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Single-cell Atlas reveals core
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Background: Triple-negative breast cancer (TNBC) is the most aggressive

subtype of breast cancer, with the worst prognosis among all subtypes. The

impact of distinct cell subpopulations within the tumor microenvironment (TME)

on TNBC patient prognosis has yet to be clarified.

Methods: Utilizing single-cell RNA sequencing (scRNA-seq) integrated with bulk

RNA sequencing (bulk RNA-seq), we applied Cox regression models to compute

hazard ratios, and cross-validated prognostic scoring using a GLMNET-based

Cox model. Cell communication analysis was used to elucidate the potential

mechanisms of CPVL and MSR1. Ultimately, RNA interference-mediated gene

knockdown was utilized to validate the impact of specific genes on the

polarization of tumor-associated macrophages (TAMs).

Results:Our findings revealed that the function of immune cells is more pivotal in

prognosis, with TAMs showing the strongest correlation with TNBC patient

outcomes, compared with other immune cells. Additionally, we identified

CPVL and MSR1 as critical prognostic genes within TAMs, with CPVL

expression positively correlated with favorable outcomes and MSR1 expression

associated with poorer prognosis. Mechanistically, CPVL may contribute to

favorable prognosis by inhibiting the SPP1-CD44 ligand-receptor and

promoting CXCL9-CXCR3, C3-C3AR1 ligand-receptor, through which TAMs

interact with other cells such as monocytes, neutrophils, and T cells. Moreover,

cytokines including IL-18, IFNgR1, CCL20, and CCL2, along with complement-

related gene like TREM2 and complement component CFD, may participate in
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the process of CPVL or MSR1 regulating macrophage polarization. Furthermore,

RT-PCR experiments confirmed that CPVL is positively associated with M1-like

TAM polarization, while MSR1 is linked to M2-like TAM polarization. Finally, the

prognostic significance of these two genes is also validated in HER2-positive

breast cancer subtypes.

Conclusions: CPVL and MSR1 are potential biomarkers for macrophage-

mediated TNBC prognosis, suggesting the therapeutic potential of

macrophage targeting in TNBC.
KEYWORDS

single-cell sequence, macrophages, cPVL, MSR1, prognosis, triple-negative
breast cancer
1 Introduction

Breast cancer is a highly heterogeneous disease that can be

classified into several subtypes based on molecular characteristics.

Among them, triple-negative breast cancer (TNBC) is responsible

for 10-15% of all breast cancers but accounts for 40% of breast

cancer-related deaths worldwide (1). Due to the lack of estrogen

receptor (ER), progesterone receptor (PR), and human epidermal

growth factor receptor 2 (HER2) expression, as well as the absence

of effective therapeutic targets and treatment options, TNBC is

considered a subtype with poor outcomes. The prognosis of TNBC

is closely linked to its tumor microenvironment (TME). Aside from

the tumor cells themselves, various cellular components in the TME

can regulate tumor development through complex crosstalk,

ultimately influencing patient prognosis. At present, algorithms

developed using bulk RNA data, such as CIBERSORT, have been

used to identify specific cell types within the TME, including T cells

(2), B cells (3), NK cells (4) and tumor-associated macrophages

(TAMs) (5), as linked to the prognosis of TNBC patients. However,

the complex roles of individual cells in TME remain to be

discovered. With the advancement of single-cell RNA sequencing

(scRNA-seq) technology, the analysis of the TME has reached

unprecedented precision. This technique offers higher resolution

and reduced error compared to earlier methods such as pathology,

immunohistochemistry, and bulk RNA sequencing. However, since

single-cell sequencing data lack clinical information and prognostic

data, it is challenging to conduct large-scale comparisons like those

possible with bulk sequencing, making it difficult to analyze the

prognostic influence of different cell subtypes or assess the function

of key genes within these subtypes in disease prognosis or

therapeutic efficacy.

Prior investigations have reported that macrophage

subpopulations were highly prevalent in the tumor immune

microenvironment (TIME) of TNBC (5), and their polarization

state was a key factor influencing prognosis. In TNBC, M1-like

polarized macrophages are associated with favorable prognosis (5),
02
whereas M2-like macrophages, typically considered TAMs, are

linked to poor prognosis (6). Moreover, macrophage polarization

status and the expression of polarization-specific genes exhibit

heterogeneity across different cancer types. For instance, TREM2

is positively correlated with M1-like macrophages in cervical

squamous cell carcinoma and endometrial adenocarcinoma but is

associated with M2-like macrophages in lung squamous cell

carcinoma, clear cell renal carcinoma, and invasive ductal

carcinoma of the breast (7). In lung cancer, NLRP6 (8) and

HHLA2 (9), in glioma, IGFBP2 (10), and in TNBC, COL5A1

(11), MCT-1 (12), and Sohlh2 (13) promote M2-like polarization

of macrophages. Although many macrophage polarization-related

genes have been identified in previous TNBC studies, those most

strongly associated with patient prognosis remain to be discovered.

Here, we identified CPVL and MSR1 as key genes in TAMs

within the TNBC TME, both of which significantly influence

patient prognosis. CPVL and MSR1 were found to be associated

with macrophage polarization. CPVL encodes a serine

carboxypeptidase that is primarily expressed in macrophages and

monocytes (14), located in the endoplasmic reticulum and

lysosomal compartments. In previous studies, the relationship

between CPVL and macrophages in tumors has only been

demonstrated in gastric cancer, where it is positively correlated

with M2-like macrophage polarization, contributing to poor patient

prognosis (15). MSR1, commonly known as a macrophage-specific

gene, encodes the macrophage scavenger receptor 1, a trimeric

integral membrane glycoprotein involved in various functional and

disease-related mechanisms related to macrophages, including

Alzheimer’s disease, atherosclerosis, and host defense (16).

Additionally, MSR1 induces M2 macrophage polarization through

the regulation of proline and arginine metabolism (17), and copy

number variations (CNVs) in MSR1 may influence the risk of

developing several types of cancer (18). Although previous studies

have demonstrated that CPVL and MSR1 were expressed in

macrophages and affected macrophage-related physiological and

pathological processes, their prognostic significance in TNBC has
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not been previously established. In this study, we demonstrated that

CPVL and MSR1 are specifically expressed in TAMs and are

significantly correlated with TNBC prognosis. By using CellChat

analysis to examine cell communication and performing correlation

analysis between genes, cytokines, and components of the

complement pathway, we explored the potential regulatory

mechanisms of these genes.

In this study, to perform parallel comparisons of different cell

subpopulations within the TME at the single-cell level, we analyzed

66 TNBC tissues and integrated data from the TCGA and GEO

databases, comprising 230 TNBC patients with prognostic

information. By combining scRNA-seq with bulk RNA

sequencing (bulk RNA-seq), we highlighted that, compared to

other cell types, macrophages were the most prognostically

significant cells in the TME of TNBC, with CPVL and MSR1

being key prognostic genes. Targeting these genes may provide

new avenues for developing strategies to improve outcomes in

TNBC patients.
2 Materials and methods

2.1 Data source and preprocessing

For the scRNA-seq dataset, original data were downloaded from

GEO, including GSE255107, GSE180286, GSE176078, GSE118389,

GSE199515, GSE246613, and GSE161529, comprising a total of 66

samples (265477 cells). Quality control of the scRNA-seq data was

performed using the “Seurat” package: cells with fewer than 300

genes or more than 6,500 genes expressed, or those with >10%

mitochondrial gene expression, were excluded. For the bulk RNA-

seq dataset, we downloaded the breast cancer BRCA dataset from

the TCGA database and the GSE103091 breast cancer dataset from

GEO. Mean centering the genes were performed on each dataset to

correct for batch effects and platform differences. The cohorts were

then combined, and patients who were ER, PR, or HER2 positive

were excluded, leaving a total of 230 patients for further analysis.
2.2 Single-cell sequencing analysis

The “SCTransform” function was used to integrate the

normalized data to correct for platform-specific biases. Then, the

data were scaled and subjected to principal component analysis

(PCA). The “Harmony” package in R was used to remove batch

effects from the segregated scRNA-seq data. With “principal

components” = 20, TNBC cell cluster analysis was performed using

“FindNeighbors” and “FindCluster” functions. The uniformmanifold

approximation and projection (UMAP) method was used to visualize

the data. Differentially expressed genes between the clusters were

identified and manually annotated based on known biomarkers for

each cell type. Markers used in this study are listed: lymphocytes

(CD20, CD3E), myeloid cells (CD14, CSF3R), endothelial cells

(PECAM1, CDH5), fibroblasts (THY1, PDGFRB), tumor cells
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(EPCAM, TP63), T cells (CD3D), B cells (MS4A1), neutrophils

(FCGR3B), monocytes (FCN1), mast cells (KIT), macrophages

(C1QB), dendritic cells (CD1E). To further investigate, tumor-

associated macrophages were classified into four groups based on

the average expression of CPVL and MSR1 in macrophages.
2.3 Differential gene identification and
mapping to bulk data

Dominant genes expressed in each major cell type were

identified in the scRNA-seq dataset (i.e., genes with a fold change

>3 relative to other cell types, P-value <0.05). These genes were then

projected onto bulk RNA-seq data to shows their relative expression

pattern. Spearman’s correlation coefficient was used to calculate the

correlation between the expression levels of each gene, and a

heatmap was generated.
2.4 Cox regression hazard analysis

According to bulk RNA-seq data and clinical information,

hazard ratios (95% confidence interval, displayed as horizontal

bars with P-values) were obtained using a multivariate Cox

regression model, and cross-validated prognostic scores were

generated using a GLMNET-based Cox model and applied to

pairwise differences in gene expression. A factor was considered

an independent prognostic feature if the P-value was less than 0.05

in both univariate and multivariate Cox analyses.
2.5 Survival analysis of prognostic genes

To identify survival-related genes within a given cell type, cell

type-specific prognostic feature analysis was performed. Based on

the aforementioned prognostic scores and hazard ratios, seven

genes within macrophages that significantly influenced prognosis

(P < 0.05) in the bulk dataset of 230 TNBC patients were identified.

Kaplan-Meier survival curves were generated using the median

prognostic score as a cutoff to differentiate genes into “Better Genes”

and “Worse Genes” based on their opposing effects on prognosis.

The expression of these seven prognostic genes was then further

analyzed in relation to patient survival.
2.6 Linear correlation analysis

Linear fitting of single-cell data was performed using lm(). Gene

set enrichment analysis was conducted on each cell type using the

fgsea R package, and gene-gene correlations were calculated using

Spearman’s correlation coefficients. Scatter plots were created using

the ggplot2 R package. P-values were computed using the t-

distribution, and correlation fitting curves with 95% confidence

intervals were drawn when P-values were less than 0.05.
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2.7 Cell-cell communication analysis

We employed the CellChat R package (version 1.6.1) (https://

github.com/sqjin/CellChat) to study intercellular communication

and identify signaling molecules at the single-cell level. First, we

processed gene expression data to pinpoint ligands and receptors

highly expressed within individual cell clusters. Next, we evaluated

cell-cell communication at the pathway level by calculating

the communication probability for all ligand-receptor interactions

associated with each signaling pathway. These probabilities were then

aggregated to construct an intercellular communication network.
2.8 Correlation analysis between CPVL and
MSR1 gene expression and pathway scores,
cytokine, and complement
gene expression

To explore the potential functional pathways of the genes, we

retrieved HALLMARK pathways from https://www.gsea-

msigdb.org/. The AddModuleScore function was used to compute

the HALLMARK pathway scores for each cell. Cytokine-related

genes were obtained from the KEGG_CYTOKINE_CYTOKINE_

RECEPTOR_INTERACTION path way, and complement-related

genes were acquired from the GOBP_COMPLEMENT_

ACTIVATION pathway. Spearman’s correlation coefficients were

calculated between gene expression and pathway scores, as well as

between genes and cytokine/complement genes, using the psych R

package. The results were visualized using the ggcorrplot R package.
2.9 Cell culture

Human THP-1 monocytes were kindly supplied by Ya-jing Fu

from the First Affiliated Hospital of China Medical University. Cells

were cultured under sterile conditions in RPMI-1640 medium

supplemented with 15% fetal bovine serum, 1% penicillin (100 U/

mL), and 1% streptomycin (100 mg/mL). The cells were passaged every

2-3 days. All cell cultures were maintained in a cell incubator at 37°C

with 5% CO2 and saturated humidity. For experiments, cells in the

logarithmic growth phase were used, and mycoplasma contamination

was regularly checked via quantitative PCR to ensure negative results.
2.10 Cell transfection

All siRNAs were from JTS scientific. CPVL siRNA was used to

transfect THP-1 M0 cells at a confluency of 70%-90% using

jetPRIME, according to the manufacturer’s instructions. At 48 to

72 hours post-transfection, RNA was extracted from the cells, and

qPCR analysis was performed. The sequence of siRNA targeting

CPVL is: siRNA1: 5’-CGGCUUCCUCACCGUGAAUTT-3’, 5’-

AUUCACGGUGAGGAAGC CGTT-3’, siRNA2: 5’-CUACUA

GAUGGCGACUUAATT-3 ’ , 5 ’-UUAAGUCG CCAUCUA

GUAGTT-3’.
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2.11 In vitro differentiation of THP-1 cells

A total of 2.5 × 105 THP-1 cells were plated in culture dishes

and pretreated with 100 ng/mL of PMA, then transfected with

siRNA. After 24 hours, the medium was changed, and cells were

divided into two groups: one group was treated with 100 ng/mL LPS

and IFN-g to induce M1-like macrophage differentiation, and the

other group was treated with 50 ng/mL IL-4 to induce M2-like

macrophage differentiation. Polarization was confirmed by

detecting cell surface markers using qPCR.
2.12 RNA extraction and qRT-PCR

Cell samples from different treatment conditions were collected.

Total RNA was extracted using the Eastep Super Total

RNA Extraction Kit (Promega, LS1040) according to the

manufacturer’s instructions. The extracted RNA was quantified

by measuring absorbance at 260 nm using a NanoDrop ND-100

spectrophotometer. Reverse transcription was performed using the

GoScript Reverse Transcription Kit (Promega, A2790) to synthesize

cDNA from the RNA. Real-time quantitative PCR (qRT-PCR) was

conducted using SYBR Premix Ex Taq II on an Applied Biosystems

7500 Real-Time PCR System. The qRT-PCR protocol consisted of

45 cycles of 50°C for 2 minutes, 95°C for 10 minutes, 95°C for 15

seconds, and 60°C for 1 minute, followed by a final cycle of 95°C for

15 seconds, 60°C for 1 minute, 95°C for 30 seconds, and 60°C for 15

seconds. Relative expression levels were calculated using the 2-DDCt
method, with 18S as the internal control. The primer sequences

were as follows: CPVL forward primer: 5’-TGACCTTG

CGTGACAGAGAC-3’, CPVL reverse primer: 5’-CCGTGCACC

GCAAAAAGTTA-3’; MSR1 forward primer: 5’-GCCAACCT

CATGGACACAGA-3’, MSR1 reverse primer: 5’-AGAATTTC

CTGGCCTTCCGG-3’; CD163 forward primer: 5’-GAAGACAG

AGACAGCGGCTT-3’, CD163 reverse primer: 5’-GGTATCTT

AAAGGCTCACTGGGT-3’; CD86 forward primer: 5’-CACAC

GGATGAGTGGGGTC-3’, CD86 reverse primer: 5’-ACTGAAG

TTAGCAGAGAGCAGG-3’; 18s forward primer: 5’-CCCGGGGA

GGTAGTGACGAAAAAT-3’, 18s reverse primer: 5’-CGCCCGC

CCGCTCCCAAGAT-3’ (Sangon Biotech (Shanghai) Co., Ltd.).
2.13 Immune infiltration analysis

CIBERSORT, a deconvolution method, was used to analyze the

degree of cellular immune infiltration based on the bulk datasets. In

this study, multivariate Cox regression analysis was used to assess

the impact of CM ratio, TNM stage, and macrophage infiltration on

patient prognosis in each breast cancer subtype.
2.14 Statistical analysis

All statistical tests, regression fitting, and plotting in this study

were performed using R statistical software (https://www.R-
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project.org). Spearman’s rank correlation was applied for all

correlation analyses. Kaplan-Meier analysis was used to generate

survival curves for each prognostic gene in the dataset. Unless

otherwise specified (such as in dominant marker gene analyses), all

statistical tests were two-sided, and a P-value < 0.05 was considered

statistically significant. Appropriate multiple testing corrections

were applied where necessary, as described in each analysis section.
3 Results

3.1 Immune cell compartment has most
significant impact on the prognosis of
TNBC patients

To investigate the most prognostically significant cellular

components within the TME of TNBC, we integrated scRNA-seq

data from 66 TNBC patient tissue samples, encompassing 265,477

single-cell transcriptomes. Using unsupervised clustering and

UMAP, we categorized the cells into 33 distinct cell clusters

(Figure 1A), which reflect the complexity of the TME in TNBC.

Each cluster was annotated based on known marker genes for

specific cell types (Figure 1B): clusters 0, 2, 3, 7, 15, and 29

predominantly expressed lymphocyte markers, clusters 1, 10, 20,

22, 24, and 32 expressed myeloid cell markers, clusters 9 and 33

expressed endothelial cell markers, clusters 6, 8, and 17 expressed

fibroblast markers, and clusters 4, 5, 11, 12, 13, 14, 16, 18, 19, 21, 23,

25, 26, 27, 28, 30, and 31 predominantly expressed tumor/epithelial

cell markers. The tumor cell group contained more clusters than

other groups, which indicates that breast cancer cells have the most

heterogeneity. Subsequently, the single-cell transcriptomes from 66

TNBC samples were visualized by clear separation between the

major cell types, including fibroblasts, endothelial cells, tumor/

epithelial cells, lymphocytes, and myeloid cells (Figure 1C).

Additionally, a bubble plot demonstrated the expression intensity

of marker genes in each cell type, validating the annotations of these

cell populations (Figure 1D).

Next, we classified the identified cell subpopulations into three

major compartments: tumor cells (tumor/epithelial cells), immune

cells (myeloid cells, lymphocytes) and stromal cells (endothelial

cells, fibroblasts). The expression levels of dominant genes in each

cell type (tumor cells, fibroblasts, endothelial cells, etc.) were

visualized using a heatmap in the scRNA-seq dataset (Figure 1E,

left). Since scRNA-seq data lacked prognostic information, we then

mapped these dominant genes onto a bulk RNA sequencing dataset

from a 230 TNBC patients’ cohort, displaying them in another

heatmap (Figure 1E, center). Eventually, a pairwise correlation

analysis (Figure 1E, right) revealed that genes specific to each cell

compartment (tumor, stromal, immune) were enriched within their

respective compartment, suggesting that coregulation patterns

observed in bulk mRNA datasets are largely driven by differences

in cell-type abundance across the TME.

Based on the analyses above, we further explored the impact of

the three major cell compartments—tumor cells, immune cells, and

stromal cells — on clinical outcomes of TNBC. By mapping the

feature genes of these three major cell types to the bulk RNA-seq
Frontiers in Immunology 05
data from 230 TNBC patients with prognostic information, we

obtained hazard ratios using a multivariate Cox regression model,

combined with cross-validated prognostic scores based on a

GLMNET Cox model. The analysis revealed that feature genes

from all three cell compartments — tumor genes (P = 0.001),

stromal genes (P = 0.002), and immune genes (P < 0.001) — were

significantly associated with clinical outcomes, with immune genes

showing the strongest correlation with prognosis in TNBC patients

(Figure 1F). Given that immune feature genes are enriched in

immune cells, it can be concluded that immune cells have a

significantly greater effect on the prognosis of TNBC patients.
3.2 Macrophages are the most
prognostically significant immune cell
subpopulation in TNBC

The immune cell cluster comprises multiple subpopulations

with distinct functions, each exerting varying effects on prognosis.

Firstly, we refined the immune cell subclusters from single-cell RNA

sequencing data and visualized them using UMAP (Figure 2A). A

dot plot (Figure 2B) illustrated the expression of marker genes in

each immune cell subtype, further validating their annotations as B

cells, T cells, dendritic cells, macrophages, mast cells, neutrophils,

and monocytes. To determine which immune cell subpopulation

was most strongly associated with patient prognosis, we mapped the

feature genes of these immune subpopulations onto the bulk RNA-

seq data. Multivariate Cox regression analysis was used to obtain

hazard ratios, and cross-validated prognostic scores were calculated

using a GLMNET Cox model. The analysis revealed that only three

cell types—mast cells (P = 0.043), neutrophils (P = 0.021), and

macrophages (P = 0.007)—were significantly associated with TNBC

prognosis (Figure 2C). Based on the combined analysis of P-values

and hazard ratios, macrophages emerged as the most prognostically

significant immune cell subpopulation in TNBC.
3.3 CPVL and MSR1 are key genes in
macrophages affecting TNBC prognosis

Recent studies showed that genes such as MCT-1, COL5A1, and

Sohlh2 promoted M2-like macrophage polarization and were

associated with poor prognosis in TNBC (11–13). Conversely,

genes like IFI35 were linked to M1-like macrophage polarization

and favorable outcomes in TNBC (5). To further explore the

connection between gene expression in macrophages and

prognosis in TNBC patients, we used cross-validated macrophage

prognostic scores from bulk RNA-seq data and illustrated the

opposing effects of selected genes at the 50% cutoff value using

Kaplan-Meier survival curves (Figure 2D). Among the identified

macrophage-related prognostic genes, CPVL, ANKRD22, and

CXCL10 were positively correlated with favorable prognosis,

while MSR1, HAMP, MRO, and HMOX1 were associated with

poor prognosis. To validate the expression of these genes in

macrophages, we visualized their distribution using global UMAP

dimensionality reduction, confirming that CPVL was expressed in
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both macrophages and dendritic cells, whereas MSR1 was restricted

to macrophages (Figure 2E). Although other genes are also

restricted to macrophages, their expression levels are relatively

low (Supplementary Figures S1A–E), suggesting that CPVL and
Frontiers in Immunology 06
MSR1 are more accurate indicators of macrophage-

related prognosis.

Next, we used the CPVL/MSR1 ratio to compare the prognosis of

patientswithdifferentmacrophagepolarization states via univariateCox
FIGURE 1

Cell compartment of the tumor microenvironment in TNBC patients. Single-cell RNA sequencing (scRNA-seq) data from seven GEO datasets were
integrated, covering 66 tissue samples (batch effects were removed using the “Seurat” package in R). (A) UMAP was used to separate the cell
clusters. (B) Manual annotation was performed based on the expression characteristics of marker genes for the five cell cluster. (C) UMAP
visualization of single-cell transcriptomes from 66 TNBC samples, showing the separation of major cell lineages. (D) A bubble plot displaying the
expression levels of marker genes across different cell types. (E) Identification of dominant genes in each major cell type based on scRNA-seq data
(fold-change > 3 compared to other cell types; adjusted P-value < 0.05) (left). These genes were mapped onto a bulk RNA-seq dataset from 230
TNBC patients (middle), showing their relative expression patterns, and pairwise correlations between the same genes (right). (F) Comparison of the
prognostic impact of tumor-, stromal-, and immune-related genes. Hazard ratios for each feature were obtained using a multivariate Cox regression
model (wald 95% confidence intervals and P-values are shown as horizontal bars), with cross-validated prognostic scores calculated using a
GLMNET-based Cox model.
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analysis. The analysis reveals that onlyM2-likemacrophages (P= 0.011)

and the CM ratio (P < 0.001) are significantly linked to prognosis

(Figure 2F). Further multivariate analysis (Figure 2G) shows that M2-

like macrophages are linked to poor prognosis, whereas the CM ratio is

correlated with better outcomes, demonstrating that the CM ratio has a

stronger independent prognostic effect.

The effect of CPVL and MSR1 on the outcome of TNBC patients

remains to be elucidated. Using Spearman’s rank correlation analysis,

we demonstrate via scatter plot (Figure 3A) that high CPVL expression

is associated with better clinical outcomes, while highMSR1 expression

correlates with worse outcomes. Moreover, the CPVL/MSR1 ratio
Frontiers in Immunology 07
shows a stronger correlation with TNBC prognosis than individual

gene expression, underscoring its significance. In contrast, despite their

established roles in tumor development, the expression of M1 and M2

classic markers shows no significant association with clinical outcomes

in this cohort, which suggests that the classic markers cannot be

directly applied to predict prognosis. So it is essential to further explore

the complex gene phenotypes of macrophages under specific disease

conditions. The survival curves of the seven genes are shown in

Supplementary Figures S2A–E.

It is important to note that apparent coregulation patterns in bulk

RNA data are likely driven by the heterogeneity of cell subtype
FIGURE 2

CPVL and MSR1 in macrophages are genes significantly associated with the prognosis of TNBC patients. (A) UMAP plot of immune cells, showing
further subclustering of the cell populations. (B) Bubble plot illustrating the expression patterns of marker genes in the different immune cell
subpopulations. (C) Repeated analysis from the image (A), highlighting the impact of different immune cell subpopulations on prognosis. (D) Cross-
validated macrophage prognostic scores from the image (C) were used to generate Kaplan-Meier curves, showing genes with opposite effects on
prognosis at the 50% cutoff. (E) Display of the primary expression situation of CPVL and MSR1 in macrophages. (F) The degree of macrophage
infiltration in patients’ tumors was first calculated using “CIBERSORT”, followed by the application of a univariate Cox model to assess the impact of
macrophage infiltration and the CPVL/MSR1 ratio (CM ratio) on patient prognosis. (G) A multivariate Cox model was employed to assess the impact
of M2 macrophage infiltration and CM ratio on patient prognosis.
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abundance in TME. Therefore, we performed Spearman’s rank

correlation analysis based on CM ratio, finding that only four cell

types in the single-cell RNA data from 66 TNBC tumor samples were

correlated with CM ratio (Figure 3B): tumor cell and mast cell

abundance were negatively correlated with CM ratio, while endothelial

cell andBcell abundancewerepositively correlated.TheCMratio shows
Frontiers in Immunology 08
no correlation with other immune or stromal cell types, including

tumor-associated macrophages themselves. This suggests a potential

interaction between CPVL and MSR1 expression and these four cell

types. Spearman’s correlation analysis (Figure 3C) reveals that the CM

ratio has a stronger association with the abundance of these four cell

types in TNBC patients thanM1 orM2markers. Overall, these findings
FIGURE 3

The coordinated relationship between CPVL/MSR1 and immune response in TNBC. (A) The scatter plot shows a lack of correlation between patient
prognosis and common M1 and M2 markers, while there is a significant correlation with the individual expression of CPVL, MSR1, and the CM ratio.
Spearman’s rank correlation was used, and a fitted blue line was shown when significant. (B) Cell counts of major cell types are displayed, and
Spearman’s rank correlation analysis was used to assess correlations with CM ratio. (C) The correlation between the abundance of tumor cells,
endothelial cells, mast cells, and B cells with common M1 and M2 markers, CPVL, MSR1, and CM ratio. Spearman’s rank correlation was used.
*Indicates that the P value is less than 0.05. **Indicates that the P value is less than 0.01.
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indicate a coordinated relationship between TAMs and other cell types

in TME, suggesting they may provide more insight into CPVL and

MSR1 expression in TAM than traditional M1 and M2 markers.
3.4 Interactions between CPVL and MSR1-
expressing TAMs and other cell
subpopulations in the
TNBC microenvironment

To deeply explore the intercellular interactions and potential

regulatory networks of CPVL- and MSR1-expressing TAMs within
Frontiers in Immunology 09
TME, we divided macrophages into four subgroups based on the

average expression of MSR1 and CPVL: MSR1hiCPVLhi,

MSR1hiCPVLlow, MSR1lowCPVLhi, and MSR1lowCPVLlow. A

bubble plot showing the expression of MSR1 and CPVL across

different TAMs (Figure 4A) confirmed, consistent with previous

findings, that CPVL and MSR1 were primarily expressed in

macrophages, with CPVL also found in dendritic cells. Using

CellChat analysis, we found that these four macrophage groups

had rich signaling interactions, both among themselves and with

other cells (Figure 4B). Cells expressing high levels of CPVL and/or

MSR1 show greater ability to interact with monocytes, while cells

with lower CPVL and MSR1 expression have reduced interaction
FIGURE 4

CPVL and MSR1 are involved in regulating signaling between macrophages and other cells. (A) A bubble plot displaying the expression of MSR1 and
CPVL across the four macrophage subpopulations and other cell types. (B) CellChat analysis showing the cell-cell communication between the four
macrophage subpopulations and other cells. (C, D) Dot plots illustrating ligand-receptor interactions between the four macrophage subpopulations
and other cells.
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capacity, suggesting that CPVL and MSR1 facilitate intercellular

communication between TAMs and monocytes. Previous studies

have demonstrated that macrophage-monocyte interactions

promoted the differentiation of monocytes into macrophages (19).

Additionally, TAMs were found to interact not only with

monocytes but also with dendritic cells, highlighting a potential

mechanism by which TAMs contribute to the TNBC immune

microenvironment through their interactions with myeloid cells.

Next, we explored the specific signaling pathways by which

CPVL and MSR1 mediate interactions between TAMs and other

cells (Figures 4C, D). CellChat analysis reveals ligand-receptor

interactions between the four macrophage subgroups and other

cells, showing that all four TAM groups received SPP1-CD44

signals from monocytes and mast cells. However, CPVLlow TAMs

sent more SPP1-CD44 signals to other cell subpopulations than

CPVLhi TAMs. Studies have identified the SPP1 pathway as a

crucial mediator of interaction between TAMs and tumor

epithelial cells, and between TAMs themselves (20). SPP1+

macrophages can also interact with tumor-associated fibroblasts,

epithelial cells, and malignant cells, promoting fibrosis (21),

extracellular matrix restructuring, and the formation of an

immune-suppressive tumor barrier (20, 22, 23). These processes

have been linked to poor prognosis (24), suggesting that CPVLlow

TAMs may promote tumor progression and the development of an

immunosuppressive microenvironment. In contrast, CPVLhi TAMs

sent higher levels of C3 signals to monocytes, with multiple ligand-

receptor pairs such as C3-(ITGAX+ITGB2), C3-(ITGAM+ITGB2)

and C3-C3AR1, being involved. Complement protein C3a has been

shown to induce pro-inflammatory (M1-like) macrophage

polarization, while C3b promotes anti-inflammatory (M2-like)

polarization (25). The regulation of the C3 signaling pathway by

CPVL is complex, but the C3-C3AR1 pathway is clearly defined,

stimulating the production of complement C3a, and triggering an

inflammatory response. This indicates that CPVLhi TAMs may

stimulate monocytes to polarize into M1-like macrophages through

C3a production. We also observed that only MSR1lowCPVLhi TAMs

sent CXCL9-CXCR3 signals to neutrophils and T cells.

Upregulation of the CXCL9-CXCR3 axis enhances T cell

infiltration (26) and improves immune response (27), indicating

that TAMs with a high CM ratio may play a key role in boosting

immune responses and anti-tumor activity. Collectively, these

signaling pathways may explain the positive prognostic impact of

CPVLhi macrophages.

Despite the positive correlation between CPVL expression in

TAM and patients’ prognosis, CPVLhi TAM signaling within the

TNBC microenvironment remains complex. Compared to CPVLlow

TAMs, CPVLhi TAMs received more GAS6 signals from fibroblasts,

endothelial cells and dendritic cells, also, more ANXA1 signals from

neutrophils, monocytes, dendritic cells, fibroblasts, endothelial cells,

and tumor cells. GAS6-AXL and ANXA1-FPR1 signaling regulated

macrophage polarization and initiation of macrophages, promoting

the M2-like macrophage phenotype within the TME (28–30). The

specific mechanisms by which these signals affect CPVLhi TAMs

require further investigation. Additionally, MDK-SDC2 and MDK-

(ITGA4+ITGB1) signals from fibroblasts and tumor cells were only

received by CPVLhi TAMs. MDK has been reported to promote
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M2-like macrophage polarization through the MDK-LRP1 axis in

gallbladder cancer (31), leptomeningeal metastasis (32), and clear

cell renal cell carcinoma (33), contributing to poor prognosis.

However, the impact of MDK-SDC2 and MDK-(ITGA4+ITGB1)

signaling on macrophages remains unexplored. The potential role

of these signals in macrophage polarization and patient prognosis

warrants further investigation. Overall, while survival curves

indicate better outcomes for patients with high CPVL expression,

these TAMs may still be under the regulation of negative signals.

Therefore, CPVL-expressing TAMs may unleash anti-tumor effects

by inhibiting SPP1-CD44 and promoting CXCL9-CXCR3 and C3-

C3AR1 ligand-receptor reciprocal effects with other cells, like

monocytes, neutrophils, and T cells. However, they may also

promote tumor progression through GAS6-AXL and ANXA1-

FPR1 signaling, interacting with fibroblasts, endothelial cells, and

monocytes, while the role of MDK-SDC2 and MDK-(ITGA4

+ITGB1) signals remains to be elucidated.
3.5 Potential regulatory mechanisms of
CPVL and MSR1 in the
TNBC microenvironment

Macrophages that have received signals produce various

cytokines to mediate immune response in the TME. To probe the

cytokines involved in CPVL+ and/or MSR1+ TAMs function, we

analyzed the correlation between CPVL and MSR1 expression and

cytokine gene expression in monocytes and macrophages

(Figure 5A). IL-18 and IFNgR1 showed significantly higher

expression levels in CPVL+ TAMs compared to MSR1+ TAMs,

and both genes were more strongly expressed in macrophages than

in monocytes. Previous studies have shown that IL-18 stimulated

Th1 and NK cells and induced IFN-g production in macrophages

(34), driving M1-like polarization (27). This suggests that CPVL+

TAMs may exhibit autocrine activation effects and contribute to

promoting immune responses within the TME.

In contrast, the expression of the CCL20 gene was positively

associated with MSR1+ TAMs and negatively associated with

CPVL+ TAMs. CCL20 has been shown to promote CD163

expression in macrophages and induce TAM infiltration as well

as M2-like macrophage polarization in tumor tissues (35, 36). This

reveals that CCL20 may contribute to the immunosuppressive

effects of MSR1+ TAMs in the TNBC microenvironment,

correlating with poor prognosis, whereas CPVL TAMs may have

the opposite effect. Additionally, CCL2 was highly expressed in

MSR1+ monocytes and TAMs in TNBC patients but not in CPVL+

cells. CCL2 has been found to promote EMT processes and enhance

cancer stem cell characteristics in TNBC patients (37), as well as

induce M2-like polarization in resident macrophages (38). This

suggests that CCL2 may drive M2-like polarization in MSR1+

TAMs within TNBC breast tissue, contributing to poor outcomes.

Therefore, TAMs with a low CM ratio may promote tumor

progression and immune suppression by upregulating CCL20 and

CCL2, which is a potential cause of poor patient prognosis.

Next, we examined the correlation between CPVL and MSR1

expression and complement-related genes in monocytes and
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macrophages (Figure 5B). We found that TREM2 was more highly

expressed inMSR1+ cells than in CPVL+ cells. TREM2 in macrophages

has recently been shown to reduce CD8+ T cell anti-tumor activity (35)

andpromotesanimmunosuppressiveenvironment inbreastcancer(39),

which correlates with poor outcomes (40). It has also been found to

regulateM2polarization inotherdiseases, suchasosteoarthritis and lung

cancer (7, 41). This suggests that MSR1+ TAMs may promote the

transition from M1- to M2-like macrophages through TREM2

expression, while inhibiting T cell activity. Additionally, CFD gene

expression is positively correlated only with CPVL+ TAMs. CFD

activated the complement pathway, amplifying complement-mediated

bactericidaleffectsandenhancingthephagocyticactivityofinflammatory

macrophages (42). In summary, thefindings indicate that the regulation

ofcytokinesandcomplementcomponentsmayexplainwhypatientswith

ahighCMratiohavebetter prognosis, providingpotential newstrategies

for improving TNBC treatment outcomes.

Finally, we analyzed the correlation between CPVL and MSR1

expression and HALLMARK pathways’ scores in monocytes and

macrophages (Figure 5C). In MSR1hi macrophages, the KRAS, EMT,

ANGIOGENESIS, HYPOXIA, and COMPLEMENT pathways were

activated. These pathways have been implicated in angiogenesis (43),

the induction of M2-like polarization in macrophages (44, 45), and

tumor metastasis (46), suggesting that MSR1 may promote

angiogenesis and metastasis in TNBC, contributing to poor

prognosis. In CPVLhi macrophages, the MYC-Targets-V1 pathway

was activated, which is associated with high mutational burden,

metastatic breast cancer invasion, and poor prognosis (47). This

indicates that CPVL may also participate in the MYC-Targets-V1

pathway, negatively influencing patient prognosis.
3.6 The role of CPVL and MSR1 in
macrophage polarization and other breast
cancer subtypes

To clarify the role of CPVL andMSR1 in macrophage, we induced

human macrophage polarization and measured mRNA expression of

CPVL and MSR1 in this in vitro system (Figures 6A, B). CPVL

expression is substantially upregulated in M1-like polarized

macrophages, whereas M2-like macrophages show reduced CPVL

expression (P). Conversely, MSR1 expression is substantially

upregulated in M2-like polarized macrophages, while M1-like

macrophages have reduced MSR1 expression (P). Our data were

consistent with the aforementioned findings on patient prognosis,

suggesting that CPVL and MSR1 influenced patient prognosis by

regulating macrophage polarization states. Previous studies have

shown that silencing MSR1 reduces macrophage polarization

towards M2 in TME of gastric cancer (17), which agrees with our

results. While the role of CPVL in macrophage polarization remains

unclear. Initially, we knocked down CPVL to examine the expression

levels of CD86, and CD163 in M0 macrophages to assess the

polarization trend (Figures 6C–E). The results showed that CPVL

silencing led to reduction in the expression of bothM1 andM2marker

genes, with a more pronounced decrease in M1 marker genes

compared to M2 markers. This shows that while CPVL affects both

M1 and M2 macrophage polarization, its impact on M1 polarization is
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more substantial. Subsequently, we further induced the transfected

macrophages to differentiate towards M1 polarization. The

experimental results indicated that CPVL knockdown decreased the

number of M1-polarized macrophage cells and increased the number

of M2-polarized macrophage cells, which is consistent with our

previous findings (Figures 6F, G). In summary, these findings

suggests that while CPVL affects both M1 and M2 polarization, its

effect on promoting M1 polarization is more significant.

To investigate whether CPVL and MSR1 have prognostic

significance in other intrinsic molecular subtypes of breast cancer,

we analyzed their gene expression from 643 patients from the

TCGA database. Using a univariate Cox model, we evaluated the

impact of CM ratio, TNM stage, and macrophage polarization on

patient prognosis across different breast cancer subtypes

(Figures 7A–C). The CM ratio and macrophage polarization

have no significant impact on prognosis in Luminal B (ER+, PR+,

HER2+) and Luminal A (ER+, PR+, HER2-) subtypes. However, in

the HER2-positive subtype (ER-, PR-, HER2+), both M2-like

macrophage polarization and CM ratio are positively associated

with poor patients’ prognosis. This suggests that, unlike in TNBC,

CPVL and MSR1 may play a distinct role in HER2-positive

subtypes, warranting further investigation.
4 Discussion

Recently, single-cell sequencing technology has advanced

significantly, resulting in notable progress in TME investigation.

However, single-cell sequencing data often lack clinical and

prognostic information, making it challenging to analyze the role

of key genes in cell subpopulations on disease prognosis and

therapeutic potential, as is possible with bulk RNA sequencing.

Although previous studies have integrated single-cell RNA

sequencing with bulk RNA sequencing to clarify the relationship

between cells and prognosis, these analyses were limited to a specific

cell type (2–4, 48, 49) and lacked parallel comparisons across

multiple cell populations. Therefore, in our study, we combined

scRNA-seq with bulk RNA sequencing to highlight the impact of

distinct cell types in the TME on patient outcomes. We found that

immune cells were the most prognostically significant among the

three major cell compartments, and TAMs showed the strongest

correlation with TNBC prognosis in the immune cells.

TAMs have been shown to play a significant role in immune

suppression within TME (50–52), making TAMs crucial for disease

prognosis and treatment. Through Kaplan-Meier survival curve

analysis of genes with prognostic significance in TAMs, we identified

CPVL and MSR1 as key genes affecting prognosis in TNBC. While

many genes have been identified to influence prognosis in TNBC

patients by regulating macrophage polarization, such as OTUD5 (53),

Sohlh2 (13), and COL5A1 (11), the impact of CPVL and MSR1

expression in TAMs on macrophage polarization in TNBC and their

subsequent effect on patient prognosis remains undetermined.

Previous studies have shown that CPVL is positively correlated

with M2-like macrophage polarization in gastric cancer, which

leads to poor prognosis (15). Additionally, CPVL has been

implicated in glioma, where its high expression in glioma cells is
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associated with poor prognosis and enhanced glioma cell

proliferation (54). However, our survival analysis confirms that

CPVL is associated with favorable prognosis in TNBC patients.

Furthermore, our qRT-PCR analysis shows that CPVL expression is

positively correlated with M1-like macrophages, but not with M2-

like macrophages. This suggests that CPVL may play different roles

in macrophages across various TME, providing new therapeutic

insights for treating tumors in different contexts. Moreover, in

TNBC patient macrophages, CPVL expression was elevated in both

M1 and M2 polarized macrophages. Knockdown of CPVL in M0
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macrophages suppressed the expression of both M1 and M2

markers, with a more pronounced inhibition of M1 markers. This

indicates that CPVL mainly promotes M1 macrophage polarization

in TNBC.

TAMs play a broad role in the microenvironment by interacting

with various cell types through gene expression and cytokine

secretion (55, 56), thereby influencing tumor progression and

patient prognosis. In TNBC, the role of CPVL+ TAMs have not

been previously studied. Our results indicated that CPVL is

positively correlated with the prognosis of TNBC and M1-like
FIGURE 5

Regulatory effects of CPVL and MSR1 on expression of cytokines, complement, and pathways. (A) The correlation between the expression of
cytokines and MSR1 or CPVL in monocytes and macrophages. (B) The correlation between the expression of complement-related and MSR1 or
CPVL in monocytes and macrophages. (C) The correlation between the HALLMARK pathway scores and MSR1 or CPVL in monocytes
and macrophages.
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macrophages. And TAMs expressing CPVL might interact with

other cell types through multiple pathways. For instance, they may

exert anti-tumor effects by inhibiting SPP1-CD44 interactions and

promoting CXCL9-CXCR3 and C3-C3AR1 interactions, thereby

engaging with monocytes, neutrophils, and T cells. At the same

time, they may also promote tumor progression through

interactions with fibroblasts, endothelial cells, and monocytes via

GAS6-AXL and ANXA1-FPR1 signaling. Overall, CPVL plays a

highly complicated role in the TNBC microenvironment.

Additionally, we observed that CPVL+ TAMs may achieve

autocrine activation through the cytokines IL-18 and IFNgR1,
which could enhance immune responses within the TME.

Notably, CFD is one of the most reactive factors in osteoporosis

triggered by chemotherapy or estrogen deficiency (57). In our

investigation, we found a significant positive correlation between

CFD gene expression and CPVL+ TAMs, offering a new perspecAt

the same time, they may also promote tumor progression through

interactions with fibroblasts, endothelial cells, and monocytes via

GAS6-AXL and ANXA1-FPR1 signaling.tive for reducing

osteoporosis risk during TNBC treatment.

MSR1 has been documented to undergo changes in both

physiological and pathological processes associated with macrophages

(17, 58), influencing conditions such as atherosclerosis and innate and

adaptive immunity. MSR1 is also positively correlated with M2-like
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macrophage polarization (17, 59, 60). Though, no research has yet

investigated the effect of MSR1 expression in TAMs of TNBC on

patient prognosis. Our survival analysis revealed that MSR1 is strongly

correlatedwithpoorprognosis inTNBCpatients, andqRT-PCRanalysis

confirmed its positive correlation with M2-like macrophages. We also

found that the gene expression of CCL20, CCL2, and TREM2 was

positively correlated with MSR1+ TAMs, suggesting that these factors

may promote M2 macrophage polarization and suppress immune

responses. TREM2 has been reported to promote macrophage

polarization from M1 to M2 via the NF-kB/CXCL3 and JAK-STAT

pathways (38, 61), and in lung cancer, TREM2+ macrophages were

associated with a lack of NK cells and their dysfunction (62).

Beyond TNBC, we also explored the expression of CPVL and

MSR1 in macrophages in other molecular subtypes of breast cancer

using bulk RNA sequencing. In other subtypes, only the HER2+

subtype showed a substantial correlation between CM ratio and

patient prognosis. Unlike TNBC, a higher CM ratio was related to

poor prognosis in the HER2+ subtype. Therefore, our results also

reflected tumor heterogeneity, demonstrating that immune response

mechanisms varied across different tumor subtypes. This suggests

that exploring the mechanism and role of CPVL and MSR1 in the

HER2+ subtype represents a promising new research direction.

The TME is a complex ecosystem regulated by multiple interacting

pro-tumor and anti-tumor signals, and we have not yet fully elucidated
FIGURE 6

Effect of CPVL and MRS1 on macrophage polarization. PCR was performed for the target genes and cell marker to observe mRNA levels in
macrophages with different polarization states, and the values were subjected to T-tests for statistical significance. (All data were expressed as mean
± SEM; n = 3, and each set of experiments was repeated three times). (A, B) CPVL and MSR1 expression in different polarization states. (C-E) CPVL,
CD86, CD163 expression in M0 macrophages, cells were treated with PMA then transfected with siRNAs targeting CPVL. (F, G) CD86, CD163
expression in M1-polarized macrophages. *Indicates that the P value is less than 0.05. **Indicates that the P value is less than 0.01. ***Indicates that
the P value is less than 0.001.
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all the specific mechanisms by which CPVL and MSR1 function in

TAMs. Due to the heterogeneity of macrophages, further studies in

both cytological experiments and patient cohorts are needed to validate

the prognostic value of CPVL and MSR1. Nevertheless, these

preliminary findings underscore the prognostic significance of

macrophages within the TME in TNBC, highlighting the critical role

of CPVL andMSR1 expression in macrophages as key determinants of

TNBC prognosis. This provides a theoretical foundation for the

development of potential prognostic markers for TNBC patients,
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open new avenues for future TNBC research and suggests the

therapeutic potential of targeting macrophages in TNBC treatment.
5 Conclusion

In conclusion, our work illuminates a prognostic profile of

different cell subtypes in TNBC, and presents macrophages as the

most prognostically significant cell type. Building on this, we also
FIGURE 7

The extent to which CM ratio affects prognosis in other intrinsic molecular subtypes of breast cancer (A-C) A univariate Cox model was used to
evaluate the impact of CM ratio, TNM stage, and macrophage infiltration on patient prognosis across other intrinsic molecular subtypes of
breast cancer.
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find the key genes within macrophages that influence TNBC

prognosis — CPVL and MSR1. Although further studies on real-

world TNBC cohorts are needed, this study provides new insights

regarding future therapeutic approaches in TNBC patients.
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SUPPLEMENTARY FIGURE 1

Global UMAP Dimensionality Reduction to Validate Gene Expression in Cells.

(A–E). UMAP analysis was used to assess the expression characteristics of the
five selected genes across different cell types. (The five genes are primarily

expressed in macrophages).

SUPPLEMENTARY FIGURE 2

Survival curve evaluation of seven genes (A–G). Kaplan-Meier survival curves
representing the probability of survival over time based on different

expression levels of seven genes. The red curve indicates the high-
expression group, while the blue curve represents the low-expression

group. The x-axis shows time (in years), and the y-axis represents
survival probability.
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