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Extracellular vesicles (EV) can be produced as part of pathology and physiology

with increased amounts in pathological conditions. EVs can carry and transfer

cargo such as proteins, nucleic acids, and lipids to target cells and mediate

intercellular communication resulting in modulation of gene expression,

signaling pathways, and phenotype of recipient cells. EVs greatly influence the

extracellular environment and the immune response. Their immunomodulatory

properties are crucial in rheumatoid arthritis (RA), a condition marked by

dysregulated immune response. EVs can modulate the functions of innate and

adaptive immune cells in RA pathogenesis. Differentially expressed EV-

associated molecules in RA, such as microRNAs (miRNAs), long-noncoding

RNAs (lncRNAs), messenger RNAs (mRNAs) and proteins are promising markers

to diagnose the disease. miRNA, lncRNA, and circular RNA (circRNA) cargos in EV

regulate inflammation and the pathogenic functions of RA fibroblast-like

synoviocytes (RA-FLS). Downregulated molecules in RA tissue and drugs can

be encapsulated in EVs for RA therapy. This review provides an updated overview

of EVs’ immunomodulatory, diagnostic, and therapeutic roles, particularly

emphasizing mesenchymal stem cell-derived EVs (MSC-EVs).
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1 Introduction

Extracellular vesicles (EVs) are membrane-enclosed

particles released by eukaryotic and prokaryotic cells as part of

physiological and pathological processes with increased release

under pathological conditions (1–3). EVs can carry various

biomolecules, including proteins, nucleic acids, and lipids to the

extracellular environment facilitating the transfer of their cargo to

the recipient cells (4, 5). Recent evidence suggests that EVs may also

contain mitochondria which control the epigenetics of target cells

and organs (6).

The lipid bilayer of EVs encloses and protects their contents

from the external environment (7). EVs vary in size from nanoscale

exosomes to larger microvesicles and can be secreted by virtually all

cell types (8). They are present in various body fluids including

cerebrospinal fluid (CSF) (9), breast milk (10), synovial fluid (SF)

(11), saliva (12), urine (13) and blood (14). Initially, EVs were

considered mere cellular waste, leading to their limited investigation

until recent years (15).

Traditionally, EVs were classified based on particle size and

biogenesis into exosomes, microvesicles, and apoptotic bodies (4,

16). Exosomes, the smallest EVs, are formed through the inward

budding of the plasma membrane during endosome generation,

which matures into multivesicular bodies (MVBs) or late

endosomes (7, 17). These MVBs either fuse with cell membrane

to release exosomes or merge with lysosomes for degradation (1,

18). Microvesicles, (also called ectosomes) are generated through

the outward budding and fission of the plasma membrane (19, 20),

while apoptotic bodies, the largest EVs, are produced during

programmed cell death and contain both cytoplasmic and nuclear

materials (21, 22). However, no definitive molecular markers exist

to distinguish these categories (8).

Given the limitations of biogenesis-based classification, the

International Society for EVs recommended avoiding this

terminology unless universal molecular markers and effective

separation techniques are available. In its 2023 position paper,

“Minimal Information for Studies of EVs (MISEV 2023),” the

Society advocated using the general term “extracellular vesicles”

and proposed size-based nomenclature, such as “small EVs (sEV)”

for particles smaller than 200 nm and “large EVs (LEV)” for those

larger than 200 nm (8).

EVs significantly impact the extracellular environment

and immune responses (23, 24). They facilitate intercellular

communication by transferring functional components or inducing

receptor-mediated signaling (25). The surface proteins of EVs and

their cargo can modulate gene expression, signaling pathways, and

the phenotypes of target cells (15). EVs, produced endogenously, have

advantages over synthetic nanoparticles and viral vectors, including

higher biocompatibility, lower immunogenicity, and better evasion of

phagocytosis (26). Moreover, their ability to cross biological barriers,

such as the placental, blood-brain, blood-tumor, and blood-testis

barriers, makes EVs promising tools for drug delivery (15, 27, 28).

EVs have shown significant potential in the detection and treatment

of autoimmune diseases including rheumatoid arthritis (RA) (29),

multiple sclerosis (30), and type 1 diabetes (31).
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RA is among the most prevalent chronic inflammatory disorders,

affecting approximately 0.5% of the population globally (32, 33). This

long-lasting autoimmune disease leads to the progressive destruction

of joints. Despite advancements with disease-modifying

antirheumatic drugs (DMARDs), treatment remains inconsistent,

with 30-40% of patients discontinuing DMARDs due to

ineffectiveness or side effects (34–36). Blocking tumor necrosis

factor-a (TNF-a) helps reduce joint inflammation, prevent

structural damage, and enhance the quality of life in 60-70% of RA

patients. However, since some individuals don not respond to this

therapy, alternative treatment options are necessary (37). Given the

limitations of current treatments, researchers are increasingly

exploring biotherapies, including EVs (38). In this review, we

discuss what is presently known about the roles of EVs in RA’s

immunomodulation, diagnosis, and therapeutic potential, with a

special emphasis on mesenchymal stem cell (MSC)-derived EVs.
2 EV-induced immunomodulation
in RA

Various immune cells, including T cells (39), B cells (40),

macrophages (41), and mast cells (42) play a role in the

progression of RA, with macrophages and T cell subsets playing

particularly significant roles (43–45). T helper 1 (Th1) cells

stimulate the production of interferon-g (IFN-g), TNF-a, and
interleukin 2 (IL-2), contributing to cartilage damage and bone

erosion, while, Th17 cells release IL-22, promoting the growth of

synovial fibroblasts (46). B cells generate autoantibodies and drive

autoimmune responses through the production of rheumatoid

factor (40). Macrophages provide proinflammatory cytokines such

as TNF- a and IL-1b (47).

New RA therapies have been proposed that focus on regulating

the local immune response and promoting antigen-specific immune

tolerance (48). EVs derived from MSC, neutrophils, granulocytic

myeloid-derived suppressor cells (G-MDSCs), Dendritic cells (DC),

and macrophages modulate the immune response within the

inflammatory microenvironment of injured cartilage (49).

The type and condition of the source cell determine the

influence of EVs on the immune response (50). MSC-derived EVs

possess strong immunomodulatory properties, and their

effectiveness is linked to their uptake by immune cells (51, 52).

These EVs can regulate both innate and adaptive immune

functions, reducing abnormal inflammation while ensuring safety

in the surrounding microenvironment (53–55). This makes them a

promising option for treating inflammatory diseases (56).
2.1 EV-induced innate immune modulation
in RA

EVs influence the functions of innate immune cells, impacting

processes like differentiation, activation, migration, and cytokine

production, as well as their abilities in cytolysis, phagocytosis, and

antigen transfer (57). Macrophages are crucial innate immune cells
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involved in the pathogenesis of RA (44, 58). In RA patients, there is

an increase in pro-inflammatory M1 macrophages and a reduction

in anti-inflammatory M2 macrophages (44). M1 macrophages

secrete pro-inflammatory substances whereas M2 macrophages

release anti-inflammatory agents (59). EVs can influence

macrophage function by transferring regulatory miRNAs and

proteins modulating inflammatory responses by affecting toll-like

receptor 4 (TLR4) signaling and cytokine production (60, 61). M2

macrophage-derived EVs transfer proteins which can polarize

macrophage to M2 phenotypes (62). Additionally, neutrophil-

derived microvesicles can boost anti-inflammatory factors like

transforming growth factor-b (TGF-b) and prevent inflammatory

activation of synoviocytes in arthritis models (63).

MSC-derived EVs have been shown to promote M2

macrophages while reducing pro-inflammatory M1 macrophages

in the synovial tissue of mice with collagen-induced arthritis (CIA)

(64). Additionally, bone marrow MSC-derived EVs (BMSC-EVs)

were found to inhibit the secretion of inflammatory cytokines

including IL-1b, TNF-a, and IL-18 in macrophages from mice

with RA (65). In vitro studies indicated that MSC-EVs can prevent

DC maturation by downregulating the expression of CD80, CD83,

and CD38, decreasing IL-6 and IL-12p70 secretion, and increasing

TGF-b production. These findings suggest that MSC-EVs could be a

promising therapeutic approach in mitigating autoimmune diseases

such as RA by modulating dendritic cell function (66).
2.2 EV-induced adaptive immune
modulation in RA

In RA, dysregulated immune responses activate auto-reactive T

and B cells, leading to their proliferation and differentiation into

pathogenic cells that produce autoantibodies, thereby driving joint

inflammation and degradation (67).

EVs isolated from plasma of RA patients suppress early B cell

activation in RA by downregulating the expression of activation

markers like CD69+ and CD86+, and by inhibiting intracellular
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signaling pathways that are essential for B cell proliferation,

function, and survival results (68). BMSCs and G-MDSCs release

EVs that regulate B cell differentiation by promoting CD19+IL-10+

regulatory B (B reg) cells and reducing plasmablast phenotypes in

the lymph node of mice with CIA (69, 70) (Figure 1).

Human gingival mesenchymal stem cell-derived EVs (GMSC-

EVs) regulate CD4+ T cell subpopulations by increasing regulatory T

(T reg) cells and decreasing Th1 and Th17 cells in the CIA model.

Experiments conducted both in vivo and in vitro demonstrated that

GMSC-EVs induce upregulation of anti-inflammatory cytokine (IL-

10) and downregulation of proinflammatory cytokines including

IFN-g, IL-17A, TNF-a, and IL-6 (38). These EVs carry miR-148a-

3p, which is responsible for immunomodulatory effects by directly

targeting IKKB (inhibitor of nuclear factor kappa B kinase) in

T cells (71). G-MDSC-derived EVs demonstrated a similar

immunosuppressive effect on CD4 T cells in CIA mice. G-MDSC-

EV cargos (miR-29a-3p and miR-93-5p) suppress the differentiation

of Th1 and Th2 cells by targeting T-bet and signal transducer and

activator of transcription 3 (STAT3), correspondingly (72).

EVs derived from human umbilical cord stem cells (hUCMSC-

EVs) suppress T lymphocyte proliferation and induce apoptosis

along with upregulation of forkhead box p3 (FoxP3) and

downregulation of retinoic-related orphan receptor (RORgt) in

the spleen of CIA mice (73, 74). These types of EVs

demonstrated a Th1/Th17 and T reg cell balance accompanied by

reduced levels of IL-17 and enhanced TGF-b and IL-10 in CIA mice

(73–75). MSC-EVs derived from adipose tissue also modulate

activated T cells by down-regulating miR23a-3p, which post-

transcriptionally regulates TGF-b receptor 2 (TGFBR2) and

increases the expression of FoxP3 (76). Furthermore, MSC-EV

regulates the proliferation of activated T cells by inducing cell

cycle arrest via upregulation of P27kip1 expression and

downregulation of cdk2 expression (77). On the other hand, both

CD4 and CD8 T cell proliferation were not affected in the presence

of EVs derived from bone marrow MSC. However, an indirect

inhibitory effect was observed through T reg cell induction resulting

in a reduction of CD4 and CD8 T cells (69).
FIGURE 1

Immunosuppressive role of MSC-EVs and their modulatory effects on the adaptive immune cells.
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Research suggested that manipulating MSC-EVs could enhance

a balance among Th cells and reduce the production of

proinflammatory cytokines. EVs isolated from miR-146a

transduced MSC resulted in upregulating FoxP3, TGFb, and IL-

10 and downregulating IFN-g in CIA models (78, 79). More

importantly, pro-inflammatory cytokine-priming of MSC-EVs

does not affect its immunosuppressive potential (69, 80, 81).

Moreover, EVs derived from interferon-b (IFN-b)-primed MSCs

down-regulated the expression of RA-associated cytokines (IL-4,

GM-CSF, IFN-g, IL-2, TNF-a) and diminished CD4+ T-cell

polyfunctionality in RA CD4+ T cells (82). Immortalized adipose

tissue-derived MSCs primed with serum from RA disease

conditions generate EVs that boost TGF-b1 production, promote

Th2 induction, and facilitate M2 polarization, reducing

inflammatory cytokines in CIA mice (83).

Under normoxic conditions (21% O2, 5% CO2), MSC-derived

EVs promoted T reg cell phenotypes and reduced CD4+ T cell

polarization toward Th17 phenotypes, demonstrating their

immunomodulatory effects in an antigen-induced arthritis model

(81) . Under hypox ic condi t ions , EVs der ived f rom

polymorphonuclear myeloid-derived suppressor cells (PMN-

MDSCs) suppress the proliferation of CD4+ T cells in the CIA

mouse model (84). In contrast, synovial fibroblast-derived EVs in a

hypoxic environment, reduce T reg cells and promote polarization

of Th17 cells. Elevated levels of miR-424 under this condition

downregulate FoxP3, thereby worsening RA (85).

EVs generated from TGF-b primed T reg cells effectively

mitigated the Th17 and Treg cells imbalance in arthritic mice and

regulated the inflammatory responses of recipient T cells via miR-

449a-5p-dependent mechanism (86). Microvesicle mimetics (MVM)

isolated from endotoxin-tolerant DCs possessed a bioactive miR155-

3p and exhibited remarkable immunosuppression by inducing T reg

and anti-inflammatory macrophages in RA models (87). In addition,

in the RA microenvironment, EVs containing programmed death

receptor 1 (PD-1) facilitate T cell exhaustion in the joints (88).

Moreover, in RA patients, SF EVs expressing gangliosides (GD3),

were associated with immunosuppression by inhibiting T cell

activation after stimulation via TCR. This suggests that

immunosuppressive EVs in the synovial fluid serve as a novel

immune checkpoint for T cells (89).
3 EVs as a diagnostic marker of RA

The potential role of EVs in discovering specific biomarkers to

diagnose various autoimmune diseases has been highlighted (2).

The quantity of EVs is notably higher in the plasma and synovial

fluid of individuals with RA than in healthy controls (90). EVs are

recognized for containing distinct proteins that reflect the

characteristics of their originating cells (91). Differentially

expressed miRNA and lncRNAs containing EVs are also

associated with RA’s immune response and metabolic process

(92). By comprehending the variety of their contents and

associated targets, it could be feasible to diagnose RA and other

autoimmune diseases (93).
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3.1 EV microRNAs (EV-miRNA) as a
diagnostic marker of RA

miRNAs are short non-coding RNAs that play a role in cell

signaling, intracellular communication, regulation of gene

expression, and chronic inflammation and immune responses (94,

95). They are key regulators of skeletal remodeling and play a role in

the development of RA (96). SF from joints exhibiting high-grade

inflammation had 3.5 times more miRNA-positive EVs per ml than

normal levels. Analysis of the most prevalent miRNAs indicated

that they negatively regulate several inflammation-related genes,

including STAT3, which play a pro-inflammatory role in RA (97).

While various EV-miRNAs have been investigated for HBV-

related tumor detection (98), several studies have shown promising

results in using EV-associated miRNAs for RA diagnosis (Table 1).

Dysregulated RNAs in sEVs derived from FLS associated with

arthritis in mice models were highlighted as a potential biomarker

for RA (99). The miRNA content of EVs, such as miR-212-3p, miR-

338-5p, miR-410-3p, and miR-537, showed elevated levels in early

RA during methotrexate (MTX) treatment, suggesting their potential

as diagnostic and prognostic biomarkers (100). miRNA cargos such

as (hsa-miR-335-5p and hsa-miR-486-5p) were higher in the

peripheral blood of RA patients than in healthy controls and

associated with disease activity (101). Furthermore, miRNA-1915-

3p containing EVs were elevated in the clinical remission group of

Korean RA and negatively correlated with serum C-reactive proteins

(CRP) levels and may be useful to indicate RA disease activity (102).

Differentially expressed miRNAs linked to RA pathogenesis,

such as miR-155-5p, miR-146a-5p, miR-323a-5p, and miR-1307-

3p, were found in EVs derived from RA synovial fibroblast cell lines

after TNF-a stimulation (103). Based on the serum EV expression

profiles, patients with RA exhibited elevated levels of variably

expressed miR-125a-5p, miR-130b-3p, miR-151a-5p, miR-301a-

3p, and miR-324-5p (104). A combination of sEV miRNAs and

soluble tumor necrosis factor-like weak inducer of apoptosis

(sTWEAK) diagnosed early RA with a sensitivity of 85.7% and a

specificity of 100% (105) (Table 1).
3.2 EV-Long noncoding RNAs (EV-lncRNA)
as a diagnostic marker of RA

Long non-coding RNAs (lncRNAs) represent a new category of

non-coding RNAs that do not produce proteins (106). The

expression profiling of lncRNAs in EVs obtained from the

synovial fluid of RA demonstrated significant differences when

compared to osteoarthritis (OA) and gout (107). The serum sEV

lncRNA profiles in patients with RA were also distinct from those of

healthy controls and patients with OA (92).

The expression of circular RNAs (circRNAs), such as circFTO,

is elevated in EVs derived directly from FLS of RA patients. These

EVs promote RA progression by suppressing chondrocyte growth

and migration while enhancing apoptosis and catabolism (108).

Variably expressed lncRNAs in serum EVs from RA patients

showed both upregulation and downregulation (109). lncRNAs
frontiersin.org
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found in plasma EVs from individuals with RA exhibit distinct

expression profiles, including several lncRNAs that may serve as

diagnostic biomarkers. The receiver operating characteristics curve

(ROC), which is used to evaluate the diagnostic accuracy of

biomarkers, revealed that lncRNAs including SNHG6, RPS18P9,

and CXXC4-AS1 demonstrated an area under the curve (AUC)

ranges of 0.847-0.994 in diagnosing RA (110).
3.3 EV-associated protein and mRNAs as
diagnostic markers of RA

Analysis of differentially expressed proteins in EVs from SF

revealed that stromelysin-1 and pregnancy zone protein (PZP) were

among the highly expressed proteins in RA as compared to OA

(111). Proteomic analysis found that EVs from RA-FLS had higher

pentraxin (PTX3) and lower proteasome 20S subunit beta 5

(PSMB5) levels than OA patients, promoting macrophage

migration and RA progression (112). Lipid binding protein (LBP)

and monocyte differentiation antigen (CD14) were also upregulated
Frontiers in Immunology 05
in EVs. Notably, the interaction of these proteins may play a role in

nuclear factor kappa B (NF-kB) signaling, promoting the

expression of IL-8 and TNF-a, which could contribute to the

development of RA and serve as potential biomarkers for its

diagnosis (113).

Differentially expressed proteins were identified as both

upregulated and downregulated in the CD4+ T cell-derived EVs

of RA patients, suggesting that these proteins could act as potential

biomarkers for RA (114). The levels of CD3+ CD4+ protein

containing EVs in the serum of RA patients are elevated, whereas

the levels of CD3+CD8+ EVs are reduced, reflecting that total CD4+

T cells are dominant over CD8+ T cells (91).

In a subset of seropositive RA patients, rheumatoid factor

immunoglobulin M (IgM-RF) was found on plasma EVs and

associated with increased disease activity. This discovery suggests

a potential biological factor that could explain the discrepancy

between global disease activity assessments and the counts of

tender and swollen joints (115). Elevated levels of circulating EVs

testing positive for immunoglobulin G (IgG), IgM, CD41a, and

citrulline were also observed in seropositive RA patients (116).
TABLE 1 Expression of various miRNA, lncRNA, mRNA, and proteins in EV during RA.

EV associated
biomarker

Biomolecule EV source Detection
method

Expression level Ref.

miR-204-5p miRNA plasma qRT-PCR downregulated (127)

DPYSL3 protein CD4+T cells Proteomics upregulated (114)

PSME1 CD4+T cells Proteomics downregulated

miR-221 miRNA synovial fluid qRT-PCR upregulated (99)

miR-45a & miR-25-3p miRNA serum qRT-PCR upregulated (105)

hsa-miR-335-5p miRNA blood qRT-PCR upregulated (101)

hsa-miR-486-5p

TCONS_I2_00013502 lncRNA serum qRT-PCR upregulated (109)

ENST00000363624 lncRNA serum qRT-PCR downregulated

NONHSAT193357.1 lncRNA serum qRT- PCR downregulated (92)

CCL5 mRNA serum qRT- PCR downregulated

MPIG6B mRNA serum qRT- PCR downregulated

IgM protein Plasma ELISA upregulated (115)

SNHG6 lncRNA plasma qRT-PCR upregulated (110)

RPS18P9 lncRNA plasma qRT-PCR upregulated

CXXC4-AS1 lncRNA plasma qRT-PCR downregulated

ENST00000433825.1 lncRNA synovial fluid qRT-PCR upregulated (107)

miR-6089 miRNA serum qRT-PCR downregulated (61)

miR-144-3p miRNA plasma qRT-PCR downregulated (128)

miR-30b-5p miRNA plasma qRT-PCR downregulated

miR-885-5p miRNA serum qRT-PCR upregulated (129)
CCL5; chemokine c-c motif ligand 5, DPYSL3; dihydropyrimidinase-related protein 3, IgM; Immunoglobulin M, lncRNA; long noncoding RNA, MPIG6B; megakaryocyte and platelet inhibitory
Receptor G6b, miRNA; microRNA, PSME1; proteasome activator complex subunit 1, qRT-PCR; quantitative real-time PCR, RPS18P9; ribosomal protein s18 pseudogene 9, SNHG6; small
nucleolar RNA host gene 6.
The bold text indicates Rheumatoid arthritis (RA) biomarkers associated with extracellular vesicles (EVs).
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Profiling of plasma EVs identifies proteins significantly linked to the

patient’s global disease activity (PGA) in RA. Notably, actin-

cytoskeleton linker proteins, including ezrin and moesin, correlate

positively with PGA (117).

Circulating EVs express elevated levels of posttranslational

modified proteins such as citrullinated proteins and contribute to

the pathogenesis of RA by triggering autoimmunity (118). EVs

containing major histocompatibility complex class II (MHC II)

molecules can be loaded with citrullinated peptide antigens and

presented to T cells (119). These peptide antigens can be recognized

by autoreactive T cells and trigger the production of

anticitrullinated protein antibodies, a key hallmark for RA (120,

121). Autophagy appears to contribute to the generation of

citrullinated peptide and EVs in RA (122, 123). It also promotes

the citrullinated peptide-MHC II interaction in RA synovial

fibroblasts (124). The autophagic system releases cellular content

through EVs (122, 125), which can propagate autoantigens and

potentially contribute to joint inflammation in RA patients

(126) (Figure 2).

The serum sEV mRNA profiles in RA patients differed from

those of healthy controls and individuals with OA. A combination

of differentially expressed mRNAs achieved an AUC of 0.845 in

distinguishing RA from OA (92) (Table 1).
4 EV as a promising therapeutic agent
for RA

EVs have gained interest as a potential cell-free therapy due to

their low immunogenicity, tumorigenicity, and ease of management

(38, 130). They are considered a promising approach for treating
Frontiers in Immunology 06
RA and may be used as drug delivery vehicles, including as

nanocarriers to enhance the therapeutic effect of glucocorticoids

in RA treatment (93, 131–133).

Research indicates that EVs from bone marrow macrophages

lacking miR-100-5p exacerbate RA progression. In contrast, EVs

overexpressing miR-100-5p help reduce inflammation and inhibit

the proliferation of RA-FLS in RA (134). EVs from M2

macrophages, loaded with plasmid DNA for IL-10 and

betamethasone sodium phosphate, reduced RA inflammation by

promoting M1-to-M2 polarization and enhancing anti-

inflammatory cytokine secretion (135). IL-4 delivered via small

EVs (sEVs) showed a stronger anti-inflammatory effect in mice with

CIA than soluble IL-4, indicating greater immunomodulatory

potential (136). Additionally, macrophage-derived EVs loaded

with IL-10 could be targeted to inflamed areas using noninvasive

ultrasound, offering a promising strategy for macrophage

polarization to M2 phenotypes in RA treatment (137).

A hybrid nanovesicle (HNV) combining an M1 macrophage

membrane with exosome-mimic nanovesicles from M2

macrophages, loaded with black phosphorus sheets, can eliminate

inflammatory cells in RA through near-infrared irradiation (138).

Apoptotic EVs from macrophages and osteoclasts show synergistic

effects in RA joints by reducing synovial inflammation, restoring

cartilage, reversing bone erosion, and preserving joint structure

(139). Additionally, EVs from immunosuppressive DCs can inhibit

the onset and reduce the severity of CIA in mouse models (140).

EVs from Indoleamine 2,3-dioxygenase-expressing DCs also

demonstrated anti-inflammatory effects in murine models with

CIA (141).

EVs engineered to carry super repressor IkB (srIkB), an NF-kB
inhibitor, significantly reduced inflammatory cytokine production
FIGURE 2

The interplay between autophagy, EVs, and autoantigen presentation in RA.
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in PBMCs and synovial fibroblast mononuclear cells (SFMCs)

collected from RA patients. Moreover, srIkB EVs treatment

showed notable decreases in inflammation, cartilage degradation,

and bone erosion in the joint tissues of CIA mice (85).

MSCs are a promising alternative for treating RA due to their

immunomodulatory capabilities (142, 143) (Table 2). More

importantly, the potential of EVs derived from MSCs in

immunomodulation and tissue regeneration presents a novel

concept for treating rheumatism (5, 144, 145). MSC EVs transfer

non-coding RNAs that modulate crucial signaling pathways in the

development of RA (34). Different miRNA and lncRNA cargos

delivered by MSC-EVs influence RA disorders through the NF-kB
and MAPK pathways (51). Moreover, EVs released from MSCs have
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been identified as important signaling molecules that play a role in

the healing process by modulating the local microenvironment with

anti-inflammatory properties (146, 147).

EVs derived from human embryonic stem cells MSCs reduce

inflammation, cartilage degradation, and bone loss, primarily

through the modulation of M2 macrophages in arthritis mouse

models (64). Additionally, miR-378a-5p from BMSC-derived EVs

enhances the proliferation, migration, and angiogenesis of human

synovial microvascular endothelial cells by suppressing the IRF1/

STAT1 pathway, contributing to the prevention of RA (148).

FLS are crucial in the progression of RA, making them a target

for potential treatments (149, 150). EVs from human GMSC have

been shown to reduce arthritis progression by decreasing the
TABLE 2 Therapeutic roles of various miRNA, lncRNA, and circRNA EV cargos in RA.

EV cargo Source cell Target cell Target
molecule

Function Ref.

miR-451a UCMSC RA
Synovial Fibroblast

ATF2 • Inhibition of RA-FLS proliferation, migration, and invasion (152)

miR150-5p BMSC FLS MMP4 & VEGF • Decreased joint damage
• Inhibit synovial cell hyperplasia and angiogenesis

(159)

miR-21 BMSC FLS TET1 • Reduce inflammatory cytokine secretion
• Alleviate RA progression

(160)

circFBXW7
(circ RNA)

BMSC FLS miR-216a-3p • Inhibited proliferation, migration, and inflammation in RA-
FLSs
• Inhibit RA damage

(161)

miR-205-5p BMSC RA-FLS MDM2 • Suppresses inflammation (162)

miR-320a BMSC FLS CXCL9 • Reduced activation, migration, and invasion of RA-FLS
• Reduce severity of arthritis

(163)

miR-378a-5p BMSC HSMECs IRF1 • Promotes proliferation, migration and angiogenesis
of HSMEC

(148)

circEDIL3(circ RNA) SMSC FLS miR-485–3p • Decreased VEGF expression
• Reduced severity of arthritis

(164)

miR-106b Synovial
fibroblast

Chondrocytes PDK4 • Suppression of chondrocyte proliferation and migration
• Reduces RA progression

(165)

miR-433-3p SMSC-EV FLS FOXO1 • Inhibition of VEGF expression
• Reduced severity of arthritis

(166)

TRAF1-4:1(lncRNA) RA-FLS Chondrocytes miR-27a-3p • Inhibit chondrocyte proliferation and migration
• Breakdown ECM

(167)

FGL1 BMSC RA-FLS NA • Impair RA-FLS viability
• Enhance RA-FLS apoptosis

(168)

miR223 BMSC Macrophage NLRP3 • Suppression of inflammation (65)

miR-486-5p RA-FLS Osteoblast Tob1 • Enhance osteoblast differentiation (169)

miR-148a-3p GMSC FLS IKKB • Inhibit migration of RA-FLS
• Inhibit cartilage degradation

(71)

miR-140-3p UCMSC FLS SGK1 • Reduced joint injury (170)

miR-124a MSC FLS NA • Promote apoptosis of FLS cell
• Inhibit proliferation and migration of FLS cell line

(171)
frontier
ATF2; activating transcription factor 2, BMDM; bone marrow-derived macrophage, CXCL 9; chemokine ligand 9, circRNA; circular RNA, ECM; extracellular matrix, FGL1; fibrinogen-like
protein 1, FLS; Fibroblast-like synoviocytes, FOXO1; forkhead box o1, GMSC; gingival mesenchymal stem cell, HSMECs; human synovial microvascular endothelial cells, IKKB; inhibitor of
nuclear factor kappa B kinase, IRF1; Interferon regulatory factor 1, MMPR; matrix metalloproteinase, MDM2; mouse double minute 2, MSC; mesenchymal stem cell, NA; not available, NLRP3;
NOD-, LRR- and pyrin domain-containing protein 3, PDK4; pyruvate dehydrogenase kinase 4, RA-FLS; rheumatoid arthritis-fibroblast like synoviocytes, SGK1; serum and glucocorticoid-
inducible kinase 1, SMSC; synovial mesenchymal stem cell, TET1; Tet methylcytosine dioxygenase 1, Tob1; Transducer Of ERBB2, 1, TRAF1-4:1; tumor necrosis factor-associated factor 1,
UCMSCs; umbilical cord mesenchymal stem cells, VEGF; vascular endothelial growth factor.
The bold text indicates Therapeutic biological molecules carried by EVs.
sin.org

https://doi.org/10.3389/fimmu.2024.1499929
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Abebaw et al. 10.3389/fimmu.2024.1499929
invasiveness of synovial fibroblasts and protecting cartilage,

suggesting therapeutic benefits for RA (71, 151). Additionally,

EVs from human umbilical cord MSCs containing miR-451a

inhibit the proliferation, migration, and invasion of RA synovial

fibroblasts, improving arthritis in rat models (152). BMSC-derived

EVs elevated miR-34a levels, reducing RA inflammation and

inhibiting RA-FLS proliferation by targeting the cyclin I/p53/

ataxia-telangiectasia mutated signaling pathway (153).

MSC-derived EVs infused with curcumin effectively regulate the

proliferation and inflammatory response of RA-FLS, significantly

reducing anti-apoptotic proteins and inflammatory mediators

(154). EVs from IFN-b-primed MSCs also inhibit RA-FLS

migration and surface marker expression, showing therapeutic

potential for RA (82). Additionally, transfected MSC EVs carrying

the lncRNA HAND2-AS1 downregulate the pathogenic miR-143-

3p, inhibiting RA-FLS proliferation and motility while inducing

apoptosis in in vitro experiments (155).

A drug delivery system using adipose tissue-derived MSC EVs

successfully delivered icariin to joints, reducing arthritis in rats with

CIA by shifting macrophage polarization from pro-inflammatory

M1 to anti-inflammatory M2 (156). These EVs enhanced

therapeutic effectiveness by modulating macrophage diversity,

especially when the MSCs were metabolically engineered to

modify EV surface properties (157). Engineering modifications

also improved the bone-targeting ability of MSC-EVs, reducing

systemic side effects and increasing their clinical application

potential (158).
5 Conclusion and future perspectives

EVs can modulate innate and adaptive immune responses in

experimental RAmodels. They can transfer different noncoding RNA

molecules that regulate gene expression of recipient cells. Molecular

EV-cargos, including miRNAs, lncRNAs, mRNAs, and differentially

expressed proteins, hold great potential as biomarkers for diagnosing

RA. Additionally, MSC-EVs containing various types of miRNAs,

lncRNAs, and circRNAs suppressed inflammation and the

pathogenic activities of FLS in RA. EVs can also serve as carriers

for existing medications. In summary, EVs can inhibit RA

immunopathogenesis, reduce the disease’s progression, and serve as
Frontiers in Immunology 08
promising biomarkers for its diagnosis. Nonetheless, additional

research including gene enrichment and pathway analysis is

required to detect changes in key signaling pathways and

immunoregulatory networks in immune cells exposed to EVs. This

will help to completely unravel the molecular mechanisms underlying

the immunomodulatory effects of EV cargos in RA.
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