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Lymphocyte-activation gene 3 (LAG-3) has emerged as a key immune

checkpoint regulating immune responses in the context of cancer. The

inhibitory effect of LAG-3-expressing T cells contributes to suppressing anti-

tumor immunity and promoting tumor progression. This review discusses the

function of LAG-3 in immune suppression, its interactions with ligands, and its

potential as a prognostic biomarker for cancers. We also explore therapeutic

strategies targeting LAG-3, including monoclonal antibodies, small molecule

inhibitors, and CAR T cells. This review summarizes the current preclinical and

clinical studies on LAG-3, highlighting the potential of therapeutic regimens

targeting LAG-3 to enhance antitumor immunity and improve patients’

outcomes. Further studies are needed to fully elucidate the mechanism of

action of LAG-3 and optimize its application in tumor therapy.
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1 Introduction

Despite significant advances in cancer treatment, cancer remains a leading cause of

human death (1). Traditional treatments, such as chemotherapy and radiotherapy, often

have limited therapeutic effects due to adverse reactions and acquired drug resistance (2).

Therefore, new treatment options are constantly explored, among which immune

checkpoint inhibitors (ICIs) have brought breakthroughs in tumor treatment strategies.

ICIs enhance anti-tumor immune responses by blocking immune checkpoint proteins

that inhibit T cell function, such as cytotoxic T lymphocyte antigen 4 (CTLA-4) and
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programmed death protein 1 (PD-1) (1). InMarch 2011, the US Food

and Drug Administration (FDA) approved ipilimumab (Yervoy®),

the first anti-CTLA-4 monoclonal antibody (mAb), for the treatment

of advanced melanoma (3–5). Subsequently, PD-1 and PD-L1

inhibitors were approved and showed significant clinical effects in

various cancers, prolonging patients’ progression-free survival (PFS)

and overall survival (OS) (6, 7). However, many cancer patients have

limited responses to mAbs, and this therapy still causes immune-

related adverse effects (irAEs) such as autoimmune dermatitis, colitis,

and endocrine diseases (8, 9).

Researchers are searching for novel immune checkpoint targets

to improve the efficacy and safety of ICI therapy. In this context,

Lymphocyte-activation gene 3 (LAG-3), an emerging immune

checkpoint protein, has attracted additional attention. LAG-3 has

a similar structure to CD4 and is expressed on the surface of various

immune cells, including activated T cells, T regulatory cells (Tregs)

and natural killer cells (NK cells) (10–15). As an inhibitory immune

checkpoint, LAG-3 suppresses excessive immune responses in the

immune system by inhibiting the activation and proliferation of T

cells, thereby reducing the risk of immune system attack on

autologous tissue (16, 17). This function particularly depends on

the interaction of LAG-3 expressed on Tregs and ligands on

antigen-presenting cells (APCs) (18). However, in the tumor

microenvironment (TME), tumor cells can escape immune

surveillance by hijacking this mechanism (19–21).

Recent studies have shown that LAG-3 can be co-expressed with

other immune checkpoints, leading to T cell exhaustion (22–24).

Exhausted T cells have a weakened ability to produce cytokines and

reduced cytotoxicity, resulting in inhibition of their ability to target and

clear tumor cells (25, 26). Anti-LAG-3 mAbs have shown the capacity

to restore T cell function and alleviate T cell exhaustion (27). In

addition, the high expression of LAG-3 in a variety of tumors is

correlated with prognosis of cancer patients, which shows its potential

as an independent prognostic biomarker for tumor treatment (28).

This review discusses the function of LAG-3 in regulating

immune responses, the effect of LAG-3 interaction with ligands,
Abbreviations: LAG-3, Lymphocyte-activation gene 3; TME, Tumor

Microenvironment; TILs, Tumor-Infiltrating Lymphocytes; NK cells, Natural
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Survival; irAEs, Immune-Related Adverse Events; CRC, Colorectal Cancer;
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the significance of LAG-3 as a prognostic biomarker in cancer

patients and the potential therapeutic strategies targeting LAG-3.
2 Functions of LAG-3 in regulating
immune responses

LAG-3 is a critical protein controlling immune responses and

promoting growth of tumors (29). Through antibody-blocking

experiments on the mouse and human cells, it was found that

LAG-3 maintained immune homeostasis by negatively regulating

the proliferation, activation, and effector function of CD4+ and

CD8+ T cells, thereby avoiding tissue damage and autoimmune

complications (12, 13, 30, 31). However, in the TME, tumor cells

often use this inhibitory function of LAG-3 to evade the immune

system’s surveillance (20). Tumor-infiltrating lymphocytes (TILs)

expressing high levels of LAG-3 are usually dysfunctional,

characterized by decreased proliferation and decreased ability to

secrete cytokines such as IL-2, TNF-a and IFN-g (24, 32, 33).
LAG-3 also affects Tregs, which are critical for maintaining

immune tolerance and preventing autoimmune diseases (29, 34).

Tregs inhibit the activation and proliferation of potentially

autoreactive T cells in the healthy body by active regulation, thereby

maintaining immune homeostasis (35). In the TME, the activation of

LAG-3 can enhance the function of Tregs and inhibit the clearance of

tumor cells by the immune system, thereby promoting tumor immune

escape (34, 36). In addition, LAG-3 regulates the function of other

immune cells, including natural killer cells (NK cells) and plasmacytoid

dendritic cells (pDCs) (37). LAG-3 regulates innate immune responses

by attenuating NK cells’ cytotoxic activity and cytokine production by

interacting with its ligands (38). In pDCs, an increase in LAG-3

expression can inhibit the production of type I interferon (IFN-1),

which is a critical factor in initiating antiviral immune responses (39).

The inhibitory signaling pathway of LAG-3 was also investigated.

Holfman et al. indicated that LAG-3 and PD-1 inhibit T cell function

through different pathways (40). They studied LAG-3 and PD-1 on

exhausted CD8+ T cells and found that PD-1 limited T cell

proliferation by inhibiting TCR and co-receptor signaling. LAG-3

pathway differs in that it inhibits cytokine production and cytotoxic

activity, thereby inhibiting the ability of exhausted CD8+ T cells to kill

target cells (40). This distinction allows for a synergistic effect of PD-1

and LAG-3 during T cell exhaustion. In addition, LAG-3 further

promotes and maintains the exhausted state of T cells by maintaining

TOX expression and regulating the NK receptor pathway on the T

cell surface (41). The multiple functions of LAG-3 in the regulation of

the immune system further emphasize its potential as a therapeutic

target for autoimmune diseases and cancer.

3 Effect of the interaction of LAG-3
with ligands

3.1 MHC-II

LAG-3 is expressed on T cells and interacts with a variety of

ligands to inhibit T cell activity, as shown in Figure 1. MHC-II is a
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natural ligand for LAG-3, and their binding has an essential effect on

the behavior of T cells and tumor cells (42). On the one hand, the

binding of LAG-3 to MHC-II affects anti-tumor immune responses

by negatively regulating the activity of T cells (42, 43). In detail, LAG-

3 binds to MHC-II molecules with high affinity and blocks T cell

receptor (TCR) signaling, thereby inhibiting T cell proliferation,

activation, and cytokine secretion (32, 33) (Figure 2). This

inhibitory effect not only affects CD4+ and CD8+ T cells but also

promotes the expansion of Tregs in the TME, which have a stronger

immunosuppressive function and can further limit anti-tumor

immune responses through cell contact (35, 44).

On the other hand, interaction of LAG-3 with MHC-II activates

several survival pathways within tumor cells, including MAPK/Erk

and PI3K/Akt signaling pathways (45, 46). Activating these

pathways enhances tumor cell resistance to apoptosis, especially

in MHC-II-expressing melanoma cells (46). It has been shown that

LAG-3 binding to MHC-II protects tumor cells from Fas-mediated

apoptosis and drug-induced apoptosis, such as etoposide, by

activating the MAPK/Erk pathway and the PI3K/Akt pathway (47).

Overall, the binding of LAG-3 to MHC-II affects immune

escape mechanisms in two ways. On one hand, it inhibits the

immune surveillance function of T cells, and on the other hand, it

enhances the survival of tumor cells. This interaction makes tumor
Frontiers in Immunology 03
cells more resistant in the face of the host immune system and

therapeutic interventions, suggesting that strategies targeting LAG-

3 andMHC-II interaction may have substantial clinical applications

in cancer therapy.
3.2 Galectin-3 (Gal-3)

Galectin-3 (Gal-3), or lectin-3, is a glycoprotein widely

expressed in immune cells, including macrophages, dendritic

cells, and NK cells (30) (Figure 1). Studies have shown that Gal-3

is able to induce T cell anergy through TCR aggregation, thereby

inhibiting T cell function (48). This inhibition has been observed in

a variety of cancers, such as endometrial cancer, vulvar squamous

cell carcinoma, and multiple myeloma (49–51). Furthermore, the

function of these inhibited T cells could be restored by the knockout

of surface Gal-3. Kouo et al. found that LAG-3 expression in the

TME is required for Gal-3 to exert its inhibitory function (52). In

contrast to LAG-3+ CD8+ T cells, LAG-3 KO CD8+ T cells were able

to secrete more IFN-g in the presence of Gal-3 (52). These results

suggest that the interaction of LAG-3 with Gal-3 is an essential

mechanism for regulating CD8+ T cell function.
FIGURE 1

LAG-3 signaling pathway and its ligands in tumor immunity. LAG-3 is expressed on T cells and interacts with a variety of ligands to inhibit T cell
activity and promote immune exhaustion. These ligands include MHC-II on antigen-presenting cells (APCs), FGL1 on cancer cells, LSECtin on
hepatocytes, Galectin-3 on monocytes, and the recently identified TCR-CD3 complex. As shown, MHC-II binds to the extra loop of the D1 domain
of LAG-3, whereas FGL1 binds to other part of D1. A large number of glycosylation sites is present on LAG-3, which is also the binding site of
LSECtin and Galectin-3. Notably, the effect of LAG-3 on the TCR-CD3 complex is indirect, in which the KIEELE motif plays a key role in regulating
TCR-CD3 function. In addition, LAG-3 can be hydrolyzed by ADAM10/17 to produce soluble LAG-3 (sLAG-3), which further regulates
immune responses.
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3.3 LSECtin

LSECtin is a C-type lectin-like receptor typically expressed in

the liver and has inhibitory immunomodulatory effects (53) (Figure

1). Xu et al. found that LSECtin can be expressed on the surface of

murine B16 melanoma cells, inhibiting tumor-specific T cell

immune responses and promoting the growth of tumor cells (53).

Blockade of LAG-3 significantly improved LSECtin-mediated IFN-g
secretion by CD8+ T cells (53). However, the study by Xu et al. only

preliminarily demonstrated the effect of LSECtin and LAG-3

interaction on tumor cells. The specific mechanism and other

functions still need to be further explored.
3.4 FGL-1

FGL-1 is another ligand for LAG-3, expressed in hepatocytes,

tumor cells, and some immune cells (54) (Figure 1). FGL-1 secreted

by tumor cells within the TME can bind to LAG-3 on TILs, thereby

inhibiting the anti-tumor activity (55). An in vivo experiment by

Wang et al. showed that anti-FGL-1 mAb effectively activated T cell

function and enhanced anti-tumor effects in WT mice. However, in

LAG-3-deficient mice, the addition of FGL-1 mAb had no effect on

the activation of T cells (56). They suggested that the interaction

between LAG-3 and FGL-1 was a key mechanism leading to T cell

inhibition. When anti-FGL-1 antibody was added, the inhibitory

signaling pathway was blocked and T cell function was restored in

WT mice. However, the LAG-3 KO mice model lost its ability to
Frontiers in Immunology 04
suppress T cells, so that T cell activation did not change significantly

after adding anti-FGL-1 antibody. Furthermore, FGL-1 showed a

more significant inhibitory effect on 3A9 T cell lines with IL-2-

induced LAG-3 overexpression (56). The addition of anti-FGL-1

mAb to 3A9 T cell lines resulted in positive regulation of TNF-a
and an increase in IFN-g levels, which restored T cell activation

(56). These results suggest the importance of the interaction

between LAG-3 and FGL-1 in T cel l inhibit ion and

tumor development.
3.5 TCR-CD3

Recently, Guy et al. have identified the TCR-CD3 complex as a

potential novel ligand for LAG-3 (57) (Figure 1). Immuno-tyrosine-

based activation motifs (ITAMs) in the CD3 complex are

phosphorylated when the TCR identifies and attaches to the

antigenic peptide-MHC complex (58). This phosphorylation,

mediated by Lck (Src family tyrosine kinase), activates downstream

signaling molecules such as ZAP70, LAT, and Syk, ultimately resulting

in T cell activation, proliferation, and differentiation (59). This complex

forms a tight contact area called the immune synapse. Guy et al.

indicated that LAG-3 can bind to TCR-CD3 complexes and then

migrate to immune synapse in CD4+ and CD8+ T cells in the absence

ofMHC-II (57). They suggested that conserved acidic tandem glutamic

acid-proline repeats in the cytoplasmic tail of LAG-3 decrease the PH

of the immune synapse, resulting in the dissociation of the tyrosine

kinase Lck from CD4 or CD8 coreceptors and preventing TCR
FIGURE 2

Anti-LAG-3 mAb restores T cell activation. Competitive binding of LAG-3 to MHC-II inhibits TCR signaling, leading to T cell inactivation (left). The
addition of anti-LAG-3 mAbs blocked the binding of LAG-3 to MHC-II and restored the normal interaction between TCR and MHC-II, thereby
promoting activation and proliferation of T cells (right).
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signaling and T-cell activation (57, 60). Workman et al. pointed out

that the highly conserved ‘KIEELE’motif in the cytoplasmic domain of

LAG-3 is essential for its function (61). However, there is still no

breakthrough in the study of this motif.

In summary, as an emerging immune checkpoint, the study of

its interaction with ligands is still at an initial stage. Excluding

MHC-II, the binding mechanism of other ligands to LAG-3 and the

function of tumor immunity still need to be elucidated. Targeting

LAG-3 and its ligands is one of the effective therapies to enhance

anti-tumor immune responses and inhibit tumor growth. In-depth

study of its interaction with ligands is essential to understand and

elucidate the LAG-3-mediated immune inhibition.
4 LAG-3 as a potential prognostic
biomarker in cancers

In the TME, expression of LAG-3, especially on TILs, is related

to the inhibition of T cell proliferation and cell cycle arrest (62).

This impairment of T cell-mediated anti-tumor immune responses

suggests that LAG-3 expression levels in different cancer types

correlate with clinical outcomes, thereby highlighting its potential

as a predictive biomarker.

Numerous studies have elucidated that the increased expression

of LAG-3 is able to improve the clinical outcome of cancer patients.

For instance, Hu et al. conducted a meta-analysis and found that an

increase in the density of LAG-3+ TILs was associated with improved

OS in triple-negative breast cancer (TNBC) patients (63). In early-

stage breast cancer studies, increased LAG-3 expression was also

observed to be associated with longer metastasis-free survival (MFS)

(64). In addition, Arimura et al. showed that higher LAG-3 mRNA

levels were correlated with better OS in malignant pleural

mesothelioma (MPM) patients (65). They also indicated that

among 38 MPM patients analyzed by immunohistochemistry

(IHC), those with higher LAG-3 protein expression levels showed

better prognostic outcomes. Park et al. used monochromatic and

multicolor immunohistochemistry to measure cell-surface LAG-3

expression in patients with gastric cancer. The results indicated that

elevated LAG-3 expression was associated with improved prognosis

in patients with stage II and III gastric cancer (37). Li et al.

investigated the level of soluble LAG-3 (sLAG-3) in the serum of

gastric cancer patients. They found that high level of sLAG-3 was

associated with the increased frequency of CD8+ T cells and increased

secretion of IL-12 and IFN-g (66). Their findings collectively

illustrated that LAG-3 is a potential independent prognostic

biomarker for gastric cancer patients. Additionally, higher levels of

LAG-3+ TILs were also associated with improved survival outcomes

in CRC patients (67, 68). These findings highlight the potential of

LAG-3 expression as a biomarker for favorable clinical outcomes.

On the other hand, some studies have also reported that LAG-3

can be a biomarker for poor prognostic outcomes in some cancers.
Frontiers in Immunology 05
For instance, the higher expression of LAG-3 and tumor-associated

macrophages (TAMs) significantly increased in patients with

Hodgkin’s lymphoma and were associated with shorter PFS and

OS (69). Guo et al. showed that serum levels of LAG-3 increased

significantly in patients with hepatocellular carcinoma (HCC),

compared with healthy controls. High levels of LAG-3 in HCC

patients are accompanied by cirrhosis, elevated levels of alanine

aminotransferase (ALT) and aspartate aminotransferase (AST), and

the progression of Barcelona Clinic Liver Cancer (BCLC) stage (70).

These patients also had shorter OS and worse prognosis, suggesting

that LAG-3 may also be a prognostic biomarker for HCC. In

epithelial ovarian cancer (EOC), expression level of LAG-3 in

TILs is negatively correlated with patient prognosis (62). The OS

and disease-free survival (DFS) of EOC patients with high

expression of LAG-3 were significantly decreased, suggesting that

LAG-3 may be a biomarker for the EOC prognosis. In addition,

LAG-3 mRNA expression in melanoma patients is thought to be

correlated with tumor progression, and high levels of LAG-3 tend to

represent poor DFS and OS (65, 71).

In general, some studies reported LAG-3 as a favorable

prognostic biomarker, while other studies reported it as a poor

prognostic biomarker. The differences in these studies could be

attributed to different reasons. First, although LAG-3 normally

inhibits the antitumor function of T cells, its high expression is

often found on activated T cells, especially TILs. These activated T

cells are able to maintain ongoing tumor surveillance and may

represent a durable antitumor response of the immune system.

Second, LAG-3 also plays a protective role in the immune system,

inhibiting the excessive activation of T cells while preventing their

excessive depletion. This balance mechanism helps to maintain

immune activity in long term, which is effective in inhibiting tumor

growth and spread. In addition, the co-expression of LAG-3 with

other immune checkpoint molecules such as PD-1 has suggested in

some studies that patients with high LAG-3 expression may have

better therapeutic responses to immune checkpoint inhibitors, thus

showing the potential for improved prognosis.
5 Targeting LAG-3 in cancer

5.1 Impact of targeting LAG-3 alone
or in combination with other
immune checkpoints

Several studies have shown that LAG-3 plays an essential role in

immunosuppression and tumor growth, indicating that inhibiting

LAG-3 could have positive therapeutic effects in cancer treatment

(47). For example, in vitro studies have shown that inhibition of

LAG-3 signaling in TILs from patients with melanoma restores the

ability of CD4+ and CD8+ T cells to secrete IFN-g, thereby

enhancing their antitumor activity (25, 26). Furthermore,
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blocking LAG-3 on circulating NK cells from lung cancer patients

increased cell cytotoxicity and IFN-g levels (72). Maruhashi et al.

suggested that the MHC-II and LAG-3 signaling pathways in

Hodgkin lymphoma patients may be a valuable therapeutic target

(19). The feasibility of this approach was demonstrated by the

ability of IMP321, a soluble LAG-3 fusion protein capable of

binding to MHC-II, to inhibit tumor growth in vivo, significantly

activating CD8+ T cells, and extending PFS in patients with

advanced renal cancer (73).

Relatlimab, the first LAG-3 mAb, has shown promising anti-

tumor effects in chronic lymphocytic leukemia (CLL) by restoring

the immune activities of NK cells and T cells (74) (Figure 2).

Combined with lenalidomide (an immunomodulatory drug for

multiple myeloma), it enhances IL-2 and NK cell-mediated

antibody-dependent cell-mediated cytotoxicity (ADCC) (74). In

addition, Thudium et al. reported that another anti-LAG-3

monoclonal antibody (clone C9B7W) effectively inhibited tumor

growth in Sa1N fibrosarcoma and MC38 mouse colon

adenocarcinoma models (75).

Although targeting LAG-3 alone has shown efficacy in restoring

T cell function, many studies indicated combining LAG-3 and other

immune checkpoints is more effective. Yang et al. performed a flow

cytometric analysis of blood samples from patients with follicular

lymphoma (FL) and found that LAG-3 was highly expressed on PD-

1+ T cells in the TME (76). The ability of PD-1+LAG-3+ T cells to

produce cytokines like IL-2 and IFN-g, as well as cytotoxic

molecules like granzyme B (GzmB) and perforin (PFN), was

found to be lower than that of PD-1+LAG-3- cells (76). Woo

et al. showed in animal experiments that anti-LAG-3 and anti-

PD-1 combination therapy increased the expression of IFN-g in

CD4+/CD8+ TILs and decreased the level of TNF-a+CD4+/CD8+

TILs (26) (Figure 3). This research demonstrated that combination

therapy with anti-LAG-3 and anti-PD-1 slowed cancer progression

by restoring and enhancing effector T cell populations in tumors

and lymph nodes.

In addition, many studies also support the efficacy of combined

blocking strategies in treating different cancer types. Huuhtanen

et al. used single-cell RNA sequencing, T cell receptor sequencing

(scTCRab-Seq), and other multi-omics techniques to analyze

peripheral blood samples from melanoma patients treated with

combination therapy with relatlimab and nivolumab (77).

According to their research, LAG-3 was highly expressed on

CD8+ T cells, NK cells, and Tregs in melanoma patients.

Moreover, the expression level of LAG-3 was strongly linked to

the degranulation activity of NK cells. Following anti-PD-1 and

anti-LAG-3 treatments, NK cells degranulated and released

cytokines that stimulated the proliferation of CD8+ T cells.

Additionally, the combination therapy enhanced the cytotoxic

properties of antigen-restricted T cells stimulated by NK cells and

altered the expression profile of Tregs, compared to LAG-3

blockade therapy alone (77).
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Andrews et al. found that CD8+ T cells lacking PD-1 and LAG-3

were unique at the transcriptional level in a melanoma mouse model,

exhibiting a broad range of TCR clonotypes and abundant effector

and interferon response genes, compared with CD8+ T cells lacking

PD-1 or LAG-3 alone (78). These characteristics allow them to clear

tumors more effectively and prolong the life span of mice (78).

Ngiow’s study further showed that LAG-3 plays a crucial role in

maintaining the persistence of exhausted CD8+ T cells (Tex) while

generating a subset of CD94/NKG2+ Tex cells with enhanced

cytotoxicity (41). However, Cillo et al. pointed out that although

the combined blockade of LAG-3 and PD-1 can enhance the receptor

signaling capacity and cytotoxicity of CD8+ T cells, it still retains the

exhausted characteristics of Tex, suggesting that further optimization

of future treatment strategies still needs to be considered (79).

Kureshi et al. recently examined the effects of LAG-3 and PD-1

inhibition in patients with advanced melanoma (80). They found

that the combination therapy improved survival in advanced

melanoma patients, with improvements in PFS and OS.

Nevertheless, they also observed that patients with combined

blockade still exhibited irAEs similar to those with PD-1 blockade

alone, possibly due to incomplete blockade or partial overlap in cell

types regulated by LAG-3 and PD-1 (80). In the combined blocking

experiment of PD-1 and CTLA-4, Larkin et al. found that cancer

patients in the nivolumab (PD-1 inhibitor)-plus-ipilimumab

(CTLA-4 inhibitor) group showed more severe treatment-related

adverse reactions (81). Therefore, the combination therapy with

immune checkpoint blockade must be strictly regulated and

controlled for different patients.

Collectively, these results demonstrated that inhibiting LAG-3

with other ICs, or the use of neutralizing mAbs against LAG-3 in

patients who have become resistant to PD-1/PD-L1 therapy, might

be a practical approach for overcoming tumor resistance to mAb

therapies and providing therapeutic advantages to patients with

acquired resistance. Up till now, LAG-3 blocking has demonstrated

synergistic effects in various tumor models when combined with

other immune checkpoint therapies, such as anti-PD-1/PD-L1 (26,

75, 82). These promising preclinical outcomes have led to the

initiation of clinical trials to assess the safety and efficacy of LAG-

3 inhibitors when combined with other ICIs.
5.2 Potential therapeutic strategies for
blocking LAG-3 signaling in cancer

Preclinical studies assessed the effect of inhibiting LAG-3

function on tumor progression by blocking the interaction between

LAG-3 and its ligand using mAbs. However, the main limitation of

mAbs is their difficulty penetrating the dense stroma of tumors,

which limits their efficacy and affects clinical outcomes (83, 84). To

overcome this challenge, researchers have developed antibody

fragments with better penetration, such as single-chain variable
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fragments (scFv), which may improve clinical outcomes (83,

85) (Figure 4).

Several drug candidates targeting LAG-3 are currently in

clinical trials for the treatment of chordoma, esophageal cancer,

gastric cancer, and multiple myeloma (86). However, it has been

found that these mAbs may cause systemic inhibition of LAG-3 in

patients, thereby inducing irAEs, which emphasizes the importance

of targeted drug delivery. Targeted delivery of antibodies to tumor

sites has been proposed as a potential therapeutic strategy and been

mentioned in the treatment of PD-1 and CTLA-4 (87). Based on

this strategy, one potential alternative approach is to inject anti-

LAG-3 mAbs directly into the tumor with therapies targeting

tumor-associated antigens (TAA). This strategy can improve

treatment specificity and efficacy, reduce systemic side effects, and

maximize therapeutic benefit.

Despite these advances, mAb still faces resistance in some

tumors. For instance, in NSCLC or melanoma, some patients do

not respond to mAbs treatment or have disease progression after an

initial response (88). In response to these problems, small molecule

inhibitors are emerging as a promising alternative drug. In contrast

to mAbs, small molecules with oral bioavailability enhance tumor

penetrating (89, 90). Additionally, a small molecule is more easily

optimized for pharmacokinetics, allowing for a flexible dosage

regimen to mitigate mAb-related irAEs (91) (Figure 4). The

development of LAG-3 small molecule inhibitors may offer a
Frontiers in Immunology 07
successful immunotherapy for managing certain solid tumors.

Abdel-Rahman et al. used a combination of focused screening

and “catalog search” to identify small molecules capable of

inhibiting LAG-3/MHC-II and LAG-3/FGL-1 interactions (92).

Early in vitro tests demonstrated that these small molecules could

effectively block LAG-3 ligand interactions, indicating that they

may be helpful as therapeutics (92).

Chimeric Antigen Receptor (CAR) T cell therapy represents

another promising strategy. Xie and his team validated this

therapeutic approach in a mouse tumor model (93) (Figure 4).

They grew CAR T cells that recognize the VHH of PD-L1 and

applied them to a B16 melanoma mouse model. The results

indicated that these organized T cells significantly inhibited

tumor progression and improved the survival of the mice (93).

Notably, VHH-expressing CAR T cells were specific, active in vitro,

and cytotoxic to PD-L1 in melanoma cells, M38 colorectal

adenocarcinoma, and HPV16-transformed cell lines, with these

properties being mediated through the secretion of IFN-g. Based
on this study, VHH CAR-T cells targeting LAG-3 ligands might be a

viable and effective immunotherapeutic strategy. Compared with

LAG-3, the ligands such as FGL-1 are expressed at low levels in

normal tissues (56). Therefore, targeting ligands can help reduce

systemic adverse effects, focus immune regulation on the tumor site,

and improve the precision and safety of treatment. In addition,

blockade of LAG-3 ligands can inhibit the immunoinhibitory effects
FIGURE 3

Synergistic effect of PD-1 and LAG-3 dual blockade in antitumor immunity. PD-1 and LAG-3 are co-expressed on the surface of T cells under
antigen stimulation. When tumor cells express both PD-L1 and MHC-II, anti-PD-1 mAb is unable to completely block tumor cell escape, leading to
acquired resistance (top). However, the combination of anti-PD-1 and anti-LAG-3 mAbs simultaneously blocks these two immune checkpoint
pathways, restores the activity of T cells, and enhances the ability to recognize and eliminate tumor cells (bottom).
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of LAG-3 signaling pathway without directly acting on T cells,

thereby protecting antitumor T cell activity and enhancing

antitumor immune responses in TME.
6 Conclusion

LAG-3 has been identified as a critical immune checkpoint in

regulating immune responses in the TME. As shown in (Figure 5), it

acts by inhibiting the proliferation and activation of T cells, thereby

promoting tumor immune escape and the progression of various

malignant tumors. The interaction of LAG-3 with its ligands, such

as MHC-II, Galectin-3, LSECtin, and FGL-1, highlights its potential

as a therapeutic target and prognostic biomarker for cancer.

Numerous studies have revealed the therapeutic value of LAG-

3. Blockade of LAG-3, alone or in combination with PD-1

inhibitors, restores T-cell activity and enhances antitumor

immune responses, which is a promising strategy for overcoming

resistance to conventional immunotherapy. Relatlimab, an anti-

LAG-3 monoclonal antibody, has shown encouraging results,

especially when combined with nivolumab, to enhance treatment

in patients with advanced cancer.

Despite the therapeutic potential, the complexity of LAG-3 as a

prognostic marker in cancer still requires further exploration. In

cancers such as TNBC and gastric cancer, elevated LAG-3
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expression is associated with improved clinical outcomes, and

higher levels of LAG-3+ TILs are associated with prolonged

survival. In contrast, in other cancer types, such as HCC and

ovarian cancer, higher LAG-3 expression generally represents a

worse prognosis. The duality of prognostic significance of LAG-3

suggests that focusing on LAG-3 expression alone may not be

sufficient to predict the clinical outcome of cancer patients. More

comprehensive analysis involving multiple immune markers may

help better determine patients’ prognostic status.

Moreover, irAEs induced by blocking LAG-3 remain a

significant threat to patients, especially when combined with

other ICIs. Therefore, in the clinical settings, the control of irAEs

is essential to ensure the safety and efficacy of the treatment

regimen. Future research should focus on developing alternative

therapeutic approaches, such as small molecule inhibitors and scFv.

These therapies have better tissue penetration than mAbs,

potentially enhancing their efficacy in the dense tumor

environment. Small molecule inhibitors, in particular, may

provide more flexible treatment options due to their oral

bioavailability and adjustable pharmacokinetics. In addition, CAR

T cell therapy targeting LAG-3 provides another promising avenue

for cancer treatment, particularly in solid tumors, where

conventional immunotherapy does not respond well.

Overall, LAG-3 represents a promising target in cancer

immunotherapy. Its role in immune regulation and dual function
FIGURE 4

Potential therapeutic strategies for targeting LAG-3. This figure illustrates several potential therapeutic strategies to enhance T-cell function by
targeting LAG-3. (A) LAG-3 binds to MHC-II on the surface of APCs or tumor cells and inhibits T effector cell activation, leading to T cell inactivation
and tumor growth. (B) T cell activity is restored by blocking the binding of LAG-3 to MHC-II by modified antibodies, such as single-chain variable
fragment antibody (ScFv). (C) Small molecule inhibitors block LAG-3-mediated signaling by interfering with its function to inhibit T cell activation. (D)
LAG-3 VHH based chimeric antigen receptor (CAR) T-cell technology specifically targets and eliminates MHC-II expressing tumor cells. The goal of
all these strategies is to restore T cell activity and enhance tumor cytotoxic responses by relieving the inhibitory effects of LAG-3.
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TABLE 1 Completed clinical trials using LAG-3 antibodies in monotherapy and in combination therapy.

Name Combined with ClinicalTrials.gov ID Phase Tumor type

Urelumab - NCT02658981 I Glioblastoma

Sym022 - NCT03489369 I Lymphomas

HLX26 - NCT05078593 I Lymphoma

IMP321 - NCT00351949 I Renal Cell Carcinoma

IMP321 - NCT00349934 I Metastatic Breast Cancer

INCAGN02385 - NCT03538028 I Cervical Cancer

Relatlimab Nivolumab (PD-1) NCT03743766 II Melanoma

Sym022 Sym021 (PD-1) NCT03311412 I Lymphomas

Relatlimab Nivolumab (PD-1) NCT03662659 II Gastric Cancer

TSR-033 Dostarlimab (PD-1) NCT03250832 I Advanced Solid Tumors

Relatlimab Nivolumab (PD-1) NCT03623854 II Advanced Chordoma

LAG525 PDR001 (PD-1) NCT03365791 II Hematologic Malignancies

REGN3767 REGN2810(PD-1) NCT03005782 I Advanced Malignancies
F
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FIGURE 5

Mechanisms of LAG-3 in immune regulation and tumor microenvironment. This figure illustrates the multiple roles of LAG-3 in modulating the
immune response and tumor environment: (A) CD4+ T cells: LAG-3 interactions with ligands inhibit CD4+ T cell proliferation and cytokine secretion,
potentially supporting tumor cell survival. (B) CD8+ T cells/NK cells: LAG-3 interaction reduces proliferation and cytotoxicity of CD8+ T/NK cells in
the TME. (C) Tregs and dendritic cells: LAG-3 interaction enhances the stability and immunosuppressive capacity of Tregs, while affecting dendritic
cell maturation and immune stimulation.
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as a prognostic biomarker makes it a vital focus for future studies.

According to the Clinicaltrials.gov database, there are now more

than 150 ongoing clinical trials targeting LAG-3, and more than 40

trials have been completed. Completed clinical trials using LAG-3

antibodies in monotherapy and in combination therapy are shown

in Table 1. Exploration of LAG-3 targeted therapies, particularly in

combination with other ICIs, can potentially improve clinical

outcomes, particularly among patients with refractory or

advanced cancers.
Author contributions

KR: Methodology, Visualization, Writing – original draft,

Writing – review & editing. HH: Writing – review & editing. AM:

Visualization, Writing – review & editing. EE: Conceptualization,

Supervision, Project administration, Resources, Writing – review

& editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Frontiers in Immunology 10
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no

impact on the peer review process and the final decision.
Generative AI statement

The authors declare that Generative AI was used in the creation of

this manuscript. The authors declare that Generative AI (ChatGPT-

4o) was only used to polish the 'introduction' and 'conclusion' sections.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S,
Sadeghirad H, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol.
(2022) 29:3044–60. doi: 10.3390/curroncol29050247
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