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Metabolism: a potential regulator
of neutrophil fate
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and Qu Hongping*

Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of
Medicine, Shanghai, China
Neutrophils are essential components of the innate immune system that defend

against the invading pathogens, such as bacteria, viruses, and fungi, as well as

having regulatory roles in various conditions, including tissue repair, cancer

immunity, and inflammation modulation. The function of neutrophils is

strongly related to their mode of cell death, as different types of cell death

involve various cellular and molecular alterations. Apoptosis, a non-inflammatory

and programmed type of cell death, is the most common in neutrophils, while

other modes of cell death, including NETOsis, necrosis, necroptosis, autophagy,

pyroptosis, and ferroptosis, have specific roles in neutrophil function regulation.

Immunometabolism refers to energy and substancemetabolism in immune cells,

and profoundly influences immune cell fate and immune system function.

Intercellular and intracellular signal transduction modulate neutrophil

metabolism, which can, in turn, alter their activities by influencing various cell

signaling pathways. In this review, we compile an extensive body of evidence

demonstrating the role of neutrophil metabolism in their various forms of cell

death. The review highlights the intricate metabolic characteristics of neutrophils

and their interplay with various types of cell death.
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1 Introduction

1.1 The life cycle of neutrophils

Neutrophils are essential innate immune system components, crucial for defending

against pathogens including bacteria, virus and fungus (1). The homeostasis of neutrophils

production and elimination is critical for appropriate immune system function.

Neutrophils originate from multipotent hematopoietic stem cells located in the bone

marrow or spleen. These stem cells undergo a series of maturation processes and eventually

develop into mature neutrophils that are released into the bloodstream (2). Neutrophils

production and maturation are regulated by various factors, including cytokines like

CXCL8, growth factors like G-CSF, and cellular signals like PI3K/AKT pathway (3).
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Granulocyte-stimulating factor (G-CSF) is a key cytokine that

enhances neutrophil production by promoting hematopoietic

stem cell differentiation and proliferation (4). Mature neutrophils

released into the bloodstream form the peripheral neutrophil

reserve, which migrates to sites of infection or inflammation (5).

On detection of invading pathogens or inflammatory signals,

circulating neutrophils adhere to vascular endothelial cells and

migrate into tissue spaces, guided by chemotactic factors, where

they perform essential functions, such as bactericidal activity and

phagocytosis (5).

Neutrophils generally have a relatively short lifespan, with half-

lives ranging from several hours to a few days (6, 7). Timely

elimination of aged, surplus, or non-functional neutrophils

through cell death is crucial for maintenance of appropriate

immune responses to various conditions (5, 8). Alteration of

neutrophil cell death mechanisms can result in various

pathological conditions, including acute inflammation, chronic

inflammation and disruption of other immunological pathways

(9–12). For example, delayed neutrophil death can exacerbate

lung injury in patients with sepsis (13), while suppressed cell

death within the microenvironment of certain solid tumors

accelerates cancer metastasis (14). Therefore, understanding the

detailed mechanisms underlying cell death is pivotal to full

comprehension of a wide range of diseases.

Apoptosis, a programmed form of cell death commonly

observed during inflammation, is the primary cell death

mechanism that aids in clearance of unwanted neutrophils to

prevent excessive inflammation (8, 15). However, various other

types of neutrophil death have recently been detected, including

autophagy, pyroptosis, necrosis, necroptosis, and newly-discovered

mechanisms, such as ferroptosis (16–19). In addition to these

conventional pathways, neutrophils undergo a specialized form of

cell death, which is closely tied to their function, referredas NETosis

(20, 21). These different cell death types have distinct roles in

various physiological and pathological conditions, including

inflammatory, non-inflammatory, pathogen-induced, and cell

lysis-mediated contexts (22). It is crucial to determine the

predominant mode of cell death occurring under specific

conditions. Neutrophils that undergo programmed cell death are

phagocytosed and cleared by surrounding macrophages, a process

known as efferocytosis, which prevents secondary inflammation or

autoimmune responses (23). Further, neutrophils undergoing other

forms of cell death are cleared through dissolution and absorption,

minimizing their potential harmful effects.
1.2 Neutrophilic function and disease

Neutrophils both function as first-line effectors in the innate

immune response, defending against pathogens, such as bacteria,

viruses, and fungi, and have roles in regulating various

immunological processes, in contexts including cancer, injury,

and tissue repair (24). Neutrophils can synthesize and release

lysosomal enzymes, generate oxygen radicals, and release

cytokines, underpinning their unique and crucial roles in the

immune system (24–26). Due to their diverse functions and
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regulatory abilities, neutrophils have varying roles in the

development of different diseases.

Neutrophils primarily function in protection against infections

and tissue damage (24). As major components of the innate

immune system, neutrophils eliminate pathogens through

phagocytosis and by releasing toxic and antibacterial substances.

Further, these cells can modulate immune responses by controlling

the timing of pro- or anti-inflammatory cytokine release, thereby

regulating inflammation intensity, to effectively remove infections

without impairing tissue repair (26).

Abnormal neutrophil activity and numbers can have negative

effects on disease development (24). Insufficient neutrophil activity

increases susceptibility to opportunistic infections and allows

infection spread. Conversely, excessive neutrophil infiltration can

result in overwhelming inflammation, which delays tissue

regeneration and increases the risk of reinfection (27). Further,

dysregulated neutrophil activation can lead to overproduction of

pro-inflammatory factors or insufficient anti-inflammatory factor

generation, contributing to tissue damage in various organs and

autoimmune diseases; for example, rheumatoid arthritis and

Crohn’s disease (12, 24). Neutrophils are also crucial components

of the tumor immunological microenvironment, where their

functions and activities undergo specific modulation (28). In

some cases, neutrophils aid tumor cell recognition and killing,

while in others they promote tumor growth, metastasis, and drug

resistance (28, 29). The mechanisms underlying the effects of

neutrophils on tumors are complex and varied, and specific

tumor cell types can exploit neutrophil immunoregulatory

mechanisms to evade immune surveillance and accelerate tumor

progression (30).
1.3 Immunometabolism and
neutrophil death

Cell metabolism, which involves energy provision and

biomolecule synthesis, is crucial for most cellular processes.

Immunometabolism, referring to integration of metabolism in the

immune system, has been a focus of immunology research for some

years. Both intercellular and intracellular metabolic signaling

strongly influence the activation state and fate decisions of

immune cells, including neutrophils. Neutrophils can rapidly

transition from quiescent to activated states, which requires

dynamic metabolism to meet their energy and biosynthetic

demands. Metabolic signaling operates bidirectionally, in that

cellular signaling can reprogram metabolism, while metabolites

play critical roles in multiple signaling pathways. Specific cellular

processes trigger the activation of distinct metabolic pathways,

enabling cell adaption, underscoring the critical role of metabolic

fluctuations (31). Neutrophils have traditionally been considered

glycolysis-dependent cells that primarily derive energy from glucose

(32, 33). However, recent studies have highlighted the importance

of other metabolic pathways, including mitochondrial, lipid, and

glutamine metabolism, in the neutrophil lifespan and their

functions (34–37).
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Few studies to date have linked neutrophilic metabolism with

cell death, and the comprehensive metabolic features associated

with specific types of cell death remain unclear. Reactive oxygen

species (ROS) have pivotal roles in various forms of cell death (38–

40). utilize multiple metabolic pathways to generate ROS, which can

be synthesized in the cytoplasm or mitochondria (17, 34, 35, 41).

Nevertheless, the precise mechanisms governing ROS production

and utilization in specific types of neutrophil cell death remain

incompletely elucidated, and warrant further research.

Furthermore, the processes of neutrophil death can be influenced

by metabolites other than ROS (41, Table 1).

In this review, we provide an overview of the fundamental

metabolic profiles of neutrophils in both quiescent and activated

phases. Additionally, we summarize the known relationships

among neutrophil metabolic reprogramming and various cell

death processes. Our aim is to outline a concise map of metabolic

transitions throughout the lifespan of neutrophils and offer insights

that can inspire future research (Table 2).
2 Fundamental metabolism profile
of neutrophils

In this section, we discuss the primary metabolic pathways in

neutrophils. Although neutrophils rely on glycolysis to provide
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most of the energy required for their basic functions (32, 33),

different types of metabolism are activated in neutrophils during

phagocytosis and other immunological processes (34, 42, 43).

Oxygen consumption and ROS production are remarkably

promoted as neutrophils transition into an active state, and this

phenomenon is referred to as respiratory burst (44, 45). Glycolysis

and other neutrophilic metabolic processes are influenced by

respiratory burst, despite glycolysis generally being considered an

anaerobic pathway (46). Other metabolic alterations also warrant

deep investigation, to facilitate comprehensive understanding of

neutrophil metabolism.
2.1 Glucose metabolism

Glucose is the major substance used to supply energy in

neutrophils (34). Neutrophils obtained from the surrounding

environment via the glucose transport proteins, GLUT1, GLUT3,

and GLUT4, which are expressed on neutrophil cytomembranes

(47, 48). When neutrophils are in a quiescent state, GLUT1 serves as

the chief glucose transporter; however, on activation, there is a

marked increase in GLUT3 and GLUT4 expression, which ensures

sufficient glucose supply (48).

As progenitor myeloid cells differentiate into neutrophils, their

main energy source shifts from oxidative phosphorylation

(OXPHOS), which connects the tricarboxylic acid (TCA) cycle
TABLE 1 ROS production in different processes in neutrophils.

Differentiation Activation Apoptosis NETosis

Production↑ (44, 45) Production↑ (44, 45) Production ↑(early) (107)
Production ↓(late) (110, 111)

Production ↑ (132)

Necrosis/necropotosis autophagy pyroptosis ferroptosis

Production ↑ (155) Production ↑ (165) Production ↑ (176, 177) Production ↑ (193, 194)
Arrow ↑ Means ROS production is promoted in the cellular process, Arrow ↓ means ROS production is inhibited in the cellular process.
TABLE 2 Metabolism alteration in different processes in neutrophils.

Cell process Glucose metabolism Glutamine metabolism Lipid metabolism

Differentiation Glycolysis↑ (49)
OXPHOS blocked (49)

Unknown Lipolysis ↑ (78)

Activation Glycolysis↑ (49)
PPP↑ (59)
Glycogenolysis ↑ (52)

Glutaminolysis ↑ (37, 95) Lipid metabolism inhibited (78)

Cell death Glucose metabolism Glutamine metabolism Lipid metabolism

Apoptosis Glycolysis↓ (110, 111)
PPP↓ (110, 111)

Glutaminolysis ↓ (37) Phospholipolysis ↑ (122)

NETosis Glycolysis↑ (136, 137)
PPP↑ (141)

Glutaminolysis ↑ (138)
Take-up ↑ (138)

under pathological conditions↑ (142,
144, 147, 150)

Necrosis/necroptosis Unknown Unknown Unknown

Autophagy Glycolysis↓ (163) Unknown Lipolysis ↑ (78)

Pyroptosis Glycolysis↑ (178, 179) Unknown FAO↑ (180)
Ketone body production↑ (182)

Ferroptosis Take-up↑ (196) Glutaminolysis ↑ (193–195)
Take-up ↑ (193–195)

FAO↑ (187)
Phospholipid oxidation ↑ (187)
Bold texts indicate different cellular processes. Arrow ↑Means the metabolic activity is promoted in the cellular process, Arrow ↓means the metabolic activity is inhibited in the cellular process.
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with the electron transport train in aerobic respiration, to glycolysis

(49). This transition allows neutrophils to function effectively in

inflammatory environments, which are typically low in available

oxygen, and is triggered by hypoxia inducible factor-1a (HIF-1a).
Hypoxia inhibit the hydroxylation of H1F-1a by prolyl hydroxylase

domain family and factor inhibiting HIF (FIH) dioxygenases to

permit function of HIF-1a. HIF-1a is a transcriptional factor that

promote the expression of glucose transporters like GLUT1 and

GLUT3 and glycolytic enzymes like aldolase and phosphoglycerate

kinase-1 (50). HIF-1a can also suppress OXPHOS byenhancing the

expression of pyruvate dehydrogenase kinase 1and and LDHA to

prevent pyruvate from being turned into actyl-CoA that enter TCA

cycle. Once glucose enters neutrophils, it is immediately converted
Frontiers in Immunology 04
into glucose-6-phosphate (G6P), to prevent it leaving the cell.

Under aerobic conditions, G6P is transformed into lactate, the

ultimate product of glycolysis, rather than remaining as pyruvate

for entry into the TCA cycle (33, 51) (Figure 1).

In some contexts, for example inflammatory sites or tumor

microenvironments, there is limited glucose available to

neutrophils; therefore, to maintain glucose homeostasis,

neutrophils also have robust capacity to store and utilize glycogen

(33). Glycogen storage dysfunction or replenishment leads to

metabolic exhaustion and impaired neutrophil function, resulting

in deficient neutrophil-related immune responses (52). G6P, which

bridges glycolysis and glycogenesis, is a key regulator of glucose and

glycogen homeostasis (53). The glucose-6-phosphotase (G6Pase)
FIGURE 1

Fundamental metabolic features of neutrophils. neutrophils uptake glucose by the effect of glucose transporter proteins GLUT1, GLUT3 and GLUT4
expressed on the plasma membrane. Glucose will be converted to glucose-6-phosphate (G6P) by hexokinase 2(HK2) as immediately as glucose
enter neutrophilic cytosol. G6P will be turned into 3-phosphoglyceraldehyde(GA3P) and dihydroxyacetone phosphate(DHAP), pyruvate and lactate in
sequence for ATP synthesis in glycolysis. When neutrophils are activated pentose phosphate pathway (PPP) will be activated. PPP get 6-
phosphogluconolactone(6PGL) from G6P through G6P dehydrogenase and finally get NADPH, which produce reactive oxygen species (ROS) for
anti-bacterial activities. Glutamine is an important supplementation source of ROS. It is turned into glutamate, which can be transformed into Glu
and then a-KG to get NADPH. Glutamine uptake and utilization can be promoted by formyl peptide receptors (FPR) with N-formyl-L-methionyl-L-
leucyl-phenylalanine (fMLP) to promote NADPH synthesis. Lipid metabolism is the major energy source during neutrophils differentiation.
Autophagosome use lipase to degrade lipid into fatty acids (FAs), which then get into TCA cycle to produce energy for differentiation and other
neutrophils activities. Conventional mitochondrial metabolism pathways like TCA cycle and oxidative phosphorylation (OXPHOS) only occur before
neutrophils finish differentiation because mature neutrophils contain a low density of mitochondria with low activities.
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complex, which localizes to the endoplasmic reticulum membrane,

converts G6P to glucose, to maintain glucose and glycogen balance,

rendering neutrophils the only leucocytes equipped with both

gluconeogenesis and glycogenesis abilities (54). Glyceraldehyde-3-

phosphate, an intermediate product of glycolysis, also regulates this

process (55). Impaired glycogen synthesis from G6P leads to the

autosomal-recessive syndrome, glycogen storage disease type Ib

(GSD-1b), characterized by neutropenia and neutrophil

dysfunction (56). GSD-1b is caused by deficiency in glucose-6-

phosphate transporter (G6PT), as G6Pase-b function is closely

associated with G6PT (57). The neutropenia observed in GSD-1b

results from over-activated neutrophil apoptosis and abnormal

neutrophil differentiation in the bone marrow, influenced by

disordered energy supplementation and activation of

transcription factors, including HIF-1a and PPAR-g (58).
As mentioned above, activated neutrophils require ROS for

their immunological functions. A major route to ROS production in

activated neutrophils is through the pentose phosphate pathway

(PPP) in the cytosol (59). Although glycolysis does not directly

produce ROS, it does generate G6P for the PPP (60). Unlike the

TCA cycle, the PPP utilizes G6P to efficiently synthesize large

amounts of NADPH for ROS production, without generating any

ATP (61, 62). Once neutrophils are stimulated, the PPP will be

strongly triggered within 30 minutes in preparation for an immune

response (63). G6P dehydrogenase is an important enzyme that

catalyzes the conversion of G6P to 6-phosphogluconolactone,

which initiates the PPP (61). G6PD deficiency is a genetic

disorder characterized by susceptibility to infections and recurrent

bacterial infections, due to insufficient NADPH and ROS

production (64). Cytoplasmic ROS derived from the PPP is

crucial in mediating the release of neutrophil extracellular traps

(NETs), a process linked to both neutrophil immune effects and cell

death (65) (Figure 1).
2.2 Mitochondria metabolism

In the quiescent state, neutrophils have low mitochondria density

and weak mitochondrial activity, and the role of mitochondria in

neutrophil function remains controversial (66, 67). Mitochondrial

respiratory chain inhibitors, such as FCCP or oligomycin, which

deplete mitochondrial membrane potential and depress

mitochondrial ATP synthesis, respectively, do not decrease ATP

production or basal oxygen consumption in neutrophils (68, 69).

Further, temporary treatment using mitochondrial respiratory chain

inhibitors has no influence on ROS production; however, prolonged

mitochondrial suppression using oligomycin (incubation > 2 h)

results in reduced ability to trigger respiratory burst (69). A

metabolic shift from OXPHOS to glycolysis occurs during

neutrophil differentiation in the bone marrow, and OXPHOS is a

primary source of mitochondrial ROS (mROS) in many cell types,

distinct from the cytosolic ROS synthesized by membrane receptors,

such as formyl peptide receptors (FPR), during respiratory burst (70,

71). Bao et al. demonstrated that N-Formyl peptides expressed on

invading bacteria (e.g., N-formyl-L-methionyl-L-leucyl-

phenylalanine, fMLP) can stimulate neutrophilic respiratory burst
Frontiers in Immunology 05
by activating FPRs, and this interaction can be blocked by oligomycin

(71). Subsequent studies clarified that ROS induced by fMLP

originates from the cytosol and does not involve mROS production

(72). It indicates that mitochondria may sense neutrophilic

respiratory bursts, independently of OXPHOS (73) (Figure 1).

Mitochondria loss is also driven by the effects of HIF-1a on

transcription during differentiation. Hypoxia activate HIF-1a to

induce mitochondrial autophagy in neutrophils (50). Cytochrome c,

a vital component of the electron transport chain, is downregulated

on HIF-1a activation, leading to OXPHOS suppression (49).

Another essential function of OXPHOS is creating membrane

electrochemical potential (DYm) across the mitochondrial

membrane, which facilitates electron transfer and provides energy

for ATP synthesis (74). Electron transfer is mediated by four

mitochondrial respiratory chain complexes (CI, CII, CIII and

CIV) in the inner mitochondrial membrane (75). The absence of

cytochrome c results in loss of CI, CIII, and CIV within a

respiratory chain, with consequent failure to produce sufficient

energy for ATP synthesis (51, 75, 76). Although DYm does not

typically contribute to neutrophil energy supplementation and

biosynthesis, diminished mitochondrial membrane potential can

trigger neutrophil apoptosis (49, 69). To maintain cell viability,

neutrophils utilize glycerol-3-phosphate to transport electrons. The

DYm generated with glycerol phosphate as a substrate is higher

than that generated with other complexes, with or without

substrate. Glycerol-3-phosphate can diffuse into the mitochondria

immediately on its production during glycolysis, followed by

oxidation to dihydroxyacetone-phosphate on the outer surface of

the inner mitochondrial membrane. This process donates electrons

to complex III of the respiratory chain via ubiquinol (46). The

mROS inhibitor, MitoTEMPO, accumulates in mitochondria and

reduces neutrophil superoxide production by inhibiting complex

III, highlighting the critical role of complex III in mROS production

(77). Inhibiting complex III also increases lactate production, as it

prevents glycerol-3-phosphate from entering mitochondria. This

process is considered to regulate aerobic glycolysis, without

affecting ATP synthesis (46) (Figure 1).

Fatty acid oxidation (FAO) is another important feature of

neutrophil mitochondrial metabolism in ATP-demanding

situations, such as differentiation or tumor adaptation (78, 79).

Concerning the unique role of lipid metabolism in neutrophil, it will

be discussed in the next part.
2.3 Lipid metabolism

In recent years, there has been an increasing focus on lipid

metabolism as an additional energy source, alongside glycolysis, in

various neutrophil functions (36). Lipid metabolism serves as an

important contributor to energy provision, cell signal transduction,

and immune response regulation, under both physiological and

pathological conditions.

Fatty acids (FAs) are essential energy sources for neutrophils,

particularly when glucose is limited (79). Autophagy is the main

producer of FAs in neutrophils through lipophagy, which supplies

the majority of energy for neutrophil differentiation (78).During
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differentiation, lipid can be degraded into FAs, which is then

converted into TCA cycles to synthesize ATP and provide most

energy for cellular processes of differentiating neutrophils. PPARg is
a transcription factor that regulate adipogenesis and promote lipid

droplet formation (80). G-CSF can stimulate the accumulation of

LDs in neutrophils and accelerate the maturation of neutrophils

through PPARg (81).During infection, Platelet activating factor,

LPS stimulation and cytokines like IL-5 facilitate LDs accumulation

with signal platform of TLR4, TLR7 and TLR9 to enhance the

immune response (82, 83). Lipophagy involves the transport of lipid

droplets, which are membrane-bound lipid-storing particles in the

cytosol, into double membrane-bound autolipophagosome vesicles,

which are then delivered to lysosomes for oxidation into FAs (84).

These FAs are then converted into fatty acyl-CoA esters, which are

transported into mitochondria via an acetylcarnitine transporter.

Once inside the mitochondria, fatty acyl-CoA esters are

metabolized into acetyl-CoA molecules, which enter the TCA

cycle and the OXPHOS system to generate ATP and NADPH

(85). Neutrophil maturation and differentiation are predominantly

regulated by autophagy related protein 7 (ATG7) in mice,

deficiency of which disrupts lipophagy, hindering neutrophil

differentiation and causing accumulation of immature neutrophils

in the bone marrow (78). Besides autophagy, FAs can also be

derived from the decomposition of excess lipids by neutral

lipases, such as adipose triglyceride lipase and hormone-sensitive

lipase, which help cover energy shortages under metabolic stress

(86, 87) (Figure 1).

In inflammatory pathways, lipids serve as both independent

signaling molecules in cell signal transduction, and as activators or

modulators of certain effector proteins or transcription factors (88,

89). Lipid inflammatory mediators can be classified into three types

according to their structures: arachidonic acid-derived eicosanoids,

membrane phospholipids, and omega-3/6 FA-derived lipids (36).

These molecules are vital regulators of proper immune responses, as

myeloid-specific adipose triglyceride lipase-deficient mice, which

fail to synthesize lipid mediators, exhibit disordered immunological

features (90). Fatty acid transporters and fatty acid recognition

receptors on neutrophils can also efficiently modulate inflammatory

pathways by interacting with specific lipids in the immunological

microenvironment to enhance innate immune responses, or

promoting neutrophil recruitment to inflammatory sites (91, 92).
2.4 Glutamine metabolism

Glutamine is an amino acid which remarkably modulates

immune function in the human body. Neutrophils are among the

immune cells that utilize glutamine and consume it at a higher rate

than other leukocytes (93) (94). Anti-infection function of

neutrophils can be facilitated by glutamine without influencing

their phagocytic ability (95). This effect of glutamine on neutrophil

function likely mediated by increased ROS production, as glutamine

can generate NADPH through malate synthesis and activated

NADPH oxidase, a key enzyme in ROS production, by
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upregulating the expression of its components, gp91, p22, and

p47 (96) (Figure 1).

Deficient glutamine utilization or inadequate glutamine supply is

strongly associated with various diseases, including cancers, diabetes,

and sepsis, which may result from oxidative stress (97–99).

Glutathione/g-l-glutamyl-l-cysteinyl-glycine (GSH), the most

abundant non-enzymatic antioxidant in human cells, is primarily

distributed in the cytoplasm, and can directly react with ROS to

eliminate peroxides (100). Oxidized GSH (GSSG) is produced during

this reaction, thus cell redox state can be reflected by the GSH/GSSG

ratio (101). Glutamine, in the form of glutamate, is a crucial precursor

amino acid for GSH and has a vital role in GSH synthesis; hence,

glutamine levels determine the GSH/GSSG ratio by modulating GSH

synthesis, which facilitates neutrophil function under oxidative

stress (98).
3 Metabolic alterations in different
types of neutrophil death

3.1 Apoptosis

Apoptosis is among the most common forms of cell death in

neutrophils under physiological conditions. Neutrophil apoptosis

usually results from caspase activation through various pathways,

and is characterized by changes in cell shape, pseudopod retraction,

volume reduction, and chromatin condensation (102–104), and

observation of these specialized changes under a microscope

indicate that apoptosis is occurring.

Neutrophil apoptosis initiation can be divided into two main

pathways, intrinsic and extrinsic. The extrinsic pathway involves

activation of death receptors and members of the tumor necrosis

factor receptor family, distributed on the plasma membrane (105,

106). Death receptor pathways, such as CD95 (Fas/APO-1), can

respond to exogenous and endogenous ROS in neutrophils,

inducing apoptosis (107). The intrinsic pathway is triggered by

cytochrome c release from mitochondria into the cytosol, regulated

by the bcl-2 family of apoptotic proteins, which maintain

mitochondrial integrity (108). Cytochrome c interacts with the

cytosolic protein, apoptotic protease-activating factor 1 (Apaf-1),

to activate the effector, caspase-9 (109). Further, cytochrome c is

released as the outer mitochondrial membrane is destroyed, due to

loss of mitochondrial membrane potential, which can be

diminished by treatment with mitochondrial respiration

inhibitors, such as oligomycin, to initiate apoptosis even before

apoptotic morphological features appear (69). Nevertheless,

inhibiting mitochondrial function does not accelerate neutrophil

apoptosis (69).

Glycolysis is inhibited in apoptotic neutrophils, which cannot

trigger respiratory bursts, leading to decreased pathogen killing

ability (110, 111). As previously mentioned, mitochondrial

membrane maintenance in neutrophils is fueled by glycerol-3-

phosphate produced during glycolysis, suggesting that reduced

glycolysis may trigger neutrophil apoptosis (46). Limited glucose
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(0.6 mM) is a key promoter of neutrophil apoptosis, an effect

enhanced by G6Pase-b deficiency in patients with GSD-Ib (112). G-

CSF, which is used to treat neutropenia in various conditions, can

delay, but not prevent, neutrophil apoptosis by repairing glucose

uptake and utilization (112). Unlike in other cells, hypoxia delays

apoptosis in neutrophils, both by reducing the ROS levels crucial for

apoptosis, and by activating HIF family transcriptional factors (107,

113–115). HIF-1a primarily modulates neutrophil metabolism for

adaptation to anoxic environments (114). Li et al. demonstrated

that cyclosporine can inhibit the SIRT6-HIF-1a-glycolysis axis to
accelerate neutrophil apoptosis (116). In contrast, HIF-2a activity

directly promotes the intrinsic apoptosis pathway (115). These

mechanisms help prolong the lifespan of neutrophils and

reinforce immune function in low-oxygen sites of inflammation

(117) (Figure 2).

Glutamine metabolism is crucial for NADPH generation and is

downregulated in apoptotic neutrophils, due to reduced NADPH

demand. Besides boosting respiratory bursts, glutamine also

produces precursor nucleotides for RNA and DNA synthesis, and

is responsible for expression of surface activation proteins and

cytokine production (118). Glutamine supplementation can

effectively slow neutrophil apoptosis, particularly exercise-induced

apoptosis, and modulates immunological functions (37, 119). While

glutamine fuels ROS generation, it suppresses extrinsic apoptosis by

decreasing p38, MAPK, and JNK phosphorylation and reducing
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p53 and caspase-3 expression (120). Interestingly, glutamine

extends the life span of neutrophils and enhances their function

while exhibiting anti-inflammatory effects, possibly due to its

protective effects on other cells (121) (Figure 2).

The effects of lipid metabolism regulation on neutrophil

lifespan are variable. Neutrophils barely utilize FAO at the end of

their lives, when their energy needs are markedly reduced.

Dysfunction of lipid metabolism can suppress peroxisome-derived

membrane phospholipid synthesis, leading to neutrophil apoptosis

without affecting neutrophil energy metabolism or differentiation

(122). Inflammatory mediators derived from lipolysis are important

in propelling neutrophil apoptosis, mainly through death receptor

signaling pathways (102). For example, 15-deoxy (Delta)12-

14PGJ2, a cyclopentenone prostaglandin derived from

arachidonic acid, induces neutrophil apoptosis in rats, possibly

through PPARg inactivation (123, 124). Phospholipolysis is a vital

source of arachidonic acid in neutrophils, and phospholipase and

sphingomyelinase activity, which produce endogenous lipid

mediators from membrane phospholipids, are closely associated

with normal apoptosis progression (125). Overall, lipid metabolism

can have dual effects on neutrophil survival, and the purpose of

lipolysis and lipogenesis in neutrophils varies considerably in the

contexts of different diseases (Figure 2).

Neutrophil apoptosis can be caused by extracellular stimulation

or damage, as well as by scarcity of anti-apoptotic molecules,
FIGURE 2

Metabolic regulation of apoptosis. Glycolysis is inhibited as neutrophilic apoptosis is triggered. Glycolysis contributes membrane electrochemical
potential (DYm) to respiratory chain complex III expressed on the outer membrane of mitochondria to maintain the integrity of the organelles. If
glycolysis is low, the mitochondria will rupture and release cytochrome c into the cytosol, which activates apoptotic effector caspase and initiate the
programmed cell death. Hypoxia delay apoptosis by activate transcriptional factors HIF1 and HIF2 as the promote the expression of anti-apoptotic
protein like PAI-1 and 6-phosphofructo-2-kinase (PFKFB). Concerning that ROS can initiate apoptosis by activating death receptors like CD95 on
plasma membrane, preventing ROS production by limiting peroxide like O2

2- is another way of hypoxia rejecting apoptosis. Although lipid
metabolism is in a low state in mature neutrophils, impaired lipid metabolism that inhibit the synthesis of membrane phospholipid can result in
apoptosis as well. Glutamine metabolism get weaker during apoptosis because of decreased demand for NADPH in apoptotic neutrophils. Surviving
cells need abundant glutamine supply for the synthesis of nucleic acid for the transcription and expression of anti-apoptotic genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1500676
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yipeng et al. 10.3389/fimmu.2024.1500676
including anti-apoptotic proteins and pro-inflammatory signaling

molecules (36, 126). Anti-apoptotic proteins, for example, the bcl-2

family member, Mcl-2, are highly expressed in neutrophil cytosol

and their levels decrease before other apoptotic changes occur (126).

As Mcl-2 has a shorter half-life than neutrophils (around 2–3 h)

and neutrophils do not express other bcl-2 family proteins, vigorous

protein synthesis is required for neutrophil survival, and impaired

protein and amino acid metabolism can lead to apoptosis (Figure 2).

NETosis is a specialized form of cell death in neutrophils that

shares many mechanistic features with apoptosis. NETosis and

apoptosis appear to be two sides of the same coin, with various

factors determining which pathway a dying cell will take. The

mechanisms, similarities, and differences between NETosis and

apoptosis are discussed in the following section.
3.2 NETosis

NETs are web-like chromatin structures released by neutrophils

that are important for neutrophil immune responses and pathogen

elimination (65). Accompanied by nucleus disintegration, cell

membrane collapse and cell dysfunction, NET formation and

release are features of a unique type of cell death, differing from

apoptosis and necrosis, NETosis (127, 128). However, in some

cases, neutrophils can maintain biological and immunological

function after releasing NETs (129). Hence, NETosis is

categorized according to its effect on neutrophil viability as

suicidal and vital NETosis (129). Although suicidal and vital

NETosis share notable common mechanisms among their key

steps, including NET assembly and release, they lead to vastly

different outcomes for neutrophils. Therefore, the Cell Death

Nomenclature Committee does not recommend using the term

NETosis to describe the vital process of NET release (130). In this

review, we focus solely on the metabolic mechanisms that are either

shared between vital and suicidal NETosis or exclusive to

suicidal NETosis.

Neutrophil activation is required to trigger NETosis; hence, the

metabolic features of NETosis initiation are aligned with those of

neutrophil activation, including upregulation of glycolysis, lipid

metabolism, and respiratory burst (34, 131). Neutrophils can

produce ROS through NADPH oxidase activity and utilize it for

NETosis (132). NETosis and apoptosis are generally considered

mutually exclusive cell death processes that contribute to opposing

metabolic alterations. Although ROS can activate both NETosis and

apoptosis, the Akt and JNK pathways mediate the switch from

apoptosis to NETosis in a ROS production-dependent manner (133,

134). Phorbol 12-myristate 13-acetate (PMA), a widely used

NETosis activator, enhances the activity of NADPH oxidase 2

(NOX2), leading to synthesis of large amounts of cytosolic ROS,

thus triggering Akt pathway to promote NETosis and inhibit

apoptosis (134). Akt can also be activated to initiate NET release,

as sensor kinases in the JNK pathway are triggered on stimulation

by gram-negative bacteria or high levels of lipopolysaccharide (133).

Meanwhile, recent evidence indicates that, in some specific cases,

such as ultraviolet stimulation, another type of cell death,

aponetosis, with features of both NETosis and apoptosis, is
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triggered through an NADPH oxidase-independent pathway; the

metabolic features of aponetosis require further investigation

(135) (Figure 3).

Abundant glucose is indispensable for NETosis, and glycolysis

is the main glucose metabolic pathway that fuels NETosis. In the

context of diseases associated with overactivated NETosis, such as

cystic fibrosis or asthma, neutrophils from airway connective tissue

contain increased levels of glycolytic metabolites and exhibit

enhanced glucose uptake (136, 137). 2-deoxy-D-glucose, a glucose

analogue that competitively binds to the glycolytic rate-limiting

enzyme, glucose hexokinase, blocks NETosis by inhibiting

glycolysis (138). NET formation can be divided into two phases:

the first phase is chromatin decondensation, which does not rely on

glycolysis; while the second is glycolysis-dependent NET release.

Activated neutrophils grown on glucose-free media undergo

morphological changes to their nuclei, without release of NET

vesicles (138). PMA-stimulated NETosis and NETosis in cystic

fibrosis are accompanied by upregulated expression of GLUT1,

rather than GLUT3 or GLUT4, which is a primary contributor to

enhanced glucose metabolism (138, 139). As discussed above, PPP

is the most important source of ROS production in neutrophils,

producing ample NADPH for NADPH oxidase activity. The

downstream glycolytic enzyme, phosphofructokinase liver type

(PFKL), converts fructose-6-phosphate (F6P) to fructose-1,6-

bisphosphate, preventing F6P entry into the PPP, thus blocking

NADPH and ROS production (140). Hence, proper PPP initiation

is necessary for ROS supply for NETosis, despite enhanced

glycolysis (141) (Figure 3).

There is a weak association between lipid metabolism and NETosis

levels under physiological conditions, as NETosis usually occurs in

mature neutrophils with little reliance on lipid metabolism for energy

production (102). However, in some diseases, NETosis can be

abnormally activated through certain specialized lipid metabolism

pathways. LNK is a member of the SH2B family of adaptor proteins

that acts as a key regulator of hematopoietic cell signaling and

proliferation (142, 143). Together, LNK deficiency and

hyperlipidemia lead to platelet production and activation, platelet–

neutrophil aggregates, and neutropenia caused by overwhelming

NETosis, resulting in vascular or coagulation disorders (144, 145).

LNK dysfunction promotes neutrophil priming and response to

oxidized phospholipids from activated platelets, accelerating NETosis.

This process can be completely blocked by deficiency of peptidyl

arginine deiminase 4 (PAD4), a key effector of DNA decondensation

(145). Disruption of wound healing and cardiovascular disorder in

patients with diabetes or model mice may also be a consequence of

NETosis mediated by abnormal lipid metabolism and PAD4 function

(146, 147). Insulin resistance promotes fatty acid uptake and oxidation,

leading to increased ROS production in neutrophils. Excessive ROS

stimulates the function of transcription factors, such as PPARa, and
the expression of enzymes, including PAD4, which help to trigger

NETosis (148, 149). During the development of atherogenesis,

cholesterol facilitates neutrophil recruitment and NET formation,

which is mediated by activation of the proinflammatory NOD-like

receptor family, pyrin domain-containing 3 (NLRP3) inflammasome

protein (150). Unusual lipid metabolism in various cells, such as

cholesterol accumulation in macrophages within atherosclerotic
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plaques, can also stimulate NETosis, due to excessive secretion of IL-1b
by these macrophages (151) (Figure 3).

Glutamine is crucial for NADPH oxidase activity and ROS

production, making it significant for NETosis initiation. PMA

stimulates expression of the NADPH oxidase components, gp91, p22,

and p47, to facilitate NET release, which can be blocked by the glutamine

metabolism inhibitor, 6-Diazo-5-oxo-l-norleucine (96). Glutamine

depletion partially, but not completely, diminishes NET formation, as

glucose is the primary source of ROS for most neutrophilic antibacterial

activities (138). Macrophages use glutamine to synthesize nitric oxide

(NO) from arginine through the inducible NO synthase enzyme,

utilizing NADPH as an energy source; however, there is minimal

evidence supporting this pathway in neutrophils (Figure 3).
3.3 Necrosis and necroptosis

Necrosis is a form of cell death that is less regulated than

apoptosis, which is initiated in response to detrimental

environmental factors, such as lack of oxygen or essential

nutrients, toxic substances, or extremely acidic or basic conditions

(103). Similar to apoptosis, necrosis involves changes in the shape of

cytoplasmic organel les , chromatin condensation, and

oligonucleosomal DNA fragmentation, but without caspase

activation (152). Necroptosis is a type of programmed cell death

that shares more features with necrosis than apoptosis, and is

primarily regulated by receptor-interacting protein kinase-3

(RIPK3) and mixed lineage kinase domain-like protein (MLKL)
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(153, 154). When apoptosis is blocked, for example, due to bcl-2

family protein dysfunction, aging or apoptotic neutrophils may

undergo cell clearance via necroptosis (155).

Although necrosis and necroptosis are typically independent of

the caspase cascade, ROS and Ca2+ ions are key participants that do

not directly relate to external stimuli in these two processes. During

necrosis, excessive Ca2+ inflow causes mitochondrial calcium

overload, and ROS destroys lipid, protein, and DNA structures,

which jointly lead to disordered ionic equilibrium and

mitochondrial dysfunction. In necrosis, unlike apoptosis,

mitochondria usually swell, which greatly impairs OXPHOS and

ATP generation. Consequently, apoptosis is blocked due to deficient

release of apoptotic proteins from the mitochondria under remote

energy supply conditions (156). In necroptosis, ROS generation

largely depends on mitochondria, using a mechanism involving

mitochondrial permeability transition related to cyclophilin D,

rather than Bax or Bak (155). However, necroptosis can be

triggered normally in cells with a low density of mitochondria,

such as neutrophils (157).
3.4 Autophagy

Autophagy is an important cellular process that maintains

metabolic equilibrium when energy or nutrients are deficient. In

neutrophils, autophagy is indispensable for immune response

regulation and pathogen elimination, as neutrophils are often

present in environments lacking sufficient oxygen or energy
FIGURE 3

Metabolic selection of apoptosis or NETosis. The initiation of NETosis greatly depends on glucose metabolism, including glycolysis to produce ATP
and PPP to produce NADPH. Glycolysis activate RAF via ATP production. RAF then activate ERK to trigger PI3K/AKT pathway to promote NETosis and
inhibit apoptosis. Cytosolic ROS produced by NADPH oxidases 2(NOX2) is necessary for AKT production. Besides of enhanced PPP activity,
glutamine metabolism is also facilitated to supply extra NAPDH for NETosis. Both glucose and glutamine uptake and metabolism can be enhanced
by NETosis activator phorbol 12-myristate 13-acetate (PMA) by promoting the expression of membrane glucose transporter GLUT1 and membrane
glutamine transporter ASCT2.
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sources. Autophagy can also be responsible for removal of harmful

substances, such as damaged mitochondria and protein aggregates

in the cytosol, a process some researchers refer to as selective

autophagy (158). In addition to selective autophagy,

macroautophagy and microautophagy are processes triggered by

distinct pathways that result in similar cellular consequences (159).

Autophagy is a form of cell death used to compensate for energy

deficiency and inhibits other cell death processes, such as apoptosis

or NETosis. For example, dysfunction of PD-L1, which promotes

neutrophil autophagy, results in failure of NET formation and

release (160). In cases where NETosis is activated by PMA

stimulation and energy substrates, such as glucose or glutamine,

are relatively restricted, autophagy can be initiated to provide

energy for NET release and inhibit apoptosis (161). Under

stressful situations, for example, limited glucose, selective

autophagy can degrade specific proteins via lysosomes for

nutrient and energy supplementation. This process, regulated by

metabolic status, is important for maintaining metabolic balance

(162). However, this type of autophagy can also consume excessive

metabolic proteins, such as hexokinase 2 (HK2), impairing normal

cellular metabolism and triggering unexpected cell death (163).

Dysregulated selective autophagy primarily affects glucose and lipid

metabolism, while its specific effects on neutrophils and

neutrophilic metabolism remain elusive (164).

Autophagy is an essential source of FAs for neutrophils. As

outlined earlier, autophagy mediates lipolysis to generate FAs for

mitochondrial respiration, which provides energy for neutrophil

differentiation in the bone marrow autophagy mediates lipolysis to

degrade lipid and generate FAs for mitochondrial respiration,

which provides energy for neutrophil differentiation in the bone

marrow through FAs oxidation (78). Autophagy deficiency inhibits

neutrophil degranulation by decreasing ROS production from fatty

acid-mediated NAPDH oxidase activity (165). FAs or lipids can also

regulate neutrophil autophagy (166, 167). He et al. revealed the role

of b-hydroxybutyrate (BHB) in regulating neutrophil autophagy in

cows (167). Treatment with BHB facilitates neutrophil adhesion by

preventing the degradation of adherent molecules, such as CD11a,

CD11b, and CD18, rather than increasing their expression levels.

BHB also increases the mRNA abundance and production of the

pro-inflammatory factors, IL-1b, IL-6, and TNF in bovine

neutrophils, collectively inhibiting neutrophil autophagy (167).
3.5 Pyroptosis

Pyroptosis is a newly discovered type of cell death that primarily

relies on the activity of caspase-1 and is distinct from other forms of

cell death, such as apoptosis. Neutrophil pyroptosis primarily

involves processing of specific inflammatory cytokines via the

inflammasome to modulate an appropriate immune response,

and is usually initiated by intracellular bacterial infections; for

example, Salmonella carrying Salmonella pathogenicity island 1

type III secretion systems (168, 169). Salmonella infection boosts

assembly and function of the inflammasome, a protein complex that

modifies precursors of the inflammatory cytokines, IL-1b and IL-

18, driving pyroptosis (168). Activated NLRP3 and NLRC4
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inflammasomes promote cleavage of the protein, gasdermin D

(GSDMD), and its functional N-terminal proteolytic fragment

induces neutrophils to undergo pyroptosis and produce IL-1b
(170). In addition to killing intracellular pathogens, pyroptosis is

involved in neutrophil secretion of IL-1b and IL-18. Further, in

some situations, such as during acute Salmonella infection,

neutrophils can escape cell death and maintain IL-1b production

by activating the NLRC4 inflammasome (171).

Canonical inflammasome activation by Salmonella infection

also facilitates NETosis and triggers pyroptosis through the

NLRP1/3-GSDMD axis (172, 173). NOX2/gp41 deficiency does

not block, but rather fosters, compensatory NET release, while

GSDMD is unnecessary for PMA-induced NETosis, which largely

relies on NAPDH oxidase activity (172). Although mROS is an

established NLRP3 inflammasome activator, insufficient neutrophil

mitochondrial function limits ROS activity as a powerful regulator

of neutrophilic pyroptosis (174, 175). Circulating mitochondrial

DNA can act as an effector to activate the canonical inflammasome,

and is released on stimulation by calcium influx, along with mROS

or other pyroptosis-inducing factors (176, 177). While

mitochondria have diverse roles in regulating pyroptosis, there is

limited evidence of their significance in neutrophils, which contain

low numbers of mitochondria.

In dendritic cells, promotion of pyroptosis involves switching of

the major metabolic pathway from OXPHOS to glycolysis, similar to

the neutrophilic maturation process (178). Along with other chemical

and biological inhibitors of hexokinase, N-acetylglucosamine, a

component of the bacterial cell wall, mediates the relocalization of

hexokinase from the surface of mitochondria to the cytosol, driving the

NLRP3 inflammasome pathway and pyroptosis, independent of mROS

and mitochondrial DNA (179).

Upregulated fatty acid supply or synthesis can facilitate

inflammation through inflammasome activation (180). In contrast,

limited fatty acid availability leads to reduced ROS production and

increased autophagy, due to the anti-inflammatory effect of AMP-

activated protein kinase, thereby inhibiting other forms of cell death and

the inflammatory response (181). However, when glucose is scarce,

FAO is abnormally activated to produce sufficient energy. During this

process, ketone bodies such as BHB are produced, which can inhibit

NLRP3 inflammasome activation through various pathways (182).

Butyrate, a short-chain fatty acid with structural similarity to BHB,

also has an anti-inflammatory effect by silencing the inflammasome

(182). Indeed, short-chain FAs produced by gut microbiota, which are

engaged in lipid metabolism in most cell types, have shown remarkable

anti-inflammatory effects through various mechanisms, including

control of the inflammasome and pyroptosis (183).
3.6 Ferroptosis

Ferroptosis is an emerging form of cell death, with some

features of necrosis, that has become an increasing focus of

attention since it was first described in 2012 (184). Peroxidation

of phospholipids mediated by intracellular iron accumulation is the

most important characteristic of ferroptosis, which is regulated by a

series of cellular and molecular mechanisms. While the roles and
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mechanisms of ferroptosis in cancer and ischemic diseases have

been widely studied, its impact on neutrophil function is poorly

understood (185). Nevertheless, several studies have explored the

impact of neutrophil ferroptosis on modulating the tumor

microenvironment, revealing that it can have both anti- and pro-

tumor effects, depending on the context (14, 19, 186).

Lipid metabolism is the most pivotal metabolic pathway

involved in ferroptosis across various cell types. Accumulation of

cellular lipid peroxides drives ferroptosis; the peroxides are mainly

derived from polyunsaturated FAs (PUFAs), such as arachidonic

acid, which make up membrane phospholipids (187). The GSH-

dependent lipid hydroperoxidase, GSH peroxidase 4 (GPX4), is a

crucial regulator of ferroptosis, that can reduce phospholipid

hydroperoxides through GSH oxidation, thereby preventing

ferroptosis (188). In addition to lipid hydroperoxidases, several

endogenous mechanisms eliminate lipid peroxides or prevent their

production. Lipophilic radical trapping antioxidants (RTAs), such

as tetrahydrobiopterin or coenzyme Q10, are endogenous reductive

products that inhibit ferroptosis (189, 190). Endogenous RTA

synthesis is triggered by ferroptosis suppressor protein 1 (FSP1),

which is located on the plasma membrane, and FSP1 levels can be

modulated by the antioxidant transcription factor, NRF2 (190, 191).

During ferroptosis, general lipid metabolism, including PUFA

metabolism, MUFA metabolism, and phospholipid synthesis and

remodeling, is reprogrammed (192).

Although lipid oxidation is a central feature of neutrophilic

ferroptosis, its metabolic characteristics, including glucose and

glutamine metabolism, have only been explored in a limited

number of studies. Glutamine metabolism is critical in

neutrophils, and GSH serves as a major antioxidant, levels of

which are closely related to cellular oxidative state and ROS

production. Gao et al. and Xiao et al. reported that, in cancer

cells, ferroptosis is controlled by glutamine metabolism and supply,

as well as being regulated by cellular ROS levels (193, 194).

Glutamate transporters, such as SLC7A11 and SLC1A5, modulate

ferroptosis initiation by adjusting glutamine and GSH levels (195).

Glucose starvation limits neutrophil ROS production, suggesting

that ferroptosis is proportionately linked to glucose metabolism.

Moreover, energy depletion caused by glucose starvation activates the

AMPK pathway, which blocks ferroptosis (196). As an energy-sensing

kinase, AMPK is activated by energy insufficiency to inhibit the

synthesis of polyunsaturated FAs that are indispensable for ferroptosis

(197, 198). However, it remains unclear whether glycolysis or the PPP is

the main glucose metabolic pathway during ferroptosis.

Similar to pyroptosis, ferroptosis is regulated by mitochondrial

function, as mitochondria contribute substantially to glutamine

metabolism, ROS synthesis, and lipid peroxide accumulation

(199). although the role of mitochondria in neutrophil ferroptosis

is elusive, due to continuous changes in mitochondrial activity and

density in these cells.
4 Conclusion and future

Studying the metabolic features of immune cells is essential to

understanding immune system function and regulation. In recent
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years, the metabonomics of innate immune cells, particularly

neutrophils, has become the focus of increasing research, leading

to elucidation of complex characteristics of the innate immune

system. Although most innate immune cell types rely heavily on

glucose metabolism, neutrophils, natural killer cells, and M2

macrophages predominantly utilize glycolysis, with almost no

OXPHOS or respiratory electron transport chain activity (33, 200,

201). On neutrophil activation, the PPP is promoted, alongside

glycolysis, to supply NADPH for antibacterial activity.

Mitochondria are present at a low density in neutrophils and

have altered function, barely participating in neutrophil energy

metabolism; hence, the effects of mitochondria regulation on

neutrophils are controversial (202). Lipid metabolism generally

contributes to neutrophil differentiation and maturation, then

decreases with increasing mitochondrial activity and OXPHOS.

FAO provides energy for immature neutrophils, while lipid

metabolism also contributes to membrane assembly and signal

transduction. Glutamine has a broad-spectrum protective effect

on the immune system and supplies additional NADPH to

neutrophils, thus helping to maintain redox homeostasis. The

production and elimination of ROS by different metabolic

processes play an essential role in neutrophil function and death.

E3 ubiquitin ligase TRIM29 is expressed in neutrophils and can

modulate the PERK-mediated ER stress response to effect ROS

production (203, 204).TRIM29 and ER stress response may be

equipped with the ability to influence neutrophil cell fate, which is

to be discussed. As mentioned above, akt significantly determines

neutrophil to enter apoptosis or NETosis and PI3K/AKT pathway

can be regulated by various metabolic processes (205). Poly(ADP-

ribose) polymerase 9 (PARP9) is able to activate PI3K/AKT

pathway in various immune cells and is a capable enzyme that

bridges neutrophil metabolism and cell death (206). In general,

neutrophil activity and metabolism are centered around ATP and

ROS synthesis, with glucose and glycolysis as pivotal features,

although the contributions of other metabolic pathways are

gradually being elucidated.

Cell death does not necessarily indicate loss or impairment of

neutrophil function. On the contrary, different types of cell death

correspond to distinct immunological signaling pathways and

individually modulate the immune response (207). Metabolic

reprogramming, initiated by various death processes, is strongly

linked to immune response adaptation, and changes in energy

demand and metabolite production induced by cell death processes

can induce initiation of neutrophil cell death. Apoptosis is the most

common form of neutrophil death in inflammatory environments, and

is often associated with neutrophil activation. As would be expected,

glycolysis and PPP are inhibited as the energy requirements of aged

neutrophils diminish. Hypoxia contributes considerably to apoptosis,

regardless of the effects of HIF1/2 on transcription, although ROS

appears to be a double-edged sword in the context of neutrophil

apoptosis. NETosis, the formation and release of NETs, is crucial for

neutrophil function and can sometimes occur while cell viability is

maintained; energy and ROS are necessary for this process, hence,

glucose metabolism, including glycolysis and PPP, as well as glutamine

metabolism, are enhanced. In some pathological or abnormal

conditions, lipid metabolism pathways can activate NETosis, and the
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detailed mechanisms occurring in different disease models warrant

further investigation. Necrosis and necroptosis function in a ROS-

dependent manner, although their specific roles in neutrophils remain

unknown. Autophagy generally occurs during neutrophil

differentiation, and helps maintain homeostasis of energy and

materials; hence, dysfunctional autophagy usually leads to an

impaired immune response. Autophagy is both a regulator of and

regulated by lipid metabolism, as well as other metabolic pathways, and

its role in the neutrophil life cycle, beyond its early stages, remains

unknown. Pyroptosis is an essential type of immunological cell death,

that aids immune cytokine secretion, alongside the inflammasome.

Inflammasome assembly requires the activity of NOX and ROS, while

the role of mROS in neutrophils is poorly understood. In neutrophils,

pyroptosis drives a unique type of NETosis, distinct from the PMA-

induced mechanism, the metabolic features which, including the

potential key role of glycolysis, warrant further research. Ferroptosis,

which is closely related to lipid metabolism reprogramming, is a

current focus in neutrophil research; however, its specific metabolic

pathways and alterations, particularly concerning various types of

metabolism, require further investigation.

Complicated relationship between metabolism and cell death in

neutrophil may reveal that targeting metabolism reprogramming to

modulate abnormal cell death is an effective therapy strategy to treat

correlative diseases. For GSD-1b patients poorly respond to regular

treatment, somatic gene therapy is becoming an available choice.

Both adenovirus and adeno-associated virus can carry vectors that

express human G6PT. They have shown encouraging ability to

correct metabolism impairment, over-activated apoptosis and

neutropenia as they are infused into G6pt−/− mice (208, 209).

Excessive NETosis have been verified as an essential factor that

causes various diseases like sepsis, rheumatic disease and

inflammatory bowel disease thus there are a large amount of

therapeutics trying to treat these diseases by inhibiting NETosis

(210). ROS scavengers like N‐acetylcysteine and Methotrexate,

which inhibit NET formation by reducing ROS formation, have

shown remarkable therapy benefits in some clinical or preclinical

trials (210, 211). As mentioned in chapter 3.2, lipid metabolism

bypass activation can also be a reason for aberrant NET formation

and it may be a new therapeutic target for cardiovascular and

coagulation disorder. ROS is undoubtedly one of the most

important metabolites that influence the cell fate as it takes part
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in almost all the cell death forms in neutrophils. Direct or indirect

modulation of ROS production and elimination is an important

method to regulate neutrophil cell function and death, then help

improve the treatment for diseases. Besides, more relevance of

neutrophil metabolism to cell death is still to be explored and

there will be more possibilities that cell fate of neutrophil can be

modulated by influencing cell death in more diseases.
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137. Pité H, Morais-Almeida M, Rocha SM. Metabolomics in asthma: where do we
stand? Curr Opin Pulm Med. (2018) 24.

138. Rodrıǵuez-Espinosa O, Rojas-Espinosa O, Moreno-Altamirano MMB, López-
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