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Healthy individuals genetically
at-risk for the development of
Pemphigus vulgaris or Alopecia
areata share disease-like
cytokine dysregulation
Rebekah R. Schwartz, Kristina Seiffert-Sinha
and Animesh A. Sinha*

Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at
Buffalo, Buffalo, NY, United States
Autoimmune diseases (AID) are defined by immune dysregulation characterized

by specific humoral and/or cell mediated responses directed against the body’s

own tissues. Cytokines in particular play a pivotal role in the pathogenesis of AID,

with proinflammatory cytokines contributing to the initiation and propagation of

autoimmune inflammation, whereas anti-inflammatory cytokines facilitate

regression of inflammation and recovery from acute phases of the disease.

Parallel work by our group evaluating a comprehensive set of pro- and anti-

inflammatory serum cytokines in Pemphigus vulgaris (PV) as well as Alopecia

areata (AA) uncovered a similar pattern of inheritance specific immune

dysregulation in these two distinct autoimmune skin diseases. In AA, we found

healthy control subjects who are blood related to AA patients exhibit the same

cytokine dysregulation in Th1 and Th17 pathways as do patients with AA. In PV,

patients as well as individuals who are healthy but yet carry certain PV-associated

HLA alleles (termed here as HLA-matched controls) share a similar, but not fully

overlapping pattern of cytokine expression that is distinct from control subjects

who do not type for these HLA alleles. Specifically, PV patients as well as HLA-

matched controls demonstrate immunological activation of several pro-

inflammatory-, Th17-, Th2-pathway associated cytokines, and the chemokine

IL-8. Thus, in both AA and PV, we reveal cytokine dysregulations that are linked to

genetic background. The presence of disease promoting pathways in not only

patients, but also genetically related, but healthy control individuals further

evokes the novel hypothesis that there may be co-existing disease

counteracting immune protective mechanisms at play in thwarting the threat

of disease in genetically predisposed individuals who, despite harboring disease

associated immune imbalances, remain healthy. Our data underscore the known

tendency of AID to cluster in families and support the notion of the shared

genetic/common cause hypothesis across multiple AID.
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1 Introduction

Pemphigus vulgaris (PV) is a life-threatening chronic autoimmune

blistering condition affecting both the skin and mucous membranes,

caused by autoantibodies targeting desmosomal proteins, which results

in acantholysis in the suprabasilar epidermis, ultimately leading to

blistering of the skin and/or mucosa. In addition to this autoantibody

(autoAb)-mediated epidermal damage, it is well established there is co-

existing systemic and local inflammation driven by cytokine expression

(1). Cytokine secretion, in particular, results from T cell activation

resulting in increased tissue inflammation. T cells also promote the

survival and differentiation of B cells, thus allowing for continued

autoantibody production (2).

In PV, there is a strong genetic association with two specific

HLA haplotypes - HLA-DR4 (DRB1*0402) and DR6 (DQB1*0503);

approximately 80% of North American patients express one, or

both of these alleles (3). It is important to note that the presence of

these PV-associated susceptibility alleles is not exclusive to patients,

as the vast majority of individuals expressing these alleles remain

disease free. Thus, HLA genes are not in themselves sufficient to

cause disease; additional genetic and environmental factors (most of

which are yet to be identified) are required (4).

Alopecia areata (AA) is also autoimmune in nature,

characterized by nonscarring hair loss. Clinical manifestation of

disease ranges from small-well circumscribed patches of hair loss

limited to the scalp to diffuse hair loss over the entire body (5, 6).

The exact etiopathogenesis of AA remains unclear, but again, both

genetic and environmental factors have been implicated (6–9).

AA has a prevalence of 1.7% in the general population (10).

However, familial aggregation data in AA patients has

demonstrated an estimated lifetime risk of AA in siblings to be

7.1%, 7.8% in parents of AA patients, and 5.7% in offspring of AA

patients (11). Twin studies have found a concordance rate of 42-

55% in monozygotic twins and 0-10% in dizygotic twins (12, 13).

Certain HLA alleles have also been linked to AA pathogenesis,

however, the association is not nearly as strong as in PV (6, 14).

The high concordance rates in identical twins in AA (12, 13)

and the strong HLA-associations seen in PV (15), along with the

known tendency of AID to cluster in families (16), provide strong

support for a clear genetic undergirding operative in each of these

conditions. We have previously reported on the concept of familial

inheritance in AA (17–19) and in PV (20–22), and here directly

compare the impact of genetic background on cytokine patterns

relevant to these two diseases. For this comparison, we particularly

draw on data from two previous studies by our group on AA (18)

and PV (23) to gain insight into patterns of cytokine dysregulation

that are shared in patients as well as disease free but at-risk

individuals (genetically susceptible healthy subjects) and distinct

from healthy individuals not carrying any known genetic

risk elements.

A multitude of studies have looked specifically at cytokine

dysregulation in PV and in AA. PV had generally been

considered a T helper (Th)2 disease, while AA was seen as

predominantly Th1 mediated (24, 25). Newer studies have also

implicated activation of the Th17 cytokine profile in both diseases
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(1, 23, 24, 26–28). However, none of the previous studies stratified

their control populations based on their status of blood relation (in

the case of AA) or HLA haplotype (in the case of PV). Applying this

stratification to the control groups we studied allowed us to isolate

the impact of genetic background on key immune mechanisms

relevant to disease pathogenesis.
2 Methods

This work provides a new interpretation of data based on two

separate but parallel studies examining cytokine dysregulation in

AA and PV, Van Acker et al. (18) and Schwartz et al. (23). In short,

for AA, we analyzed a number of Th1 and Th17 related cytokines,

including interleukin (IL)-1b, IL-6, IL-10, IL-17A, IL-21, IL-22, IL-
23, interferon (IFN)g and tumor necrosis factor (TNF)a by ELISA

in 64 patients with a diagnosis of AA, 16 unaffected relatives of AA

patients, and 16 unaffected non-relative control subjects. At the

time of the initial study, our subgroups were classified according to

the National Alopecia Areata Registry (29) as Alopecia Areata

persistent (n=17), Alopecia Areata transitory (n=15), Alopecia

Universalis (n=16), and Alopecia Totalis (n=16). None of the AA

patients were receiving systemic immunomodulating treatments at

the time of their blood draw. Statistical analysis was conducted

using Kruskall-Wallis non-parametric comparison method for

analyzing population means. For PV, we analyzed 20 cytokines

across multiple T helper cell and pro-inflammatory pathways

including IL-1a, IL-1b, IL-2, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10,
IL-12, IL-13, IL-15, IL-17, IL-21, IL-22, IL-23, TNFa, IFNg, MCP-1,

and Eotaxin by multiplexed bead array assays in 116 PV patients, 15

healthy control subjects that carry PV-associated HLA-alleles and

14 healthy controls that did not carry PV-associated HLA-alleles.

Our cohort of PV patients was further broken down by disease

activity (active disease (n=75) and remission (n=55)), disease

phenotype (mucosal (n=48), mucocutaneous (n=48), cutaneous

(n=3) and undetermined (n=4)), and therapy status (off therapy

(n=40), minimal therapy (n=34) and more than minimal therapy

(n=56)). Statistical analysis was conducted using heteroscedastic T-

tests. For detailed methodologies, as well as additional demographic

details, please see Van Acker et al. (18) and Schwartz et al. (23).
3 Results

3.1 Healthy relatives of AA patients and
healthy controls carrying PV-associated
HLA alleles exhibit cytokine dysregulation
similar to their respective
patient population

In AA, including patients as well as healthy relatives and healthy

non-relative control subjects, we found the Th1-associated

cytokines IFNg and TNFa and the Th17-associated cytokines IL-

17A and IL-23 to be significantly upregulated in all AA patients in

comparison to unaffected non-relatives (unrelated controls).
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Figure 1A shows a representative plot of these findings for TNFa. A
heatmap representation of our z-score transformed data with

supervised clustering shows that first degree relatives exhibit a

marked increase in serum cytokine concentration similar to AA

patients but distinct from controls not related to AA patients across

multiple cytokines examined (Figure 1B). These data indicate that

there is an inheritance-specific dysregulation within both the Th1-

and Th17 cytokine pathways. No statistically significant differences

were found when comparing subtypes of disease to one another. No

significant differences were found for any of the other cytokines

we measured.

For PV, we uncovered a pattern mirroring what we observed in

AA-genetically susceptible individuals, in this case linked to influence

of HLA-association on cytokine expression. For a distinct set of

cytokines (Th17: IL-21, IL-23; Th1: TNFa; Pro-Inflammatory: IL-1a,
IL-1b, IL-6; Th2: IL-13; and chemokine: IL-8), we found that HLA-

matched controls exhibited elevations in cytokines levels in a number

of cases similar to patients. Figure 2A shows a representative plot of

these findings for TNFa. Figure 2B displays these findings across

multiple cytokines in heatmap format. While the mean levels of

cytokines in HLA-matched controls were not quite as elevated as

patients, we found no statistically relevant difference when comparing

these two groups. However, healthy controls unmatched for HLA-

susceptibility alleles had significantly lower cytokine levels when

compared to patients. Thus, similar to our findings in AA, our data

suggest an inheritance-specific dysregulation within numerous
Frontiers in Immunology 03
cytokine pathways (pro-inflammatory, Th2 and Th17) in healthy

controls carrying genetic susceptibility for PV.
3.2 Inheritance linked cytokine patterns in
PV and AA invoke novel concepts
regarding autoimmune risk

We see similar patterns of genetically-based cytokine

dysregulation in both AA and PV with at-risk individuals

exhibiting cytokine concentrations in line with that seen in

patients. Moreover, and notably, patients and at-risk individuals

in both PV and AA share a dysregulation of IL-23 and TNFa across

both diseases, supporting the notion of shared or common

autoimmune pathomechanisms.

However, in addition to these shared cytokine changes in PV

and AA, we also find dysregulation in other pathways and cytokines

in PV - in particular, certain pro-inflammatory cytokines (IL-1a),
chemokines (IL-8), and the Th2 pathway (IL-13) - that had not

been analyzed in our AA studies. Of note, we found IL-2, IL-5, IL-

22, and IL-9 to be significantly higher in PV patients compared to

both HLA-matched controls and HLA-unmatched controls

(Figure 3), reflecting changes unlinked to HLA type and

suggesting cytokine activation is not strictly HLA driven,

implicating the existence of additional genetic (and/or

environmental) factors operative in patients.
FIGURE 1

(A) Representative box and whisker plot of TNFa levels among Alopecia areata patients, genetically susceptible healthy controls (first degree relatives of
Alopecia areata patients) and not genetically susceptible healthy controls (individuals with no family history of any autoimmune disease). (B) Heatmap of
the distribution of four cytokines that were found to be significantly elevated in Alopecia areata patients and genetically susceptible healthy controls (first
degree relatives of Alopecia areata patients) when compared to not genetically susceptible healthy controls (individuals with no family history of any
autoimmune disease). Heatmap of z-score transformed data was created with Morpheus software. https://software.broadinstitute.org/morpheus.
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Finally, we further postulated that due to the presence of AA/

PV-associated cytokine profiles in genetically at-risk but healthy

individuals, there may be mechanisms that actively counteract this

(partial) autoimmune activation that operate to keep them disease

free. In support of this hypothesis, we found certain cytokines such

as IL-10 and IL-15 to be downregulated in HLA-matched healthy

controls when compared to PV patients (Figure 3), yet they are not

downregulated in non-HLA matched healthy controls compared to

PV patients. These data suggest that a downregulation of certain

cytokines may serve as one component of a necessary neutralizing
Frontiers in Immunology 04
force aimed at mitigating the existing partial (auto)immune

activation seen in genetically susceptible, but healthy controls.
4 Discussion

The pathogenesis of both PV and AA is certainly multifactorial,

influenced by a combination of patient genetics as well as

environmental factors that ultimately lead to immune

dysregulation. Highlighting cytokines as key effectors of the
FIGURE 2

(A) Representative box and whisker plot of TNFa levels among PV patients, genetically susceptible healthy controls (“HLA-matched”) and not
genetically susceptible (“HLA-unmatched”). (B) Heatmap of the distribution of cytokines that were found to be significantly elevated in Pemphigus
vulgaris patients and genetically susceptible healthy controls (express Pemphigus vulgaris-associated HLA alleles) when compared to not genetically
susceptible healthy controls (do not express Pemphigus vulgaris-associated HLA alleles). Heatmap of z-score transformed data was created with
Morpheus software. https://software.broadinstitute.org/morpheus.
FIGURE 3

Summary schematic outlining cytokine dysregulation among PV and AA patients and control groups.
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immune cascade, a multitude of studies in both conditions have

attempted to identify the extent of dysregulation of numerous

cytokines with potential relevance to disease pathogenesis

(summarized in Table 1). A majority of studies indicate that AA is

Th1- and Th17-driven disease (28), whereas PV appears to be driven

by dysregulations in the Th2 and Th17 pathways (25). In accordance

with previous studies, we also found find strong evidence for the

activation of these pathways in PV and AA patients (Table 1).

Remarkably, in AA we report an inheritance-specific

dysregulation of Th1 and Th17 pathway cytokines with an
Frontiers in Immunology 05
elevation in all AA clinical subtypes as well as first degree

relatives in comparison to unrelated control subjects. Equally

striking, we find healthy controls matched for the known PV-

susceptibility alleles DRB1*0402 and/or DQB1*0503 (“HLA-

matched”) exhibit an elevation of pro-inflammatory cytokines

that is similar to that seen in PV patients when compared to

HLA-unmatched controls (healthy controls who do not express

the PV-associated susceptibility alleles) for Th2, Th17 and generally

proinflammatory pathways. These data invoke a novel paradigm of

disease susceptibility whereby unknown genetic elements in the case
TABLE 1 Comprehensive literature review of serum cytokine changes in AA and PV.

Pathway Cytokine AA Literature PV Literature Our AA Data Our PV Data

# of studies showing: No Change No Change ↑: PV > all CR
: PV > UMCR

⇧: PV > MCR

Th17 IL-17 13
(34–46)

3 (47–49) – 8 (1,
50–56)

3 (57–59) 1 (60) No change

IL-21 2 (36, 37) – – 2 (27, 61) 2 (54, 57) 1 (62) No change

IL-22 1 (36) 2 (42, 48) – 1 (54) – 1 (63) No change ↑ ⇧

IL-23 2 (37, 64) 2 (40, 42) – 2 (1, 65) 2 (51, 54) 1 (60) ↑

Th1 IFN-g 13 (40,
42–45, 48,
66–72)

2 (37, 42) – 6 (1, 52,
54, 58,
73–75)

4 (59,
76–78)

3 (79–81) No change

IL-2 8 (34, 35,
40, 45, 47,
66, 68, 71)

1 (48) 1 (44) 2 (54, 57) 6 (1, 51, 59,
76, 78, 82)

3 (74,
80, 81)

– ↑ ⇧

IL-12 2 (48, 66) – – 2 (52,
54, 59)

3 (1, 76, 77) – – No change

Th2 IL-4 4 (43, 47,
71, 83)

3 (35,
48, 66)

1 (40) 7 (73, 78–
81, 84–86)

5 (1, 54, 59,
62, 76, 82)

1 (74) – ↑

IL-5 1 (35) 2 (48, 87) 1 (54) 4 (1, 57,
59, 76)

– – ↑ ⇧

IL-13 3 (43,
45, 70)

2 (48, 66) 1 (42) 1 (54) – – –

Pro-Inflammatory TNFa 7 (35–37,
42, 64,
68, 69)

1 (66) – 12 (54, 76,
77, 82,
88–96)

3 (51,
58, 97)

–

IL-1 1 (42) – – a: 7 (77,
89, 90, 92,
95, 96, 98)
b: 7 (54,
57, 77, 89,
90, 95,
96, 98)

a: 4 (51, 54,
76, 97)
b: 4 (1, 51,
76, 97)

b:1 (63) – a:
b:

IL-6 6 (36, 37,
44, 64,
66, 72)

1 (99) – 10 (52, 59,
63, 75–77,
80, 82,
96, 97)

7 (51, 54,
57, 58, 60,
78, 91, 100)

– No change

Other IL-7 1 (101) – – 1 (57) 1 (76) – – –

IL-9 1 (43) 1 (66) – – 2 (1, 54) – – ↑ ⇧

IL-10 3 (37,
40, 66)

4 (34, 45,
48, 99)

1 (102) 8 (51, 52,
54, 78, 81,

5 (1, 51, 52,
54, 58, 59,

1 (74) No change ↑ ⇧

(Continued)
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of AA or HLA molecules linked to PV susceptibility in the case of

PV predispose individuals to a limited activation of inflammatory

cytokines regardless of disease manifestation.

Thus, perplexingly, it appears that some genetically at-risk

individuals, on the basis of their HLA status (PV) and/or other

shared genetic background (AA), harbor disease-promoting

inflammatory pathways, yet for reasons that are unclear, remain

disease free. In support of this assumption, our group has previously

found that in PV, HLA-matched controls share an upregulation of

certain autoantibodies with patients when compared to HLA-

unmatched controls (20). Furthermore, we found total

antioxidant capacity to be similarly diminished in HLA-matched

control and PV patients, but not in HLA unmatched controls (30).

Thus, our work emphasizes that individuals who may have genetic

susceptibility to these autoimmune skin diseases may be skewed

towards activation of certain inflammatory pathways. On the other

hand, it may be the case that HLA and/or other genetically driven

differences in themselves are insufficient to produce the full scope of

autoimmune dysregulation required to cross the threshold

necessary to induce disease-specific phenotype. This idea is

supported by the presence of cytokine dysregulations unique to

PV patients alone, separate from HLA-matched control subjects

(i.e. for IL-2, IL-5, IL-22, and IL-9). The latter findings indicate that

cytokine dysregulation is not entirely HLA driven. Ultimately,

disease manifestation is most likely to rely on the presence of

additional genetic and/or environmental factors.

Genome-wide association studies (GWAS) may prove useful in

identification of these additional genetic factors which contribute to

disease. In PV, GWAS are limited, notably due to the low

prevalence of the disease, however one study by Sarig et al.

identified an association between the pro-apoptotic molecule

ST18 and PV in a group of 100 Jewish PV patients and 400-age

and population-matched controls (31). Little was reported on

immune pathways within this work. In AA, however, GWAS

have identified several immune-related pathways. In particular,
Frontiers in Immunology 06
literature has identified genes responsible for activation of IL-21

and IL-2, as well as the IL-2/IL-21, IL-2RA and HLA class II loci all

to be implicated in AA (14, 32). This matches the Th1 and Th17

cytokine dysregulation we find in our work. However, GWAS have

also found polymorphisms in the promotor region of IL-13 to be

associated with AA (33).

Perhaps most intriguingly, a disease relevant, and at least

partial, autoimmune activation in individuals that share genetic

risk elements evokes a further novel hypothesis that there may be

additional mechanisms at play which prevent these at-risk

individuals exhibiting disease-like inflammation from progressing

to frank clinical disease. It may be the case, for example, that specific

counter-regulatory immune mechanisms offset the disease-driving

cytokine dysregulation. One component of the necessary

neutralizing force against the existing partial autoimmune

activation seen in PV HLA-matched controls may be the

downregulation of other specific cytokines, such as we observed

for IL-10 and IL-15. Previous work in our lab supports this concept

within both PV and AA. In gene expression studies in PV, our

group has previously identified a specific ‘protection signature’ in

HLA-matched controls, indicating that these individuals down- or

up-regulate a specific set of genes that is otherwise similarly

expressed in PV patients and healthy individuals not matched for

PV-associated HLA alleles (HLA-unmatched controls) (22).

Interestingly, a downregulation of the IL-13RA1 gene is part of

this signature, supporting the importance of cytokine dysregulation

in disease development or prevention thereof. Echoing this theme,

previous gene microarray work in our lab uncovered specific

“inheritance,” “disease,” and “severity” transcriptional signatures

within AA patients, healthy relatives (related controls), and healthy

non-relatives (unrelated controls) (19).

Figure 4 summarizes our findings regarding these novel

concepts regarding disease risk, and the immune requirements

and limitations linked to disease development. Our data allow for

a more complete and deeper understanding of how cytokine
TABLE 1 Continued

Pathway Cytokine AA Literature PV Literature Our AA Data Our PV Data

84–86,
103)

76, 78, 81,
84–86, 92)

IL-15 2 (44, 47) – – 1 (104) – – – ↑ ⇧

IL-18 1 (105) 2 (48, 66) – – – – – –

IL-25 1 (37) – – – – – – –

IL-31 1 (37) – – – – – –

IL-33 1 (37) – – 1 (106) – – – –

TGFb 1 (42) – 2 (35, 45) 2 (55, 92) 4 (1, 50,
76, 78)

3 (52,
60, 107)

No change –

IL-27 – – – 1 (91) – – – –

CCL-11 – – – – – 1 (1) – –

IL-36 – – – 1 (56) – – – –
The pathways currently considered most relevant in AA are indicated with bold text and pathways currently considered most relevant in PV are indicated with underlined text. Dashes indicate
that no data is available. In our studies, cytokines were measured in pg/mL. ↑ indicates PV > all CR. indicates PV > UMCR. ⇧ indicates PV > MCR.
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pathways are altered in PV and AA pathogenesis and outline a

potential role for HLA haplotype/familial relation in disease.

In summary, our data uncover a genetic underpinning to Th1-

and Th17-related cytokine dysregulation in AA and to Th2-, Th17-

and pro-inflammatory cytokine dysregulation in PV that are not

restricted to patients. Our work supports the novel hypothesis that

healthy individuals related to AA patients as well as individuals

genetically susceptible to PV exhibit disease-associated immune

disturbances that in themselves fall below the threshold required for

disease development, and/or possess counter-regulatory

mechanisms that prevent progression to active disease.

Though the work presented here focuses solely on peripheral

cytokine dysregulation in AA and PV, target tissues of these diseases

such as hair follicles in AA and keratinocytes in PV may harbor

their own genetic variations and respond to an altered cytokine

milieu differently. Our studies do not shed light on the effect of

peripheral cytokine dysregulation on these target tissues. More

work is thus required to identify how and if the peripheral
Frontiers in Immunology 07
cytokine dysregulation we find ultimately affects target tissues,

and whether the cytokine dysregulation in genetically susceptible

but healthy controls would extend to target tissues. Such work

would need to focus on both lesional and non-lesional skin in

patients, whereas genetically susceptible individuals could provide

only non-lesional skin samples for comparison.

Nevertheless, knowledge of the extent and limitations of genetic

contribution to disease provides new details regarding the

mechanistic road map underlying the development of AA and

PV, and shines a spotlight on the murky and previously

underrecognized and understudied question of why certain

individuals develop disease while others do not. Moreover, our

data add to the knowledge base of how and why particular

autoimmune diseases tend to cluster within families in support of

the common gene/cause hypothesis. This work provides a stepping

stone for further investigation to the precise mechanisms that

produce disease, and ultimately those that may prevent it as well.

Future work will be necessary to pinpoint potential disease-
FIGURE 4

(A) Cytokine dysregulation shared across related controls/HLA-matched controls and patients with AA/PV: The overlapping portion of the Venn
diagram shows cytokine pathways that are shared between both patients with AA and PV, as well as their genetically susceptible counterparts
(related controls or HLA-matched controls, respectively). The portion to the right show cytokines that were found to be upregulated in disease alone
(note: outside of IL-10 and IL-22, these cytokines were not analyzed for AA patients). (B) Cytokine dysregulation shared across both AA and PV: Both
AA and PV share a dysregulation in Th17-pathway associated cytokines as well as TNFa (overlapping area of the Venn diagram). In addition, AA
shows dysregulation in Th1-pathway cytokines IFNg and TNFa (left). PV, on the other hand, shows an additional dysregulation in other pro-
inflammatory cytokines (IL-1a, IL-1b, IL-6, IL-8) as well as the Th2 pathway cytokine IL-13 (right).
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counteracting immune mechanisms in genetically predisposed

individuals that could inform an entirely new approach to disease

management and therapeutics.
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