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bioinformatics and experimental
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prognostic marker associated
with tumor immune
microenvironment in head and
neck squamous carcinoma
Xiaoxia Zeng1†, Dunhui Yang1†, Jin Zhang2, Kang Li1,
Xijia Wang1, Fang Ma1, Xianqin Liao1, Zhen Wang1,
Xianhai Zeng1* and Peng Zhang1*

1Department of Otolaryngology, Longgang Otolaryngology hospital & Shenzhen Key Laboratory of
Otolaryngology, Shenzhen Institute of Otolaryngology, Shenzhen, Guangdong, China, 2Department of
Otolaryngology, The Second People’s Hospital of Yibin, Yibin, Sichuan, China
Head and neck squamous carcinoma (HNSC), characterized by a high degree

of malignancy, develops in close association with the tumor immune

microenvironment (TIME). Therefore, identifying effective targets related to

HNSC and TIME is of paramount importance. Here, we employed the ESTIMATE

algorithm to compute immune and stromal cell scores for HNSC samples from the

TCGA database and identified differentially expressed genes (DEGs) based on these

scores. Subsequently, we utilized four machine learning algorithms to identify four

key genes: ITM2A, FOXP3, WIPF1, and RSPO1 from DEGs. Through a

comprehensive pan-cancer analysis, our study identified aberrant expression of

ITM2A across various tumor types, with a significant association with the TIME.

Specifically, ITM2A expression was markedly reduced and correlated with poor

prognosis in HNSC. Functional enrichment analysis revealed that ITM2A is

implicated in multiple immune-related pathways, including immune-infiltrating

cells, immune checkpoints, and immunotherapeutic responses. ITM2A expression

was observed in various immune cell populations through single-cell analysis.

Furthermore, we showed that ITM2A overexpression inhibited the growth of HNSC

cells. Our results suggest that ITM2A may be a novel prognostic marker associated

with TIME.
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Introduction

Head and neck squamous carcinoma (HNSC) is a neoplasm

predominantly originating in the oral cavity, pharynx, larynx, nasal

cavity, and salivary glands (1). The etiology of HNSC is

multifactorial, with significant associations to smoking, alcohol

consumption, human papillomavirus infection, as well as

environmental and genetic factors (2). Advances in technology

and therapeutic interventions have enhanced the early detection

and treatment of HNSC, leading to relatively high five-year survival

rates for patients diagnosed at an early stage. However, the survival

rate of late-stage patients is still no more than 50% (3). Therefore, it

is urgent to develop new treatments and therapeutic targets.

The tumor immune microenvironment (TIME) encompasses the

milieu surrounding tumor cells, which includes cancer cells, the

extracellular matrix, immune cells, stromal cells and cytokines (4).

The TIME represents a highly intricate and dynamic system that

exerts a profound influence on tumorigenesis, progression, metastasis,

and therapeutic response. In the contexts of classical Hodgkin

lymphoma, pancreatic ductal adenocarcinoma, and glioblastoma

multiforme, modulation of the TIME has been demonstrated to

enhance therapeutic outcomes. In colorectal adenocarcinoma

(COAD), researchers have investigated immune-related therapeutic

targets within the TIME (5). HNSC treatment was improved by

immunomodulation of TIME (6, 7). Therefore, it is important to

analyze TIME and related immune-infiltrating cells, which will help to

screen new targets for improving HNSC treatment and prognosis.

ITM2A is a protein-coding gene that is part of the ITM2 family of

type II membrane proteins (8). In the context of lung cancer, miRNA-

143-3p facilitates the proliferation of lung cancer cells by targeting and

regulating ITM2B (9). Similarly, in esophageal squamous cell

carcinoma, microRNA-196a-5p promotes tumorigenesis and

progression through its interaction with ITM2B (10). Furthermore,

ITM2C has been identified as a diagnostic biomarker for colorectal

cancer and is correlated with the prognosis of breast cancer (11, 12).

Similarly, ITM2A has been shown to be a tumor suppressor and is

associated with PD-L1 in breast cancer (13). In bladder cancer, ITM2A

inhibits bladder cancer by downregulating STAT3 phosphorylation

(14). However, it is still unknown about ITM2A in HNSC.

Here, we demonstrated the ITM2A is associated with TIME,

prognosis and progression of HNSC by bioinformatics analysis. We

also analyzed the relationship between ITM2A and the immune

microenvironment, immune cell infiltration, distribution, and

immunotherapy. Moreover, the effects of ITM2A on HNSC

growth were verified by cell and animal experiments. These

findings suggest that ITM2A may be a novel prognostic and

immune-related biomarker for HNSC.
Materials and methods

Data download

FPKM of HNSC was downloaded from The Cancer Genome

Atlas (TCGA). The dataset included information on 522 HNSC

cases and 44 normal head and neck tissues.
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Calculation of ImmuneScore,
StromalScore, and ESTIMATEScore

TIME analysis was calculated by the ESTIMATES R

software package.
Selection of DGEs

We first grouped the patients based on ImmuneScore,

StromalScore, and tumor cases and normal cases. Next, difference

analysis was performed by limma R package, and the screening

threshold was |logFC|>1, p<0.05. Finally, the VennDiagram R

software package was applied to take intersection analysis of

DGEs and visualize them.
Univariate Cox analysis

DGEs associated with patient survival and hazard ratios (HRs)

were used to identify risk (HR>1) or protective (HR<1) genes.
Machine learning algorithm to screen
key genes

In order to identify key biomarkers associated with HNSC

immune prognosis, we obtained data from HNSC patients from

the TCGA database and constructed corresponding gene profiles.

We used LASSO algorithm of the glamnet R package, the SVM-

RFE algorithm of the e1071 R package, GBM algorithm of the

gbm R package and the randomForest R package, respectively,

to screen for key biomarkers. The results of the algorithms

were finally intersected by the VennDiagram R package to

identify the key biomarkers associated with immune prognosis

in HNSC (15).
Analysis of pan-cancer differences

ITM2A mRNA expression was analyzed by the Human

Protein Atlas. Then, we compared the ITM2A gene expression

from pan-cancer in TCGA through the TIMER database (http://

timer.cistrome.org/) (16). To further validate our findings,

UCSC XENA database was applied to obtain data from tumor

samples in TCGA and the corresponding normal tissue data in

GTEx (17, 18).
Analysis of pan-cancer immune infiltration

ssGSEA algorithm in the GSVA R package was used to

calculated immune infiltration (19). For TCGA pan-cancer data,

we analyzed the correlation between single-gene expression and

immune infiltration using the Spearman method and visualized the

results with the ggplot2 R package (20).
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Survival analysis

After excluding some samples with missing data, we evaluated

the prognostic impact of ITM2A using the TCGA-HNSC dataset

and related clinical information. The TCGA-HNSC samples were

categorized into ITM2A-high and ITM2A-low based on the median

ITM2A expression. Subsequently, Kaplan-Meier survival curves

was used to visualized overall survival (OS).
ROC analysis

We performed a ROC analysis of ITM2A using the pROC R

package on ITM2A expression and clinical information in the

TCGA-HNSC cohort. With this analytical approach, we were able

to determine the diagnostic efficacy of ITM2A.
Difference analysis

To analyze the DEGs of samples from the ITM2A high and low

expression groups in TCGA-HNSC, we performed a difference

analysis using the Limma R software package with a threshold of

|logFC|>1, FDR<0.05. A total of 522 HNSC samples and 44 control

samples were utilized.
Functional enrichment

Gene Ontology (GO) and Kyoto Encyclopedia of Genomes

(KEGG) enrichment analysis of ITM2A-associated DEGs in the

TCGA-HNSC cohort were analyzed by the clusterProfiler R

package. Gene Set Enrichment Analysis (GSEA) was performed

by the c2.cp.kegg.v7.4.symbols.gmt reference gene set.
Immune infiltration analysis

Immune-infiltrating cells was analyzed by the CIBERSORT R

software package. Additionally, we used the Sperarman method to

determine the correlation between ITM2A expression and immune-

infiltrating cells (21). Finally, the results were visualized by linkET

and ggplot2 R software packages.
Immunotherapy and immune
checkpoint analysis

To investigate the impact of ITM2A on immunotherapy, we

downloaded the Immunophenotype Score file (IPS) from the TCIA

(https://tcia.at/) database for patients in the TCGA-HNSC cohort to

explore whether there was a difference in therapeutic efficacy of PD1

and CTLA inhibitors between subgroups with high and low ITM2A

expression. Subsequently, correlation analyses of ITM2A and
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immune checkpoint genes (ICP) were performed by the Person

method. p<0.001 was considered statistically significant and

visualized by the ggplot2 R package (22).
Drug sensitivity analysis

We calculated the IC50 of the ITM2A high expression group

(ITM2A-high) and the ITM2A low expression group (ITM2A-low)

designated as representative of the drug half-inhibitory efficiencies

in a comparative manner, respectively, using the pRRophetic R

software package (23).
Single-cell transcriptome data analysis

We analyzed the GEO dataset (GSE139324) using the Tumor

Immune Single-cell Hub (http://tisch.comp-genomics.org/home/,

TISCH) database (24). All cells were clustered, annotated and

visualized by applying the Uniform Mobility Approximation and

Projection (UMAP) method.
Cell Culture

SCC9 and CAL27 cells were from BeNa Culture Collection. The

medium used for the cells was DMEM medium supplemented with

10% FBS.
ITM2A overexpression

Human ITM2A ORF nucleotide sequence (GenBank

NM_004867) was cloned into pCMV6-Entry vector. SCC9 and

CAL27 cells were transfected with ITM2A plasmid and empty

plasmid vector using Lipofectamine™ 3000 reagent (Invitrogen)

according to the manufacturer’s instruction.
Western blotting

Western blotting experiments were performed as previously

described (25). The PVDF membrane was incubated with anti-

ITM2A (Proteintech) or b-Actin (Santa) at 4°C overnight. Then

incubated it with secondary antibody (Cell Signaling) for 2 hours.

Finally, Pierce™ ECL Protein Immunoblotting Substrate (Thermo

Scientific) was used to detect the bands.
Colony formation assay

The cells were seeded into 6-well plates with 600 cells per well

and cultured for 14 days. Then we fixed the cells using 4%

paraformaldehyde and stained the cells using crystal violet.
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RT-qPCR

We extracted total RNA using the RNeasy Mini kit (Qiagen).

Subsequently, RT Master Mix (MedChemExpress) was used to

obtain cDNA. Finally, SYBR Green qPCR Master Mix

(MedChemExpress) was used to perform qPCR experiments on

Applied Biosystems 7500 FAST Real Time PCR system. ACTB

forward 5′-CACCATTGGCAATGAGCGGTTC-3′, reverse 5′-
AGGTCTTTGCGGATGTC CACGT-3′. ITM2A forward 5′-
GGCAGGACTTATTGTTGGGTGGGAG-3 ′ , reverse 5 ′-
CCTCAGTCACAGGCAGGAAGTT-3′.
Cell viability assay

The cells were cultured for 0-72 hours. Subsequently, we added

10 ml of CCK-8 reagent (MedChemExpress) to each well, and then

incubated the 96-well plate in an incubator at 37°C for 2 hours. We

detected the absorbance values at 450 nm using a multi-mode plate

reader (Molecular Devices).
Immunohistochemistry

Immunohistochemistry was performed as previously

described (25). The German semi-quantitative scoring system

(no staining =0, weak staining = 1, moderate staining = 2,

strong staining = 3) and the percentages of stained cells (0% =

0, 1-24% = 1, 25-49% = 2, 50-74% = 3, 75-100% = 4) were used to

assess the results. The final immune reactive score was determined

by multiplying the intensity score by the percentage score, ranging

from 0 to 12.
Tumor xenograft experiments

4-week old male BALB/c nude mice (n=20) were purchased

from Guangdong Medical Laboratory Animal Center. The

transfected SCC9 and CAL27 cells (2 x 106) were injected into the

dorsal flank of the mice. Tumor volumes were measured every 3

days: volume = (width)² × length/2. Tumor growth was plotted

against time. The mice were euthanized by CO2, then the tumors

were taken out and taken pictures (25).
Statistical analysis

R and GraphPad Prism were used to statistical analyses. We

conducted at least three independent experiments and expressed it

as mean ± standard error (SEM). p-values less than 0.05 were

considered statistically significant.
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Results

Screening DEGs based on ImmuneScore
and StromalScore

DEGs were identified and demonstrated by volcano plots

(Figure 1A). Next, we applied the ESTIMATE algorithm to

calculate the ImmuneScore, StromalScore, and ESTIMATEScore.

Based on this, we screened 1977 and 1598 DEGs from HNSC

samples, and the heatmap demonstrated the ranking of the top 50

DEGs (Figures 1B–D). To identify DEGs associated with the TIME,

we performed intersection screening of these three groups of DEGs

using the Venn diagram tool, and identified 212 shared genes

(Figure 1E). Subsequently, twenty genes were associated with

TIME and had a significant prognostic impact (Figure 1F).
Screening TIME-related prognostic genes
using multiple machine learning algorithms

Different machine learning algorithms each have unique

characteristics and advantages, but a single algorithm may produce

bias or error. To improve the accuracy and reliability of screening key

genes, we used four machine learning algorithms to identify TIME-

related prognostic key genes. The cross-validation of the LASSO

regressionmodel’s error was minimized when the value of lwas 0.57,
which means that the model’s predictive performance was optimal at

this point. The final screened key genes included IGHV2.5, RSPO1,

FOXP3, CCR8, WIPF1 and ITM2A (Figures 2A, B). In the feature

importance analysis of the gradient boosting machine (GBM) model,

the top five key genes were ITM2A, FOXP3, WIPF1, RSPO1, and

TCL1A (Figure 2C). The feature importance plot of the random

forest model showed that ITM2A, FOXP3 and CCR8 had the highest

importance scores in the random forest model (Figure 2D). In SVM-

RFE model, the root mean square error (RMSE) of the model

appeared to change as the number of variables increased. When

the number of variables was 4, the RMSE of the model reached the

lowest, and the key genes finally screened out included ITM2A,

FOXP3, RSPO1 and WIPF1 (Figure 2E). Finally, we demonstrated

the overlap of the key genes screened by the four machine learning

algorithms through Venn diagrams, and the results showed that

ITM2A, FOXP3, WIPF1 and RSPO1 were screened in all the

models (Figure 2F).
ITM2A is closely related to TIME in
pan-cancer

By analyzing the HPA data, we found that the mRNA of ITM2A

was widely expressed in normal tissues, such as myocardium, basal

ganglia, ovary, and midbrain, prostate, kidney, retina, pancreas,

adrenal gland, testis, and liver (Figure 3A). DiffExp module of the

TIMER database showed that ITM2A showed abnormally lower

expression in tumor tissues of BLCA, CESC BRCA, ESCA, COAD,

HNSC, KICH, KIRP, STAD, LUAD, THCA, LUSC (Figure 3B). To
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FIGURE 1

Identification of prognosis-related genes based on ImmuneScore, StromalScore and DEG. (A) Volcano plots were used to show the distribution of
DEGs. (B–D) Heatmaps were used to show DEG expression in ImmuneScore and StromalScore, respectively. (E) Wayne plots showing intersecting
genes in ImmuneScore, StromalScore and DEG. (F) Univariate Cox analysis was used to screen the prognosis-related genes among the
intersection genes.
FIGURE 2

Screening of candidate genes associated with TIME and prognosis in HNSC using four machine learning algorithms. (A, B) Shows the optimal
parameter lambda value selected in the LASSO model and the variation of different genes with the Lamdba value. (C) The top 10 most important
genes in the gradient boosting model. (D) Top 18 most important genes in the random forest model. (E) Optimal values of RMSE in the SVM-RFE
algorithm model. (F) Wayne plots for filtering important genes for four models, LASSO regression, Support Vector Machine - Recursive Feature
Elimination, Random Forest and Gradient Booster.
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gain a deeper understanding of the difference in ITM2A expression

in normal and tumor tissues, we analyzed the TCGA combined with

GTEx pan-cancer data using XENA download. The results revealed

that ITM2A was significantly reduced in ACC, BLCA, BRCA,

CESC, COAD, ESCA, HNSC, KICH, KIRP, LUAD, LUSC, OV,

PRAD, READ, SKCM, STAD, THCA, UCEC, and UCS tumors,

(Figure 3C). Finally, we analyzed the immune cell infiltration by

ssGSEA algorithm using TCGA pan-cancer data, and correlation

analysis between ITM2A and immune infiltration matrix data was

performed using Spearman’s method. The results showed that

ITM2A and most immune cell types had a significant correlation

in most tumors (Figure 3D).
ITM2A is associated with poor HNSC
patient prognosis

We performed an in-depth analysis of tumor tissue (n=522) and

normal tissue data (n=44) from the TCGA-HNSC cohort. ITM2A

mRNA was significantly reduced in tumor tissues (Figures 4A, B).

To further elucidate the diagnostic value of ITM2A in HNSC, we

visualized it by ROC curve (Figure 4C). The AUC of ITM2A

was 0.858 (95% CI: 0.821-0.908), which indicated the good

efficacy of ITM2A in the diagnosis and prediction of HNSC.

Immunohistochemistry experiments further supported this

finding by demonstrating that the protein expression of ITM2A

was also reduced in tumor tissues (Figure 4D; Supplementary

Figure S1). Using Kaplan-Meier survival curves, low expression

levels of ITM2A were associated with poorer overall survival (OS) in

HNSC patients (Figure 4E, p=0.034). In addition, we found that the
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expression of ITM2A was significantly higher in early stage across

different disease stages (Figure 4F).
Potential functions of ITM2A in HNSC

We demonstrated the top 50 DEGs correlated with ITM2A by

heatmap clustering (Figure 5A). ITM2A-associated DEGs were

enriched in T cell receptor complex, lymphocyte mediated

immunity, production of molecular mediator of immune

response, immune receptor activity and B cell mediated immunity

by GO analyze (Figures 5B, C). Meanwhile, the results of KEGG

enrichment analysis suggested that these DEGs might be involved

in signaling pathways such as Primary immunodeficiency, Th1 and

Th2 cell differentiation and Natural killer cell mediated cytotoxicity

(Figures 5D, E). We also performed enrichment analysis of the

KEGG reference gene set using GSEA, and found that enrichment

in immune cell signaling pathway (Figure 5F). These results suggest

that ITM2A and its related genes may play an important regulatory

role during HNSC immune response.
ITM2A is associated with tumor immune
infiltration in HNSC

Since the composition of TIME has an important impact on

tumor development and subsequent treatment, we performed

TIME scoring on TCGA-HNSC samples and analyzed its

correlation with ITM2A expression. The results showed that

ITM2A low patients had less immune and stromal cells
FIGURE 3

Expression of ITM2A in different tissues and cancer types. (A) Expression levels of ITM2A in various normal tissues. (B) Expression level of ITM2A in
pan-cancer in TCGA database. (C) Expression levels of ITM2A in pan-cancer in the TCGA combined GTEx database. (D) Heatmap of the correlation
between ITM2A in pan-cancer and immune cell infiltration using the ssGSEA algorithm. *p<0.05, **p<0.01, ***p<0.001.
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(Figure 6A). This suggests that low ITM2A expression may be

associated with a less active immune response, which may result in a

decreased immune cell infiltration at the tumor site, such as reduced

numbers and activities of T cells, B cells, and macrophages. To

verify this speculation, CIBERSORT algorithm was used to

calculated the immune cell infiltration (Figure 6B). It was found

that the proportions of B cells naive, T cells CD8, T cells CD4

memory activated, T cells regulatory (Tregs) and Mast cells resting

were increased in the samples with high ITM2A expression

(Figure 6C). Meanwhile, ITM2A was positively correlated with B

cells naive, T cells CD8, T cells CD4 memory activated, Tregs, and

Mast cells resting, but negatively correlated with B cells memory,

NK cells resting, and Mast cells activated, etc. (Figures 6D–F). This

suggests that ITM2A appears to have a complex and selective

regulatory effect on different types of immune cells, which may

affect immune escape and response to immunotherapeutics.
ITM2A may be a predictive marker
for immunotherapy

Analysis of ICP showed that samples with ITM2A(low) group

had a reduced IPS in the case of PD1 ICP inhibitor treatment

(Figure 7A). There is no difference of IPS in the in the case of

ALT4 ICP inhibitor treatment (Figure 7B). However, ITM2A(low)

group had a lower response to PD1+ALT4 ICP inhibitor therapy

(Figure 7C). Immune checkpoint analysis showed that ITM2A is
Frontiers in Immunology 07
associated with immune checkpoints (Figure 7D). These findings

further support that patients with low ITM2A have reduced

responses to immunotherapy. Moreover, Embelin, Erlotinib, and

GSK1904529A’s IC50 values were relatively lower in the low

ITM2A expression group, suggesting that they were more sensitive

to these drugs (Figures 7E–G). Together, these findings suggest that

ITM2A is not only valuable in immunotherapeutic response, but may

also have an impact on patient-specific drug sensitivity.
Single-cell analysis of ITM2A in tumor
immune cells

We analyzed the GSE139324 dataset using the single-cell

database TISCH. We successfully identified 23 different cell

clusters, and further based on the marker gene expression patterns,

we classified these cell clusters into one of 11 different cell types,

including B cell, CD4Tconv, CD8T, CD8Tex, DC, Mast, Mono/

Macro, NK cell, Plasma, Tprolif and Treg (Figure 8A). We found that

ITM2Awas expressed at higher levels in CD4Tconv, CD8T, CD8Tex,

Mast, Tprolif, and Treg, and at lower levels in B cells, DC, Mono/

Macro cells, and Plasma (Figures 8B, C). We also showed ITM2A

expression in these cells based on TNM stage or Source (PBMC, TIL

and Tonsil) in Supplementary Figure S2. Moreover, we used

GSE10332 dataset to show ITM2A expression pattern across

different cell types (Supplementary Figure S3). These results suggest

that ITM2A plays a key role in the TIME of HNSC.
FIGURE 4

Expression level of ITM2A in HNSC and its clinical significance. (A) Expression levels of ITM2A in normal and HNSC tumor tissues. (B) Expression
levels of ITM2A in paired normal and HNSC tumor tissues. (C) ROC curves of ITM2A expression for identification of HNSC tissues. (D) Representative
image of ITM2A immunohistochemistry. (E) Kaplan-Meier curves of OS. (F) Tumors in different clinical stages (stages I-IV) Comparison of ITM2A
expression levels. ***p<0.001.
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Upregulation of ITM2A inhibits HNSC
cell growth

Overexpressed ITM2A was determined by protein and mRNA

level in SCC9 and CAL27 cells (Figures 9A, B). Subsequently, we

evaluated the proliferation of SCC9 and CAL27 cells with ITM2A

overexpression by CCK-8 assay (Figures 9C, D). The findings indicated

that ITM2A overexpression markedly suppressed the OD450 value of

SCC9 and CAL27 cells. Furthermore, ITM2A overexpression also

diminished the clonogenic potential of SCC9 and CAL27 cells

(Figures 9E, F). To further confirm in vitro results, we used SCC9

and CAL27 cells overexpressing ITM2A to construct xenograft model

in vivo. Compared with the vector group, the tumor volumes of the

ITM2A overexpression were significantly decreased (Figures 9G, H).

In summary, ITM2A plays an anti-oncogene role in HNSC.
Discussion

The pathogenesis of HNSC is multifactorial, encompassing

smoking, alcohol consumption, viral infections, genetic

predispositions, and environmental exposures, all of which are

recognized as significant risk factors (1, 2). Current therapeutic

strategies for HNSC primarily involve a multimodal approach,

integrating surgical intervention, radiation therapy, chemotherapy,

and immunotherapy. However, the treatment of intermediate and

advanced patients still face major challenges.

TIME contains tumor cells, fibroblasts, diverse immune cells,

various cytokines, extracellular matrix and endothelial cells. This

milieu is pivotal in the context of tumor immunotherapy (26, 27). In
Frontiers in Immunology 08
HNSC, TIME has been applied to the screening of prognostic-

related target targets (28). TIME-related genes are instrumental in

evaluating patient prognosis and therapeutic efficacy. Consequently,

further investigation into TIME-related genes is imperative.

Machine learning, a technology that employs algorithms and

extensive datasets for pattern recognition and prediction, can

analyze vast databases, uncover latent patterns and relationships,

and autonomously identify features and trends without dependence

on a priori assumptions. This capability addresses the limitations of

traditional screening methods by providing a multifaceted approach

to target identification (29). In order to further screen the

prognostically relevant DEGs, we used a one-way COX analysis

and 20 prognostically relevant DEGs were identified. including:

TRAV26-1, IGKV1-16, TRAV8-5, TRAV13-1, IGHV2-5, IGHV1-

46, PLA2G2D, CD28, IGHV3-64, RSPO1, TRBV6-6, TRAV8-4,

FOXP3, CCR8, TRAV2, TCL1A, SELL, WIPF1, and ITM2A. In

order to identify which DEGs are the key prognostic genes

associated with TIME, more in-depth screening and research is

needed. We further screened these DEGs using various machine

learning algorithms, including LASSO, Randomforst, SVM-RFE,

and GBM, and identified four key genes: RSPO1, FOXP3, WIPF1,

and ITM2A. Among them, RSPO1 was associated with the cancer

phenotype of palmoplantar keratosis and showed metastasis-related

features in colon cancer (30). FOXP3 was closely associated with a

variety of tumors, and involved in tumor immunotherapy (31).

WIPF1 regulated tumor development through the PI3K/AKT

pathway and was involved in immune responses in gastric cancer

(32). ITM2A is a protein-coding gene that belongs to the ITM2

family (8). ITM2A was associated with the process of iron apoptosis

in hepatocellular carcinoma and involved in the regulation of the
FIGURE 5

Functional role of ITM2A in HNSC. (A) Heatmap showing DEGs associated with ITM2A expression. (B, C) GO enrichment analysis. (D, E) KEGG
enrichment analysis. (F) GSEA enrichment analysis of KEGG.
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immune system (33). In cervical cancer, ITM2A can be used as a

predictive marker for overall survival prognosis. However, the role

of ITM2A in HNSC is not understood and requires further research.

By bioinformatics analysis, ITM2A expression was significant

reduced and associated with immune cells in most tumors. ITM2A

mRNA levels were enhanced in normal tissues and this finding was

verified by IHC experiments. We also found that high ITM2A
Frontiers in Immunology 09
expression group have a better overall survival. By analyzing the

clinical data, we found that ITM2A expression was higher in the

early stages of the tumor, and its expression level began to decrease

as the tumor stage progressed. GO enrichment analysis showed that

ITM2A-associated DEGs were enriched in immune response-

regulating, immunoglobulin mediated, immune response, B cell

mediated immunity. KEGG enrichment analysis showed that
FIGURE 6

Relationship between ITM2A and tumor immune microenvironment. (A) Significant correlation of ITM2A with ImmuneScore, StromalScore and
ESTIMATEScore. (B) Relative proportions of different immune cell types in HNSC samples. (C) Distribution of different types of immune cells in high
and low ITM2A subgroups. (D) Correlation analysis of the level of infiltration of ITM2A and each type of immune cells. (E) Correlation analysis of
ITM2A and CD4+ memory T cells. (F) Correlation analysis of ITM2A and CD8+ T cells. *p<0.05, **p<0.01, ***p<0.001.
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ITM2A was associated with receptor for IgA production, natural

killer cell mediated cytotoxicity, Th1 and Th2 cell differentiation,

Chemokine signaling pathway. To further explain the involvement

of ITM2A in immune response in HNSC from multiple

perspectives, we also performed enrichment analysis of KEGG

using GSEA. The results showed that ITM2A was enriched into
Frontiers in Immunology 10
Cytokine Cytokine Receptor, Interaction, Chemokine Signaling

Pathway, T Cell Receptor Signaling Pathway, Natural Killer Cell

Mediated Cytotoxicity and B Cell Receptor Signaling Pathway, and

is associated with AKT3, CD4, CD28 and IL2. These pathways are

closely linked to the immune response (34, 35), which implies that

ITM2A is involved in the immune response of tumors.
FIGURE 8

Expression of ITM2A in different cell types of HNSC in single cells. (A) UMAP plots showing the distribution of different clusters as well as annotations.
(B, C) Distribution of ITM2A in different cell types.
FIGURE 7

Correlation between ITM2A expression and immunotherapy and chemotherapy in HNSC. (A–C) Violin plots demonstrating whether there is a
difference between HNSC patients in the high and low ITM2A expression groups in response to treatment with PD-1 and or CTLA_4 inhibitors.
(D) Association between ITM2A expression and immune checkpoints. (E–G) Semi-inhibitory concentration values of all three chemotherapeutic
agents were elevated in patients with high ITM2A expression in HNSC.
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The TIME of HNSC was analyzed by using the ESTIMATE

algorithm, and we observed that ImmuneScore, StromalScore and

ESTIMATEScore were elevated in ITM2A high expression group.

CIBERSORT algorithm showed that ITM2A expression was associated

with immune cell proportions. More importantly, we found that

ITM2A expression was correlated with CD4 memory activated and

CD8 cells. In gastric cancer, T cell CD4 memory activated is involved

in its prognosis through metabolic reprogramming, which directly

leads to apoptosis and correlates with ferroptosis by releasing

substances such as perforin and granzyme (36, 37). The close

association of ITM2A with immunomodulation triggered an in-
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depth exploration of its impact in immunotherapy. We found that

ITM2A expression had a significant effect on PD-1 and CTLA-4

inhibi tors , espec ia l ly in the clat4_neg_pd1_pos and

clat4_pos_pd1_pos groups. Further analysis revealed that immune

checkpoint genes such as CD160, KIR3DL1, IDO2, TNFSF4,

TNFSF14, CTLA4, CD28, CD274, CD80, and NRP1 were related to

ITM2A expression. KIR3DL1 could serve as a relevant marker for

immunosurveillance in cervical cancer cells (38).The immune

responses of IDO2 and B cells are closely related. Inhibitors of

CTLA4 are used in the immunotherapy of numerous tumors (39).

In breast cancer, CD80 and tumor cell efficacy in chemotherapy are
FIGURE 9

Upregulation of ITM2A inhibited the proliferation of HNSC cells. (A, B) Protein and mRNA levels were detected after transfection of empty vector or
OE-ITM2A. (C, D) CCK-8 assay showing the proliferative capacity of HNSC cell lines with ITM2A overexpression. (E, F) Clone formation assay
showing the clone formation ability of HNSC cell lines with ITM2A overexpression. (G, H) Xenograft tumor models were established using empty
vector or ITM2A overexpression HNSC cells and tumor volumes were measured. The data represent the mean ± SEM. *p<0.05, versus vector.
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strongly correlated (40). The correlation between ITM2A and these

immune checkpoint genes further illustrates its potential role in the

mechanisms of immune escape and immune surveillance in HNSC.

We also investigated ITM2A in HNSC at the single-cell level. ITM2A

was higher in CD4Tconv, CD8T, CD8Tex, Mast, Tprolif, and Treg.

These immune cells are involved in immunosuppressive process (41,

42), thus ITM2Amay affect the immune escape of HNSC. Notably, we

found that Embelin, Erlotinib and GSK1904529A had better sensitivity

when ITM2A was highly expressed. However, screening drug

sensitivity based on expression has some limitations and more

validation is needed before clinical application.

We explored the impact of ITM2A on HNSC through cell and

animal experiments. Overexpression of ITM2A decreased cell

proliferation and colony formation in HNSC cells. Additionally,

the tumor volume in animal experiments was also significantly

reduced. These findings indicate that elevated ITM2A expression

inhibits HNSC growth. Our study suggests that ITM2A is a

potential therapeutic marker for HNSC, closely associated with

the TIME and prognosis, as demonstrated through bioinformatics

analysis and experiments, there are still some limitations. The

specific mechanism of ITM2A regulating immune infiltrating cells

needs further experimental verification. In addition, the effect and

mechanism of action of ITM2A on HNSC need further

experimental exploration. Nevertheless, our study provides new

insights and ideas for the study of HNSC in TIME-related aspects

and the exploration of new therapeutic modalities.
Conclusion

In summary, the expression of ITM2A was markedly

diminished in the tissues of patients with HNSC, and this

reduction was significantly correlated with adverse prognosis and

tumor progression. Furthermore, ITM2A expression is intimately

linked to TIME. The findings of this study indicate that ITM2A

serves not only as a prognostic biomarker for predicting disease

progression in HNSC but also potentially plays a crucial role in

immune-related activities.
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