to obtain more accurate spatial transcriptomic data in

studies of different breast cancer subtypes (65, 66).

By anchoring and integrating ST and scRNA-seq data, a three-

dimensional transcriptomics map of the target tissue can be

obtained. In this process, since the noise patterns of the

representation space and the single-cell data set are very different,

it is generally recommended to use the integral method rather than

the deconvolution method (67).

The emerging ST technology, combined with microscopic

imaging and scRNA-seq, can reveal the gene expression and

arrangement distribution of individual cells at subcellular spatial

resolution. This allows for the maximization of cellular

heterogeneity, the discovery of new cell populations and cell

subsets, and the clarification of the regulatory mechanisms that

govern cellular status. This, in turn, provides technical support for a

range of applications (68, 69).
4 Application of ST in the treatment of
breast cancer

Conventional scRNA-seq fails to provide spatial information

about cells in tumor tissue, which is particularly critical for breast

cancer treatment (70). Tumor heterogeneity and microenvironment

have a significant impact on treatment response, and single-cell data

cannot reveal gene expression differences and cellular interactions

between different regions (71). The application of spatial
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transcriptome sequencing in breast cancer provides an important

tool to study the TME and its interaction with tumor cells. By

combining gene expression and spatial information, this technology

can reveal the spatial distribution and functional status of different

cell populations within a tumor, helping researchers to understand

tumor heterogeneity, immune escape mechanisms, and the process

of tumor progression. Spatial transcriptomic data in breast cancer

samples can help identify changes in immune cells, stromal cells,

and blood vessels around the tumor, providing targets for precision

therapy. For example, it has been found that the spatial relationship

between immune cells and tumor cells may influence the tumor’s

ability to escape immunity, and thus the response to treatment (72,

73). In addition, the spatial transcriptome could be used to

monitor molecular signatures in different subtypes of breast

cancer, which in turn could facilitate the development of

personalized treatment strategies.
4.1 Tumor heterogeneity

Tumor heterogeneity refers to the changes in molecular biology

or genes during tumor growth, resulting in differences in growth rate,

invasion ability, drug sensitivity and prognosis of different tumor cells

(74, 75). Despite the prevailing view that breast cancer has a

monoclonal origin, the occurrence and development of this disease

is the result of numerous divisions and proliferations, continuous

evolution, epigenetics, genomics and microenvironment changes,

which collectively give rise to heterogeneity (76). Heterogeneity

represents a significant challenge in the treatment of breast cancer,

manifesting as diverse histological subtypes, varying treatment

sensitivities, and disparate clinical outcomes among patients. ST

offers a valuable avenue for elucidating the genetic and phenotypic

distinctions of tumor cells, analyzing the spatial heterogeneity of gene

expression across diverse tissue regions, and providing a multi-

dimensional and comprehensive perspective for investigating tumor

heterogeneity (77–79).

The majority of studies have integrated ST with pathological

annotation and deconvolution, utilizing diverse methodologies to

accurately delineate the location, enrichment characteristics and

differentially expressed genes (DEGs) of breast cancer subtypes,

thereby elucidating the spatial distribution and transcriptional

heterogeneity of breast cancer (80, 81). In 2013, the heterogeneity

of 31 gene expression in breast cancer tissues was first observed

using ISS technology. On this basis, Svedlund et al. conducted a

combined molecular and morphological analysis of the expression

of 91 genes in breast cancer tissues, revealing the intratumoral

heterogeneity associated with breast cancer subtypes (82). Single-

cell transcriptome sequencing of 26 primary breast cancers and

spatial transcriptome sequencing of six breast cancers were

performed to construct single-cell and spatial maps of breast

cancers, revealing cellular heterogeneity in recurrent tumors and

identifying novel PD-L1/PD-L2+ macrophage populations

associated with clinical outcomes. Through this integrative

analysis, the researchers were able to classify breast cancers into

nine ‘ecotypes’ with distinct cellular composition and clinical

outcomes, suggesting that the use of ST is statistically significant
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in classifying breast cancers and predicting response to therapy

(83). A paucity of zinc finger protein 689 (ZNF689) has been

demonstrated to facilitate LINE-1 reverse transcription, thereby

exacerbating genomic instability and resulting in elevated

intratumoral heterogeneity (ITH) (84).

The combined analysis of ST and single-cell omics allows for

the consideration of both resolution and gene-level flux, which is an

essential method for elucidating tumor heterogeneity (85). Studies

have found that ER+ breast cancer has four heterogeneous groups,

namely estrogen-responsive group, proliferative group, hypoxia-

inducible group and inflammation-related group. The proliferative

compartment has been identified as a key factor in the invasiveness

of luminal B breast cancer (86). Liu et al. not only determined the

heterogeneity of characteristics, origin and function of different cell

populations in breast cancer tissues, but also employed the spatial

distribution map of tumor subsets to describe the different stromal

cell types in different tissue regions, providing a comprehensive

method for describing the heterogeneity and structure of breast

cancer (87). In luminal epithelial cells, Kohler et al. observed 11

distinct breast cancer clusters and differentiation trajectories

originating from keratin 15+ (K15+) progenitor cells, indicating a

robust correlation between normal K15+ primordium and basal-

like breast cancer (88).

Copy number variation (CNV) can be used to reveal precancerous

lesions (89). Lu et al. employed a combination of FISH and LCM with

Smart-3SEQ to ascertain that HER2-amplified ductal carcinoma in situ

(DCIS) has multiple subclones with different CNVs (90).

In addition, the spatial heterogeneity of metabolic structure is

also an important part of tumor heterogeneity. ST studies have

shown that glycolysis, profibrotic states, and metabolic

reprogramming based on lipid metabolism play an important role

in the extensive heterogeneity of breast cancer (91–93).

The high cost of ST limits its clinical application. To address

this issue, some more cost-effective new methods have emerged.

The deep learning algorithms ST-Net and BrST-Net can link the cell

morphological characteristics and gene expression in ST, predict

gene expression using HE tissue case images, and identify the

heterogeneity of gene expression in tumors (94, 95). Based on the

optimization and verification of a single deep convolutional neural

network, the expression-morphology (EMO) analysis of the

transcriptomics coverage area was established to predict gene

transcription differences and proliferation markers in different

regions of H&E staining images. The new method is reliable,

economical and scalable (96).

Table 3 provides an overview of studies on the use of ST to study

heterogeneity in breast cancer.
4.2 Tumor microenvironment

Intratumoral heterogeneity emphasizes the difference of cells or

cell subsets in TME, which can reshape the occurrence,

development, invasion, metastasis and drug sensitivity of tumors

(97). TME is constituted of a heterogeneous population of cells,

including tumor cells and surrounding immune cells, interstitial

cells, and active mediators (98). It can be divided into two distinct
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categories: an immune microenvironment, which is dominated by

immune cells, and a non-immune microenvironment, which is

dominated by fibroblasts. Currently, cancer research and treatment

have changed from a cancer-centric model to a tumor

microenvironment-centric model. ST technology is instrumental

in elucidating the diversity and intricacies of cell populations within

the breast cancer microenvironment, and has become a powerful

tool for a comprehensive investigation of the occurrence,

progression and escape mechanisms of breast cancer (99–101).

Through spatial analysis of samples from HER2+ breast cancer

patients before and after neoadjuvant HER2-targeted therapy, it was

found that treatment resulted in decreased activation of HER2-

dependent signaling, increased immune infiltration, and that

increased expression of CD45 at the time of treatment more highly

accurately predicted the presence of a pathological complete

remission (pCR) in patients, findings which reveal the role of ST in

predicting treatment response and guide clinical management (102).

Tumor-infiltrating macrophages play a crucial role in tumor

progression, and their accumulation in TME is associated with poor

prognosis and drug resistance in a multitude of cancers. In TME,

macrophages exhibit different phenotypic alterations, leading to

heterogeneous immune activation (103). At present, the treatment

of macrophages focuses on inhibiting their recruitment or

reprogramming their phenotype from M2-like to M1-like. The

development of ST has improved the understanding of the

macrophage body, phenotype and functional plasticity, and

provided a new way for macrophage targeted therapy (104). In

order to study the determinants of functional heterogeneity of TME

macrophages, researchers employed an in vitro organ-type TME

(oTME) model, an in vivo mouse model, and human samples of

breast cancer. The study found a subset of F4/80highSca-1+ self-

renewing macrophages mediated by Notch4 and maintained by

type I interferon (IFN), which is closely related to the growth and

metastasis of breast cancer (105). In breast cancer cell-infiltrating

lymph nodes, macrophages are abundant in pathways that promote

tumor growth, NF-kB and NOD-like receptor signaling pathways,

and elucidate the differentiation trajectory of macrophages from

active chemokine production to active lymphocyte activation (106).

Tzeng et al. found that LSM1, a part of the cytoplasmic protein

complex Lsm1-7-Pat1, affects the energy metabolism of TME

macrophages and breast cancer metastasis, suggesting its potential

as a diagnostic and prognostic marker (107).

Dysregulation of lipid metabolism is also a feature of TME,

especially excessive free fatty acids (FFA). Studies have found that

lipid-associated macrophages (LAMs), a unique macrophage

subset, can highly express macrophage markers, lipid metabolism

genes and lipid receptors, have M2 macrophage phagocytosis

characteristics, and can enhance lipid accumulation (108). In

addition, macrophages exhibit strong tryptophan metabolic

activity in breast cancer, which can promote the polarization of

M1 macrophages and predict the efficacy of immunotherapy (109).

The spatial distribution of tumor infiltrating lymphocytes

(TILs) can be a predictor of the prognosis of breast cancer and

the response to systemic treatment. Romanens et al. employed ST-

FFE to analyze the immune cell subsets in the stromal and

intraepithelial regions of TNBC. Their findings indicated that, in
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comparison to stromal cells, intraepithelial T cells and B cells

exhibited reduced diversity and stronger clonality (110).

Cancer-associated fibroblasts (CAFs) are another diverse cell

population indispensable for remodeling TME. Studies have

identified four distinct functional fibroblast subsets and
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characterized their spatial distribution patterns. Among these,

iCAFs are enriched in breast cancer and play a pivotal role in

promoting an immunosuppressive microenvironment, which is

altered in accordance with the status of breast cancer (111, 112).

In a study by Kang et al., the impact of homologous recombination
TABLE 3 Summary of studies on applications of ST to breast cancer heterogeneity.

Technique Sample Conclusion Reference

10× Visium, combined
pathological annotations and
deconvolution approaches

Fresh frozen TNBC samples with
paired whole exome sequencing

(WES) data

Existing bulk expression signatures of highly plastic breast cancers are
relevant in mesenchymal transdifferentiated compartments, but may be

confounded by abundant stromal cells in tumor samples.
(80)

10× Visium
De-identified human breast tissues

and patient’s primary
TNBC tumors

There is a conserved spatio-transcriptional architecture in TNBC, despite
intratumoral and stromal heterogeneity within individual samples.

(81)

ISS-based OncoMaps
Fresh frozen tissue sections from

breast cancer tumors

An analytical method, OncoMaps, has been developed that couples highly
multiplexed gene expression profiling to the morphological features of the
tumor tissue, and can deliver corresponding gene expression information

on system level to clinically relevant tumor regions.

(82)

10× Visium

The multi-omics TNBC dataset
from FUSCC, TNBC cases from
the TCGA, and multiple mouse

models of patient-derived
xenograft (PDX)

In TNBC, ZNF689 has been shown to functionally modulate LINE-1
retrotransposition to reduce intratumor heterogeneity.

(84)

10× Visium and Xenium
Paraffin-embedded breast cancer

tissue block

Investigation of cell neighbors and identification of rare boundary cells that
are at the critical myoepithelial border confining the spread of

malignant cells.
(85)

10× Visium
PDX models with distinct

biological responses to oestrogen

Four active populations (i.e. oestrogen-responsive, proliferative, hypoxia-
induced and inflammation-related) and a cell cluster associated with
oestrogen-dependent tumor proliferation in ER breast cancer were

identified, and this cell cluster is spatially and functionally distinct from
cells expressing typical estrogen-responsive genes.

(86)

snRNA-seq and ST datasets
Fresh samples from
primary tumors

The spatial distribution of the primary non-tumor cells was discerned in
the ST dataset, indicating that neutrophils were predominantly

concentrated in the luminal region, whereas B cells exhibited a propensity
to infiltrate the basal region.

(87)

scRNA-seq and multicolor imaging

Normal breast tissue and breast
carcinoma specimens from women

undergoing mastectomy for
primary breast cancer

There is a strong correlation between normal ductal progenitors and basal-
like breast cancer, and K15 basal-like breast cancers originate in

ductal progenitors.
(88)

Constructing a classifier and a
spectral co-clustering algorithm to

define biclusters

Patients undergoing mastectomy
for carcinoma

Tumor initiation may not be driven by copy number aberrations and that
expression data points to an altered field surrounding the tumors.

(89)

HER2-FISH and LCM Smart-3SEQ DCIS and normal breast samples
HER2 amplification in DCIS alters the transcriptomic profiles and

increases diversity of CNVs.
(90)

10× Visium
Fresh surgical specimens (primary

tumors and paired metastatic
lymph nodes)

A switch between glycolysis and OXPHOS in breast cancer cells is the
early event in lymph node metastasis.

(93)

10× Visium
Freshly frozen IMPC samples from
breast cancer patients undergoing
modified radical mastectomy

IMPC has higher levels of lipid metabolism and higher levels of SREBF1
gene expression.

(91)

10× Visium and ST-Net
A new dataset consisting of 23
patients with breast cancer

ST-Net links gene expression with visual features in cell morphology, and
infers the spatially resolved expression of key cancer-related genes from

tissue images.
(94)

10× Visium and BrST-Net The publicly accessible ST dataset
In comparison to ST-Net16, BrST-Net framework improves the gene

expression prediction performance quite substantially.
(95)

Transcriptome-wide EMO analysis
using large-scale deep learning and

routine H&E WSIs

Three data sources consists of
female patients with breast cancer

Deep learning-based image analysis for prediction of the tumor average
expression of a substantial number of transcripts is possible and feasible.

(96)
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defect (HRD) on TME development at varying scales was

investigated. The findings revealed that HRD alters the dominant

phenotype of CAFs from mCAFs to iCAFs and is associated with

immune cell function (113).

Table 4 presents a summary of studies on the applications of ST

to breast cancer microenvironment.
4.3 Drug resistance

Drug resistance is the main obstacle to the treatment of breast

cancer, which is related to tumor heterogeneity. Using ST to detect

drug resistance-related cell subsets and explore their unique gene

expression patterns is essential for predicting and reversing drug

resistance. Basal epithelial subsets are located in the matrix and have

the characteristics of drug resistance, and the up-regulated ACTN1

can promote chemotherapy resistance (114). MCU, as a diagnostic

biomarker for breast cancer, is associated with advanced clinical

status and a low overall survival rate. Inactivation of this protein has

been shown to increase sensitivity to specific small molecule

drugs (115).

The objective of immunotherapy is to reinstate a normal anti-

tumor immune response by reactivating and sustaining the tumor-

immune cycle, thereby controlling and clarifying tumors.

Immunotherapy includes immune checkpoint inhibitors,

therapeutic antibodies, and small molecule inhibitors. In recent

years, immunotherapy has also shown robust anti-tumor activity in
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breast cancer, bringing long-term clinical benefits to some patients

(116). Unfortunately, due to the loss of immune response and the

emergence of drug resistance, this treatment is only effective for

some patients. ST can facilitate a deeper understanding of the

immunobiology of TME and identify biomarkers for predicting

the efficacy of immunotherapy in patients (117). Tashireva et al.

observed that PD-L1-positive tumors lack direct contact between

PD1 receptor-expressing cells and PD-L1 ligand-expressing cells,

and the lack of this specific immune response may be the reason for

the low sensitivity of TNBC patients to immune checkpoint

inhibitors (ICIs) (118). Indeed, only a single subgroup of TNBC

exhibits responsiveness to ICIs. Investigations have examined the

correlation between the spatial organization of immune cells in

TNBC and T cell evasion, identifying that deposits of collagen-10,

enhanced glycolysis, and activation of TGF-b/VEGF pathways are

associated with resistance to anti-PD1 (119). TNBC patients with

high Treg infiltration-related scores lack the stimulation of immune

activation pathways, which results in resistance to immunotherapy

against PD-1 (120).

OTUD4/CD73 proteolytic axis therapy represents a promising

avenue for the treatment of immunosuppressive TNBC. The

ubiquitination of CD73 by OTUD4 can counteract the

deubiquitination of CD73 by TRIM21, resulting in the stability of

CD73 and the prevention of a tumor immune response. ST80, a

novel inhibitor that destroys the proteolytic interaction between

OTUD4 and CD73, has the potential to enhance the efficacy of PD-

L1 treatment in TNBC (121).
TABLE 4 Summary of studies on applications of ST to breast cancer tumor microenvironment.

Technique Sample Conclusion Reference

Unsupervised
clustering analysis

The spatially resolved
transcriptomic data and images of

breast cancer patients from
GEO database

Compared with the number in KLF5high tumors, the number of CD4+ and
CD8+ T lymphocytes was significantly increased in samples from KLF5low

tumors, whereas the percentage of monocytes was markedly reduced
(101)

GeoMx DSP
Samples of patients with HER2

+ breast cancer
Stromal and tumor localized immune cells in the TME are more active in

primary versus metastatic disease.
(100)

10× Visium
Patient’s primary breast

cancer tumors
Activated CD8+ cells shows higher tumor spatial specificity than naive CD8+

cells, consistent with their antitumor function.
(103)

10× Visium Human breast tissue samples
The spatial localization of TME macrophages impacted not only their self-

renewal capacity, but also their broader phenotype.
(105)

10× Visium
Positive lymph nodes of breast

cancer patients
OGCs are scattered among metastatic breast cancer cells. (106)

10× Visium
ST data from a

previous investigation
LSM1 links to macrophage, and its alterations may drive breast

cancer progression.
(107)

10× Visium
Public spatially

transcriptomics data
The function and spatial distribution of TAMs present an obvious

heterogeneity in the TAME of breast cancer.
(108)

ST-FFPE
FFPE and fresh-frozen samples of

TNBC patients
There is a highly variable spatial distribution of immune cell subsets

among tumors.
(110)

10× Visium Publicly available ST dataset
iCAFs can promote breast cancer cell proliferation, EMT and the

establishment of an immunosuppressive microenvironment.
(112)

10× Visium Human breast tissue samples
The spatial organization of the BC TME is described, focusing on the diversity
and plasticity of the FAP+ CAF and its interaction with surrounding cells.

(111)

10× Visium Publicly available ST dataset
HRD reprograms the predominant phenotype of CAFs from myofibroblastic

CAFs to inflammatory-like CAFs.
(113)
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IMM2902 is an anti-CD47/HER2 bispecific antibody that has

been developed for the treatment of patients with trastuzumab-

resistant breast cancer. Furthermore, IMM2902 can also stimulate

macrophages to produce CXCL9 and CXCL10, thereby increasing

the level of T cells and NK cells at the tumor site (122).

Antibody-drug conjugates (ADCs) are a type of targeted

therapy for cancer that connect antibodies to drugs through

precisely designed chemical ligation methods, showing excellent

efficacy in the treatment of breast cancer. ADCs hinder the

progression of cell cycle. Cetuximab-CDK inhibitors can use the

overexpression of epidermal growth factor receptor and the

disordered cell cycle in invasive and drug-resistant tumors to

target and effectively deliver drugs targeting cell cycle to basal-

like/TNBCs, bringing new hope for the treatment of drug-resistant

breast cancer patients (123).

A summary of studies applying ST to breast cancer drug

resistance is presented in Table 5.
5 New hope for individualized
precise treatment

Breast cancer has a variety of subtypes, which are different in

genetics, histology and clinical features, and there are potential

variations between different subtypes (124, 125). The treatment of

breast cancer is dependent on a number of factors, including the

specific subtype of cancer, the extent to which it has spread from the

breast to the lymph nodes (stage II or III) or other parts of the body

(stage IV), the patient’s response to previous treatment, the molecular
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composition of tumor cells, and the state of the patients’ immune

system (126). As research progresses, the treatment of breast cancer has

completed the transformation from single therapy to comprehensive

therapy, and its treatment methods are also emerging in an endless

stream, including surgery, chemotherapy, targeted therapy, endocrine

therapy, immunotherapy and so on (127). Nevertheless, the question of

how to ascertain the most appropriate treatment for each patient,

taking into account their individual circumstances, has remained a

significant challenge in the research and development of anti-tumor

drugs and clinical treatment (128).

The ST sequencing analysis of breast cancer patients can better

determine the differences in tumor heterogeneity and TME in

patients with different disease stages and molecular typing, and

can enable a comprehensive investigation of the diverse cell types

and their molecular mechanisms in vivo. On this basis, targeted

markers and new therapeutic targets can be determined, thereby

enabling the personalized and precise treatment of cancer patients

(129). For instance, some researchers have proposed a model that

can reproduce the clinical treatment response. By comparing

patients with pCR and no response progression (pNR), they

identified differences in transcription procedures in tumors,

stroma and immune infiltration, providing new ideas for the

improvement and personalization of TNBC treatment

methods (130).

In addition, it is important to identify the most efficacious

method of eliciting anti-tumor immune responses, thereby

providing patients with a more robust and effect ive

immunotherapy. Shiao SL et al. analyzed TNBC biopsy tissue by

integrating scRNA-seq and ST, and found that patients exhibiting
TABLE 5 Summary of studies on applications of ST to drug resistance in breast cancer.

Technique Sample Conclusion Reference

10× Visium
Spatial transcriptomic data

previously acquired

The observed association between elevated MCU expression and poor
prognosis in breast cancer suggests potential impacts on the TME and T

cell infiltration.
(115)

snRNA-seq and ST
Spatial transcriptomic data

previously acquired
High expression of CXCL12 was linked with a prolonged survival in

breast cancer.
(117)

10× Visium FFPE TNBC samples from patients
There are notable differences between the TME profiles of PD-L1-negative and

PD-L1-positive breast cancers, and the cellular composition of the
microenvironment is contingent upon the nearness to the tumor cells.

(118)

10× Visium
Node negative, primary TNBC and BC
from patients; metastatic TNBC; primary

BC with RNAseq and WGS data

Analysis of TNBC spatial immune cell structure to measure the prognosis of
various cancers and the anti-PD1 response in patients with metastatic TNBC.

(119)

10× Visium
Spatial transcriptomic data

previously acquired
TK1 positive cells mainly localize in tumor area, and Treg cell infiltration in

TNBC tissues was associated with high expression of TK1.
(120)

GeoMx DSP
Tumor tissue sections from patients

with TNBC

Ubl conjugation, TGF-b receptor activity, and SMAD binding pathways
pertaining to CD73 PTM modulation are particularly enriched in OTUD4lo

compared with OTUD4hi tumor areas.
(121)

10× Visium CB-humanized HCC1954 mouse model
The IMM2902-treated group exhibited significantly elevated levels of CD68,
CD11C, CD8, and NKG7, enhancing immune cells infiltration in tumors.

(122)

10× Visium
Spatial transcriptomic data

previously acquired

The cetuximab-CDK inhibitor ADC may provide a selective and highly potent
cell cycle-targeting agent for basal-like/TNBC, including chemotherapy-
resistant residual disease, by taking advantage of the overexpression of

epidermal growth factor receptor and cell cycle dysregulation in aggressive and
refractory tumors.

(123)
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resistance to immunotherapy exhibited a lack of immune

infiltration both before and after treatment. Conversely, patients

who responded to immunotherapy demonstrated two distinct

patterns: one with a pre-existing immune response and the other

with an immune response only evident following aPD1 and

radiotherapy (131). At the same time, research has revealed that

quiescent cancer cells (QCCs) in primary TNBC establish a micro-

network with damaged dendritic cells, which can resist the attack of

T cells, reduce immune infiltration, and demonstrate heightened

tumorigenic potential (132).

In conclusion, as shown in Figure 3, the integration of ST into

basic and translational research can facilitate the development of

new drugs by identifying potential therapeutic targets, reveal

promising biomarkers to monitor therapeutic effects and guide

treatment decisions, and predict unique sensitive drugs for

different patients, which is of great significance for promoting

individualized precise treatment of breast cancer.

The application of ST in BC treatment provides new

perspectives for understanding the TME and individualized

treatment, but whether the results are statistically significant or

not relies on multifactorial analysis and clinical validation.

Currently, ST is still in the exploratory stage, but some

preliminary studies have demonstrated its potential in breast

cancer and provided statistical significance to some extent. At

present, the high cost of ST technology itself and the complexity

of data processing also limit its widespread application in clinical

settings. Therefore, future studies need to further optimize the

technology, expand the sample size and combine it with other

histological data (e.g. proteomics, metabolomics, etc.) for a

comprehensive analysis to ensure the statistical significance and

usefulness of its clinical application.
6 Conclusion and discussion

ST is a pioneering technology used to investigate the

heterogeneity of tumors and their microenvironment. It can
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identify and differentiate the expression of functional genes in

specific spatial locations, elucidate the mechanisms, potential drug

targets, and novel biomarkers associated with the origin and

progression of tumor cell heterogeneity, and investigate the

interactions between diverse tumor cell types and immune cells,

interstitial components (133–135). ST combines the advantages of

traditional transcriptomics and spatial histology to capture the

distributional features of genes in tissues without disrupting the

tissue structure (136). Key advances in this technology include high-

throughput spatially localized RNA sequence analysis, precise

mapping of transcript distribution through high-resolution

microscopy and imaging, and large-scale spatial transcriptome

data acquisition through novel microarray platforms (137).

Initial ST technologies relied on combining tissue slices with

microarray platforms by immobilizing RNA on tissue slices and

analyzing them using high-throughput sequencing techniques.

However, this approach had limited spatial resolution. As the

technology has evolved, ST with single-cell resolution has

gradually emerged, allowing precise localization of gene

expression in individual cells by integrating high-resolution

microscopy and genomics approaches (138, 139). In recent years,

innovations based on new platforms such as nanopore technology,

microfluidic chips and fluorescence imaging have led to more

efficient and precise data acquisition of spatial transcriptomes and

greatly improved spatial resolution (140, 141). In addition, advances

in data processing technologies, such as the application of deep

learning and machine learning algorithms, have helped to better

analyze complex spatial transcriptome data, revealing cellular

interactions and spatial heterogeneity. Nevertheless, despite the

rapid advancement of this field, certain limitations persist.

Firstly, the current ST technology is unable to reach the single-

cell level in spatial resolution, and the efficiency of gene detection is

also low (142). The imaging-based ST technology is subject to

limitations, including optical crowding, which restricts the number

of genes that can be distinguished. Furthermore, the ST technology

of in situ capture and sequencing encounters challenges in

achieving genuine separation and analysis between single cells,
FIGURE 3

Application of ST in the field of breast cancer research. (Created with BioRender.com).
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due to factors such as varying capture point resolutions and

potential transcript diffusion. The current commercial ST

technology has not yet achieved single-cell resolution, and is

therefore reliant on bioinformatics algorithms to predict cell types

in specific regions (143).

Secondly, the sample data set obtained by ST is not

comprehensive enough, which may be due to the differences in

sections from different directions and levels. The majority of current

ST techniques are based on thin tissue sections, which obtain the

expression of genes in two-dimensional space, and still cannot

achieve a truly three-dimensional ST. The primary technical

challenge lies in developing methods to make the tissue

transparent and image the signal within it, or to introduce an

imaging probe into the tissue for reaction.

Furthermore, the economic costs and operational complexity also

limit the wide application of ST. On the one hand, data processing is a

significant obstacle. The complexity, dimensionality, and scale of ST

data require the support of powerful computational platforms and

algorithms to extract meaningful biological information from large

amounts of data. Existing data processing tools and algorithms often

struggle to effectively deal with noise, low signal-to-noise ratios, and

non-homogeneity of spatial information in spatial data, which limits

the effectiveness and feasibility of ST techniques in a wide range of

applications (144, 145). On the other hand, ST is costly, especially in

the stages of sample preparation, data acquisition and subsequent

analysis. High-quality spatial transcriptome experiments usually

require expensive equipment (e.g. high-resolution microscopes) as

well as the consumption of a large number of reagents, which makes

the popularization of the technology face financial barriers (146).

Finally, the problem of preservation of tissue samples is also a

bottleneck limiting the development of ST technology. Most tissue

samples need to be processed and analyzed within a short period of

time, and prolonged cryopreservation can lead to RNA degradation,

which affects the quality of the data (147).

Finally, ST technology is still in the stage of continuous

development, and although it has made significant progress in the

field of basic research, its maturity is still low. Currently, the

application of spatial transcriptome technology is mainly focused

on gene expression analysis at the cellular and tissue level, and has not

yet been widely used in clinical practice (148). The shortcomings of

this technology include the lack of a unified standardized and

regulated process, poor data comparability between different

platforms, and complex and demanding experimental operations.

In particular, no uniform operational specifications have been

developed for sample preparation, data collection, and analysis,

leading to problems with the reproducibility and accuracy of the

technology. In addition, although ST has been significantly improved

in terms of resolution and coverage, there is still a need to improve

the spatial resolution, especially the precise expression localization at

the single-cell level, in order to better reveal cellular heterogeneity and

microenvironmental changes. These limitations directly affect the

results of ST. In terms of data processing, the complex amount of data

and the high-dimensional nature of spatial information may lead to

the inability of researchers to accurately capture certain subtle

biological features, affecting the interpretation of results (149). Cost

constraints, on the other hand, make it difficult for many small and
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medium-sized laboratories or clinical institutions to afford large-scale

ST experiments, further limiting the popularity and scope of

application of the technology. Tissue preservation problems may

prevent the timely processing of certain samples with valuable

biological information, thus affecting the comprehensiveness and

accuracy of the study.

Nevertheless, there are multiple innovative techniques that have

the potential to overcome these challenges in the future. Firstly,

improvements in imaging technologies, especially advances in super-

resolution microimaging, can increase the spatial resolution and thus

enhance the sensitivity and accuracy of ST techniques (150).

Secondly, the application of new computational methods, such as

deep learning and artificial intelligence algorithms, is expected to

effectively deal with the complexity in ST data, reduce the noise,

extract valuable biological information, and help researchers to mine

more potential disease biomarkers from the huge amount of data. For

the cost issue, the development of automated platforms can improve

the efficiency of experiments and reduce the cost of a single

experiment, thus promoting the popularity of ST technology. In

addition, innovations in molecular preservation technologies may

solve the problem of RNA degradation in tissue preservation and

improve the reproducibility and stability of spatial transcriptome

data (151).

Future research should focus on the following areas: first,

improving the efficiency of spatial resolution and data processing,

especially in multi-scale ST, how to process cellular to tissue-level

data simultaneously; second, developing standardized and

automated experimental processes applicable to clinical samples

to reduce experimental costs and improve data reproducibility;

third, exploring the combination of ST with other high-

throughput genomics technologies (e.g., single-cell genomics,

metabolomics) to build a more integrated multi-omics platform

to comprehensively reveal biological processes (152–154).

The potential applications of ST in many types of cancer are

beginning to emerge, particularly in elucidating the TME and cell-cell

interactions. In addition to breast cancer, ST has demonstrated great

research value in several cancer types, including lung cancer, colorectal

cancer, gastric cancer and brain tumors (155–157). In lung cancer, ST

has provided important insights into the TME, macrophage

reprogramming, immune checkpoints and immunosuppressive

changes in brain metastases, providing potential prognostic

biomarkers and therapeutic strategies targeting immune and fibrotic

pathways (158, 159). In colorectal cancer, on the other hand, ST has

helped to investigate genetic and epigenetic co-evolution in colorectal

cancer, revealing the influence of chromatin modifications and

transcription factors on tumor progression and metastasis (160, 161).

The cellular composition and interactions in the TME have been

described in detail, identifying key immune cell and fibroblast

subpopulations that play important roles in tumor progression,

metastasis and prognosis, providing new targets for precision therapy

(162). In gastric cancer, ST can help to study the biological properties of

gastrointestinal tract tumors at different tissue levels, reveal the gene

expression differences between tumors and adjacent normal tissues,

and provide important information for early diagnosis and prediction

of tumor recurrence (163, 164). And in brain tumors (e.g.

glioblastoma), ST can help to deeply analyze the cellular
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heterogeneity in different regions of the tumor, and explore how the

tumor cells interact with the surrounding normal neural tissue, so as to

discover new therapeutic targets (165).

In addition to cancer, ST has shown immense potential in the

study of other diseases (166–168). For example, in neurodegenerative

diseases such as Alzheimer’s and Parkinson’s, ST can help study gene

expression patterns in different regions of the brain, revealing the

spatial heterogeneity of neurodegeneration and key biomarkers (169).

In cardiovascular disease research, ST can analyze cell-to-cell

interactions in heart tissue, uncovering the spatiotemporal

dynamics of cell recovery after myocardial injury, thus providing

new therapeutic strategies for heart repair and regeneration (170,

171). Furthermore, in the study of immune-related diseases and

metabolic disorders such as diabetes, ST allows for a detailed analysis

of cellular composition and gene expression changes in diseased

tissues, offering crucial insights into disease mechanisms and

precision therapies.

To translate ST technology into clinical practice, the next key step

is to achieve its high-throughput and cost-effective standardized

application (172). This can be accomplished by developing an ST-

based diagnostic platform and integrating it with existing clinical

pathology evaluation methods, thereby enhancing the accuracy of

early disease diagnosis. Additionally, for research on specific diseases

such as cancer and neurodegenerative diseases, greater emphasis

should be placed on integrating ST with clinical trials to assess its

potential in personalized treatment. Through these practical

measures, ST will be able to overcome current limitations and

advance the development of precision medicine.

In summary, ST offers the potential to elucidate the spatial

information of gene expression with different precision, thereby

opening avenues for investigating tumor heterogeneity and TME,

and overcoming tumor drug resistance. It is of great importance to

identify new biomarkers, study new therapeutic targets and improve

the prediction of tumor prognosis. The wide application of ST can

improve our comprehension of breast cancer and facilitate the

implementation of personalized and precise therapeutic strategies

for patients, which will have a profound impact on the field of breast

cancer research.
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