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Introduction: Type 2 diabetes mellitus (T2DM) is a disease that involves

autoimmunity. However, how immune cells function in the peripheral blood

remains unclear. Exploring T2DM biomarkers via single-cell RNA sequencing

(scRNA-seq) could provide new insights into the underlyingmolecularmechanisms.

Methods: The clinical trial registration number is ChiCTR2100049613. In this

study, we included three healthy participants and three T2DM patients. The

observed clinical indicators included weight and fasting blood glucose (FBG),

glycosylated haemoglobin A1c (HbA1c) and fasting insulin levels. Direct

separation and purification of peripheral blood mononuclear cells (PBMCs)

were performed via the Ficoll density gradient centrifugation method. Immune

cell types were identified via scRNA-seq. The differentially expressed genes,

biological functions, cell cycle dynamics, and correlations between blood

glucose indicators and genes in different cell types were analysed.

Results: There were differences between the healthy and T2DM groups in terms of

FBG and HbA1c (p<0.05 or p<0.01). We profiled 13,591 cells and 3188marker genes

from PBMCs. B cells, T cells, monocytes, and NK cells were grouped into 4

subclusters from PBMCs. CD4+ T cells are mainly in the memory activation

stage, and CD8+ T cells are effectors. Monocytes include mainly CD14+

monocytes and FCGR3A+ monocytes. There were 119 differentially expressed

genes in T cells and 175 differentially expressed genes in monocytes. Gene set

enrichment analysis revealed that the marker genes were enriched in HALLMARK_

INTERFERON_GAMMA_RESPONSE and HALLMARK_TNFA_SIGNALING_VIA_

NFKB. Moreover, TNFRSF1A was identified as the core gene involved in network

interactions in T cells.
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Discussion: Our study provides a transcriptional map of immune cells from

PBMCs and provides a framework for understanding the immune status and

potential immune mechanisms of T2DM patients via scRNA-seq.

Clinical trial registration: http://www.chictr.org.cn, identifier ChiCTR2100049613.
KEYWORDS

type 2 diabetes mellitus, peripheral blood mononuclear cells, single-cell RNA
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1 Introduction

Diabetes mellitus (DM) is a metabolic disease characterized by

hyperglycaemia, and it can be caused by genetic factors, environmental

factors, and autoimmune factors, among others. To date, four distinct

types of DM have been defined, of which type 1 DM (T1DM) is mostly

an autoimmune disease. T lymphocytes are activated in vivo and cause

rapid destruction and functional failure of islet beta cells, leading to the

development of T1DM (1, 2). However, type 2 DM (T2DM) accounts

for approximately 90–95% of DM cases, with an incidence of 11.2% in

China (3). T2DM comprises a group of heterogeneous diseases whose

complex pathogenesis has not been fully elucidated (4). The

pathogenesis of T2DM is related mainly to insulin resistance (IR),

which leads to prediabetes and ultimately DM.

Blood glucose is the main biomarker used for the diagnosis of

T2DM. The discovery of other early biomarkers or molecular,

pathological, and immunological changes is important for improving

the diagnosis and evaluation of T2DM (5). To date, the phenotypes

and roles of T cells, NK cells, monocytes and other immune cells have

received less attention than those of other systems involved in DM (6,

7). In recent years, increasing evidence has shown that immune

disorders are the main factors involved in the occurrence of T2DM

(8–10). Single-cell RNA sequencing (scRNA-seq) is a new technique

that can be used to elucidate cell heterogeneity and quantify the

expression profiles of individual genes in individual cells, making it

easier to study the roles of specific genes. scRNA-seq can be used to

elucidate specific functional alterations in cells that may reveal cellular

phenotypes and heterogeneity and to identify biomarkers for the

diagnosis and treatment of T2DM; these biomarkers may also help

predict outcomes and complications in individual cases (11). The role

of islet cell types in the genetic signalling pathways associated with

T2DM susceptibility, particularly the role of islet beta cell specificity,

have been investigated (12, 13). Huang Y et al. detected 6 islet cell types

and reported that SLC2A2, SERPINF1, RASGRP1 and CHL1 are

biomarkers of T2DM that can be used for clinical diagnosis (14). Lee H

et al. reported that CD8+ effector T cells in the peripheral blood

mononuclear cells (PBMCs) of patients with T2DM had a reduced

cytotoxicity score and a heightened level of exhaustion (15).

In this study, we obtained scRNA-seq data from the whole

blood of healthy participants and T2DM patients by labelling
02
single-cell clusters and identifying key cell clusters via typical

gene expression levels to understand the expression of genes in

every cell and the communication between cells. This analysis may

provide new insights into a framework for understanding the

immune status of T2DM patients (Figure 1).
2 Materials and methods

2.1 Experimental samples

This study was a prospective, controlled trial aimed at analysing

the possible immune mechanisms in T2DM patients. The study was

registered as a Chinese clinical trial on the WHO international clinical

trial registry platform (ChiCTR2100049613). All methods were carried

out in accordance with the CONSORT statement. All experimental

protocols were approved by the Ethics Committee of the First Affiliated

Hospital of Anhui University of Traditional Chinese Medicine. The

ethics approval number is 2021AH-39. All participants provided

written informed consent before participating. Three healthy

participants and three patients with T2DM were included.
2.2 Participant

Patients were diagnosed with T2DM according to the guidelines

for the prevention and treatment of T2DM in China (2020 edition).

The diagnostic criteria for healthy participants were the absence of a

history of systemic disease, such as hypertension, T2DM, or

cardiopulmonary insufficiency, and no use of systemic or topical

medications. The inclusion criteria for T2DM patients were a

glycosylated haemoglobin A1c (HbA1c) level ≤ 7.5%, course of

T2DM disease ≤ 3 years, and aged 18–70 years; both sexes were

included. The participants were informed of the study procedures

and voluntarily signed an informed consent form.

The exclusion criteria for T2DM patients were the presence of

T1DM, gestational DM, T2DM requiring insulin therapy, or other

special types of DM; acute complications of T2DM; severe

cardiovascular and cerebrovascular diseases; severe primary

diseases, such as liver, kidney and haematopoietic system diseases;
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allergy to the known ingredients of the study drug or chronic

allergies; pregnancy, lactation, having recently given birth, or

planning to become pregnant; long-term alcoholism, drug

dependence or mental illness; and participation in another drug

clinical trial within one month before the screening period for this

study. Finally, all participants were deemed suitable for participation

in this clinical study according to the opinion of the investigator.
2.3 Observation indices

The collected background information included age, sex, height,

weight, etc. Fasting blood glucose (FBG), alanine aminotransferase,

aspartate transaminase, blood urea nitrogen, and creatinine levels

were determined with a Beckman AU5800 fully automatic

biochemical analyser (Beckman, US). The level of HbA1c was

determined with a Bio-Rad D-100 HbA1c analyser (Bio-Rad, US).

The level of fasting insulin (FINS) was determined with an AutoLumo

A2000 Plus fully automatic chemiluminescence analyser (Autobio,

Zhengzhou, China). The homeostasis model assessment–IR

(HOMA–IR) score was calculated as FINS (mIU/ml) × FBG

(mmol/L) ÷ 22.5 (16). Safety indicators included blood pressure,

heart rate, routine blood tests, and routine urine tests (Figure 2).
2.4 scRNA-seq

ScRNA-seq was performed by BGI Shenzhen. The 10x

Genomics Chromium allows high-throughput single-cell 3’

mRNA quantitative analysis. Afterwards, 5 mL of whole blood

containing ethylene diamine tetraacetic acid was added to a 15 mL
Frontiers in Immunology 03
centrifuge tube with 3 mL of Ficoll lymphocyte separation media.

An equal volume of 1X PBS was added to each blood sample. The

diluted blood samples were layered carefully in Ficoll lymphocyte

separation liquid and then centrifuged at 400 × g at 18–20°C for 30

min continuously. The mononuclear cell layer was transferred to a

15 mL sterile centrifuge tube with a sterile pipette. Three volumes of

1× PBS were added to the lymphocyte layer, which was carefully

mixed via pipetting. The samples were subsequently centrifuged at

400 × g, after which the supernatant was discarded. Then, 6 mL of

1× PBS was added to the lymphocyte layer, which was again

carefully mixed via pipetting. The mixture was subsequently

centrifuged at 400 × g for 10 min, and the supernatant was
Assessment:

age 18-70 years,

met inclusion criteria for healthy 

participants

or diagnostic criteria for T2DM 

Allocation (n=6)

Healthy group (n=3) T2DM group (n=3)

Analysis (n=3)Analysis (n=3)

Dropped out (n=0) Dropped out (n=0)

FIGURE 2

CONSORT participant flow chart. T2DM, type 2 diabetes mellitus.
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FIGURE 1

Research flow chart. EDTA, ethylene diamine tetraacetic acid.
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discarded. The cells were resuspended in the desired volume of 1×

PBS and stained with 0.4% trypan blue. Samples with greater than

80% cell viability were used for library construction. The prepared

single-cell suspensions were subsequently partitioned into gel beads

in emulsion in an automated Chromium Controller, after which the

mRNAs were reverse transcribed into cDNAs. The reaction system

was configured in sequence for breaking gel beads in emulsion,

cDNA amplification, fragmentation, end repair, A-tailing, and

adaptor ligation polymerase chain reaction. After reacting at a

suitable temperature for a fixed period, the products were

separately purified in an appropriately configured reaction

system. After library quality control, single-stranded polymerase

chain reaction products were produced via denaturation. Single-

stranded cyclized products were produced with a circularization

reaction system. Single-stranded circular DNA molecules were

replicated, and a DNA nanoball that contained multiple copies of

DNA was generated. DNA nanoballs of sufficient quality were

loaded into patterned nanoarrays and sequenced through

combinatorial probe–anchor synthesis.

The raw gene expression matrix generated from each sample

was aggregated via Cell Ranger (v5.0.1) (17), which is provided on

the 10x Genomics website. Downstream analysis was performed

with the R package Seurat (v 3.2.0) (18). Specifically, cells with fewer

than 200 genes or with > 90% of the proportion of the maximum

genes were filtered. For the mitochondrial metric, the cells were

sorted in descending order of the mitochondrial read ratio, and the

top 15% of the cells were filtered. Potential doublets were identified

and removed via doublet detection (19). Cell cycle analysis was

performed with the cell cycle scoring function of the Seurat

program. The gene expression dataset was normalized. Uniform

manifold approximation and projection (UMAP) was subsequently

used for two-dimensional visualization of the resulting clusters. For

each cluster, marker genes were identified with the FindAllMarkers

function as implemented in the Seurat package (V3.2.0, logFC >

0.25, minPct > 0.1 and Padj ≤ 0.05). The clusters were then marked

as known cell types via the scRNA-seq atlas method (20).

Differentially expressed genes (DEGs) across different samples

were identified with the FindMarkers function (logFC > 0.25,

minPct > 0.1 and Padj ≤ 0.05). Volcano plots were created with

the ggplot2 package. The threshold for the log fold change was set at

0.2, and that for p values was set at 0.05. Gene Ontology (GO)

analysis was performed via the phyper function of the R package (R-

3.1.1). Kyoto Encyclopedia of Genes and Genomes (KEGG, V93.0)

enrichment analysis results. GO and KEGG pathways with p or Q

values ≤0.05 were considered significantly enriched (21).
2.5 Genetic evidence calculator

The Type 2 Diabetes Knowledge Portal (https://t2d.hugeamp.org/)

contains summary data on genetic correlations, genome

annotations, bioinformatics results, expertise in T2DM and

related traits, blood glucose, etc. The human genetic evidence

calculator integrates several kinds of human genetic results to

quantify genetic support for the involvement of a gene in a

disease or phenotype of interest (22).
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2.6 Statistical analysis

The statistical analyses were conducted in SPSS 23.0.

Continuous variables are expressed as the means ± standard

deviations. Categorical variables are presented as numbers or

percentages. Two-group comparisons were conducted via

independent-samples t tests or chi-square tests. A p value less

than 0.05 was considered to indicate statistical significance.
3 Results

3.1 Comparison of clinical
baseline information

There were no significant differences in age, sex, or disease

course between the two groups, but there were significant

differences in body mass index (BMI) or FBG and HbA1c levels

between the two groups, as shown in Table 1.
3.2 Single-cell clustering and cell
type identification

After quality control and filtering, 13,591 cells remained for

analysis. Unsupervised clustering of single-cell data after

normalization and aggregation was performed via Seurat 3.2.0.

Four cell types were identified (Figure 3A). We annotated the cell

types according to the expression of classic marker genes, and the

classic genes that were differentially expressed in those cells were

consistent with the annotations (Figure 3B). The percentages of the

4 cell types in patients with T2DM and healthy participants are

shown in Figure 3C.

A total of 20,092 genes were identified in the 6 samples. Among

the 4 cell types, T cells expressed the most genes (Figure 4A). A total

of 3188 marker genes in the two groups were annotated to the

KEGG metabolic pathway (Figure 4B). According to the KEGG

pathway term level 2, 7 endocrine and metabolic diseases and 9
TABLE 1 Baseline clinical information.

Characteristic Healthy group
(n = 3)

T2DM group
(n = 3)

Age (years) 56.33 ± 16.74 48.33 ± 7.02

Sex (male/female) 2/1 2/1

Course of disease (years) 0.00 ± 0.00 0.56± 0.42

BMI (kg/m2) 22.74 ± 2.56 27.97 ± 0.76*

FBG (mmol/L) 5.36 ± 0.49 7.21 ± 0.15**

HbA1c (%) 5.47 ± 0.25 6.15 ± 0.29*

FINS (mIU/ml) 7.62±2.93 14.85±9.31

HOMA–IR 1.78±0.54 4.72±2.90
* P < 0.05, ** P < 0.01 compared with the healthy group. FBG, fasting blood glucose; BMI,
body mass index; HbA1c, glycosylated haemoglobin A1c; FINS, fasting insulin; HOMA–IR,
homeostatic model assessment of insulin resistance.
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A B

C

FIGURE 3

Cell atlas of immune infiltrates in PBMCs. (A) UMAP plot of immune cell clusters. (B) Classic marker genes for each cell type. (C) Each sample
corresponds to the cell type in each cluster. PBMCs, peripheral blood mononuclear cells; UMAP, uniform manifold approximation and projection.
n=3 in each group.
A B                                                                                     C

D                                                                              E

FIGURE 4

Map of PBMC genes and marker genes in T2DM patients. (A) The number of genes in each cluster. (B) KEGG metabolic pathways enriched with
marker genes. (C) KEGG pathways enriched in marker genes of endocrine and metabolic diseases. (D) KEGG pathways enriched in marker genes of
signal transduction pathways. (E) GSEA of PBMCs by marker genes. PBMCs, peripheral blood mononuclear cells; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GSEA, gene set enrichment analysis. n=3 in each group.
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signal transduction pathways were screened (Figures 4C, D). In

contrast, the presence of 11 marker genes, including PKM, MAPK1,

MAPK3, PIK3R1, HK1, HK3, INSR, PIK3CD, SOCS1, IRS2 and

TNF, was associated with T2DM status. Pathways with significant

differences included the NF-kB, HIF-1 and TNF signalling

pathways. Notably, the gene set enrichment analysis (GSEA)

results also revealed the pathways with the greatest differences in

the TNF signalling pathway (Figure 4E).
3.3 Clustering and subtype analysis of
T cells

T cells are the main specific immune cells found in patients with

T2DM. Unsupervised clustering of T cells revealed two CD4+ T-cell

clusters (including 3127 cells) and three CD8+ T-cell clusters

(including 3678 cells) (Figure 5A). T cells were annotated

separately by canonical genes, and the expression of the canonical

genes of these cell types was consistent with the annotation

(Figure 5B). There were 387 marker genes found in CD4+ T cells

and 684 marker genes in CD8+ T cells. The genes in CD4+ and CD8

+ T cells were analysed, and the transcription signal score was

calculated. The results suggested that CD4+ T cells in T2DM

patients tended to be in memory and naïve states, whereas CD8+

T cells tended to be in effector and memory states (Figure 5C).
Frontiers in Immunology 06
The differences in the expression levels of genes between the

T2DM group and the healthy group were compared to construct a

volcano plot (Figure 6A). Among these genes, 58 were upregulated,

and 61 were downregulated in T cells in the T2DM group. We then

conducted a correlation analysis between the DEGs and clinical

characteristics. The expression levels of RPL27, TXN1P and RPL37

were negatively correlated with HbA1c. The MNDA of genes was

negatively correlated with FBG levels, and the expression levels of

DDX5 were positively correlated with FBG levels. The expression

levels of GIMAP7 were positively correlated with HOMA–IR levels

(Figure 6B). GO analysis revealed that the biological process (BP)

terms enriched among the DEGs were related mainly to leukocyte

chemotaxis, cytoplasmic translation, positive regulation of the

apoptotic signalling pathway, myeloid cell activation involved in

the immune response, the T-cell receptor signalling pathway, and

the immune response-regulating signalling pathway. The enriched

cellular component (CC) terms were associated mainly with the

cytosolic large ribosomal subunit, ribosome, cytosolic ribosome,

tertiary granule membrane, and cell–substrate junction. The

molecular function (MF) terms were specifically related to

structural constituents of ribosome, Toll−like receptor binding,

RAGE receptor binding, phospholipase inhibitor activity, and

cell–cell adhesion mediator activity (Figures 6C, D). The first

gene set, HALLMARK_TNFA_SIGNALING_VIA_NFKB, was

used to generate a GSEA graph via HALLMARK pathway
A                                                                                B

C

FIGURE 5

Characterization of T cells. (A) UMAP plot of T cells. (B) Feature map showing the marker genes for various cell types. (C) Dot plot of representative
activation stage signatures in T-cell clusters. UMAP, uniform manifold approximation and projection. n=3 in each group.
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enrichment analysis (Figure 6E). The WGCNA results revealed that

the genes were divided into 7 modules. According to the correlation

analysis between clinical characteristics and the 7 modules, FBG

levels were significantly positively correlated with the brown

module. FINS and HOMA–IR levels were significantly and

positively correlated with the turquoise and blue modules. With

respect to the base genes with differences and the brown module, we

found that HLA-DRB5, AHNAK, TYROBP and AIF1 were shared

genes (Figure 6F). The KEGG results revealed that genes in the

brown and turquoise modules were involved in the TNF signalling

pathway, T-cell receptor signalling pathway and NF-kB signalling

pathway (Figure 6G). Moreover, TNFRSF1A was the core gene in

terms of network interactions in the brown module (Figure 6H).

We further analysed the cell cycle stages of T cells from healthy

participants and T2DM patients. Compared with those in healthy

participants, the T cells in T2DM patients were more likely to be in

the G1, S and G2M states, indicating active proliferation

(Figures 7A, B). The expression of the 50 top genes varied with
Frontiers in Immunology 07
developmental time. These genes are associated with cytoplasmic

translation, cell–cell adhesion mediated by integrins, and regulation

of the inflammatory response (Figure 7C). The results revealed the

dynamic expression of 6 marker genes in CD4+ T cells, and

different expression levels were observed at the seven stages of

disease progression. The expression of the RPL32, RPS10, RPS12,

RPS14 and RPS23 genes tended to increase, whereas S100A4

expression tended to decrease (Figure 7D).
3.4 Clustering and subtype analysis
of monocytes

Monocytes were the most abundant nonspecific immune cells

in our T2DM patient cohort. Unsupervised clustering revealed two

dendritic cell clusters (including 233 cells), CD14+ monocyte

clusters and FCGR3A+ monocyte clusters (including 2568 cells)

(Figure 8A). Monocytes were annotated separately by canonical
A                                                                    B                                                       C

D                                                                   E                                                        F                                                         

G                                                                  H 

FIGURE 6

Integrated analysis of T cells. (A) Volcano plot showing the DEGs expressed in T cells. (B) Correlation analysis between DEGs and clinical
characteristics. (C) GO enrichment analysis of upregulated marker genes. (D) GO enrichment analysis of downregulated marker genes. (E) GSEA
enrichment analysis of DEGs. (F) Correlation analysis between clinical characteristics and each module. (G) KEGG pathways in the brown and
turquoise modules. (H) Core genes by network interaction in the brown module. DEGs, differentially expressed genes; GSEA, gene set enrichment
analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein–protein interaction; BP, biological process; CC,
cellular component; MF, molecular function. n=3 in each group.
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A                                                                                   B 

FIGURE 8

Characterization of monocytes. (A) UMAP plot of monocytes. (B) Feature map showing the marker genes for each cell type. UMAP, uniform manifold
approximation and projection. n=3 in each group.
A                                                                                  C

B                                                                                 D

FIGURE 7

Cell cycle stages and gene expression with developmental time in T cells. (A) Cell cycle distribution of T cells in health group. (B) Cell cycle
distribution of T cells in T2DM group. (C) Heatmap showing the dynamic gene expression of T cells and the GO analysis results. (D) Dynamic
expression of the top genes in CD4+ T cells. T2DM, Diabetes mellitus; BP, biological process; GO, Gene Ontology. n=3 in each group.
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genes, and the canonical expression of genes in these cell types was

consistent with the annotation (Figure 8B). There were 666 marker

genes in monocytes and 776 in dendritic cells.

The differences in monocyte gene expression between the T2DM

group and the healthy group were compared to construct a volcano

plot (Figure 9A). Among these genes, 51 presented upregulated

expression, and 124 presented downregulated expression. The

expression levels of the CLEC7A, SIGLEC14 and AC018755.4

genes were negatively correlated with HbA1c levels. The expression

level of VSTM1 was negatively correlated with FINS and HOMA–IR

levels (Figure 9B). The GO results revealed that the enriched CC

terms included mainly cytosolic ribosome, cell−substrate junctions,

focal adhesion and tertiary granules. The enriched MF terms were

specifically related to the structural constituents of ribosome, enzyme

inhibitor activity, S100 protein binding, cytokine activity and

cytokine binding (Figures 9C, D). The first gene set,

HALLMARK_INTERFERON_GAMMA_RESPONSE, was utilized

to generate a GSEA graph via HALLMARK pathway enrichment

analysis (Figure 9E). The WGCNA results revealed that the genes

were divided into 7 modules. FBG levels were significantly and

negatively correlated with the red module. FINS and HOMA–IR
Frontiers in Immunology 09
levels were significantly negatively correlated with the brown module

and the turquoise module. With respect to the base DEGs and the

brown module, CLEC2B, B2M and MALAT1 were identified as

shared genes (Figure 9F). According to the KEGG results, the genes in

the red module were involved in the chemokine signalling

pathway (Figure 9G).

We further analysed the cell cycle stages of monocytes from

healthy participants and T2DM patients. In healthy participants,

monocytes were common in the G1, S and G2M states,

indicating more active proliferation in T2DM patients than in

healthy participants (Figure 10A, B). The top-50 genes whose

expression varied with developmental time were associated

with the negative regulation of hydrolase activity, neutrophil

migration, and polyamine biosynthetic processes and the

positive regulation of cytokine production (Figure 10C). The

results revealed the dynamic expression of 6 marker genes in

CD14+ monocytes, and different expression levels were observed

at the three stages of disease progression. The expression levels of

the C1QA, HES4 and RHOC genes tended to increase, whereas the

S100A12, S100A8, and S100A9 expression levels tended to

decrease (Figure 10D).
A                                                                              B

C                                                                              D

E                                                              

F                                                           

G

FIGURE 9

Integrated analysis of monocytes. (A) Volcano plot showing the DEGs in monocytes. (B) Correlation analysis between DEGs and clinical
characteristics. (C) GO enrichment analysis of upregulated marker genes. (D) GO enrichment analysis of downregulated marker genes. (E) GSEA
enrichment analysis of DEGs. (F) Correlation analysis between clinical characteristics and each module. (G) KEGG pathways in the red–turquoise
module. DEGs, differentially expressed genes; GSEA, gene set enrichment analysis; GO, dene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; BP, biological process; CC, cellular component; MF, molecular function. n=3 in each group.
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4 Discussion

Compared with T1DM status, T2DM status is associated with a

greater incidence, longer duration, and greater severity of

complications. scRNA-seq is widely used to characterize the basic

properties of cells, and the regulation of islet cells by a

subpopulation of surrounding cells has been reported in patients

with DM (23, 24). Since islet cells are difficult to obtain from the

human body, systematically elucidating the regulation of PBMCs in

patients with T2DM is important. Previous studies have suggested

that the pathogenesis of T2DM involves the immune system (8, 25).

Single-cell clustering analysis revealed that the cell clusters were

annotated to 4 different cell types. On the basis of the expression

levels of genes associated with endocrine and metabolic diseases,

KEGG enrichment analysis revealed that these genes are involved in

oxidative phosphorylation, pyrimidine metabolism, the tricarboxylic

acid cycle, etc. These pathways are directly or indirectly related to the

development of T2DM. Both the innate immune response and

adaptive immunity are involved in inflammation. Innate immunity

may cause inflammation via endogenous danger signals. Adaptive

immunity also provokes inflammation via cytotoxicity, cytokines and

other mediators (26). There is growing evidence supporting the idea
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that T2DM is a chronic inflammatory disease that results in IR and

hyperglycaemia (27). In this study, the stages of T-cell activation

included naïve, memory, and effector T cells. CD4+ effector T cells are

the main cells that exert direct immune effects. Once activated, CD4+

effector T cells and Th1 cells exhibit many significant signs and

responses to immune inflammation (28). Compared with non-

T2DM patients, T2DM patients had elevated percentages of CD4+

effector T cells (29). When stimulated by antigens, memory CD4+ T

cells in the peripheral blood produce effector cytokines for immune

protection. A high number of memory CD4+ T cells is associated

with a decreased risk of developing DM (30). Regulatory T cells play a

protective role against IR in the pathogenesis of T2DM (31). The

accumulation of cytotoxic CD8+ effector T cells induces

inflammation and IR (32). Active circulating monocytes are

inflammatory effectors that might be involved in T2DM (33). In an

inflammatory state, monocytes are recruited to the affected tissue.

Therefore, circulating blood monocytes levels can be used as

indicators of the activation of tissue immunity (34). In addition, we

also need to recognize that there are still areas that need deeper

investigation. For example, which immune cells in the peripheral

blood are truly involved in the destruction of pancreatic islet beta

cells, which T cells or monocytes can be transported to the pancreas
A                                                                                   C

B                                                                                 D

FIGURE 10

Cell cycle stages and gene expression in monocytes with developmental time. (A) Cell cycle distribution of monocytes in health group. (B) Cell cycle
distribution of monocytes in T2DM group. (C) Heatmap showing the expression of genes related to monocytes dynamics and the GO analysis
results. (D) Dynamic expression of the top genes in CD14+ monocytes. T2DM, Diabetes mellitus; BP, biological process; GO, Gene Ontology. n=3 in
each group.
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and affect the function of beta cells, and how pancreatic beta cells and

infiltrating lymphocytes interact remain to be further studied in

pancreatic samples (10).

We screened several changed candidate genes in T2DM, thus

providing a reference for the study of T2DM pathogenesis. Insulin

can bind to its receptor, InsR, on the cell surface and undergo a

series of signalling cascades to lower blood glucose levels. For

example, insulin inhibits the FoxO signalling pathway and

reduces gluconeogenesis activity (35). IRS2 is an insulin substrate

that regulates blood glucose levels. IRS2 knockout mice exhibit IR

(36, 37). HIF-1 regulates target genes involved in inflammation, and

notably, increased HIF-1 signalling induces changes in monocytes

that promote the development of metabolic diseases, especially

glycolysis, in the livers of T2DM patients (38–40). RPL27

expression changes in capillaries (41). Moreover, it participates in

glucose and lipid metabolism (42). TXN1P is differentially

expressed in patients with metabolic syndrome, which includes

T2DM (43). RPL37, which encodes a ribosomal protein, is the main

hub gene in DM encephalopathy and has a well-documented

vasoreparative capacity (44, 45). Microvascular damage caused by

sustained hyperglycaemia is correlated with MNDA (46). DDX5 is

differentially expressed in obese T2DM chronic wound tissue (47).

CLEC7A expression may be abnormal in DM-associated

inflammation (48). SIGLEC14 enhances TNF-alpha secretion, and

IL-1b release may play a role in inflammation. This effect is related

to lipopolysaccharides and the NLRP3 inflammasome (49, 50).

There are very few reports about AC018755.4.

Jacobi reported that low expression of HLA-DRB5 was

associated with an increased risk of developing T2DM (51).

AHNAK influences glucose homeostasis by regulating adipose

tissue insulin sensitivity and energy expenditure (52). TYROBP is

a hub gene in T2DM, especially in individuals with obesity-induced

DM (53). A higher CLEC-2 concentration is a risk factor for

thrombotic disease in T2DM patients (54). B2M was associated

with the progression of T2DM (55). MALAT1 is a potential

diagnostic biomarker for T2DM (56). According to the WGCNA

network interaction results, TNFRSF1A was the core gene. Among

the effector genes predicted by the Type 2 Diabetes Knowledge

Portal, TNFRSF1A expression levels are positively correlated with

HbA1c levels (57, 58). The mechanism by which TNFRSF1A

(TNFR-1 receptor) increases T2DM susceptibility is poorly

understood (59). Canagliflozin modestly decreased TNFR-1 in

patients with T2DM (60). T2DM is a chronic inflammatory

disease, and hyperglycaemia status and NFKB1A expression levels

are closely connected (61). Among the detected genes, the expression

levels of GIMAP7, HLA-DQB1 and RPL37 were related to

triglyceride levels in individuals without T2DM. A previous study

revealed that the causal association of triglyceride levels with DM is

more obvious in young, middle-aged and nonobese people with

T2DM (62). Another study investigated the relationship between

HLA-DQB1 expression levels and T1DM risk and reported that

HLA-DQB1 expression levels were associated with susceptibility and

protective effects in T2DM patients (63). The genetic characteristics

of individuals with T1DM and T2DM might include common HLA

targets. HLA-DRB5 expression levels are related to T2DM status,

HbA1c levels and diabetic retinopathy status, and the
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downregulation of HLA-DRB5 expression is associated with an

increased risk of developing T2DM (51). RPL12 expression levels

are related to FBG levels and BMI (64). RPS10 expression levels are

related to HbA1c levels and diabetic retinopathy status (65). XIST,

HLA-DQA2 and CXCL8 are common DEGs between monocytes

and T cells. HLA-DQA2 expression levels are related to insulin-like

growth factor (IGF) levels and neuropathy status in T2DM patients

(66). HALLMARK_INTERFERON_GAMMA_RESPONSE and

HALLMARK_TNFA_SIGNALING_VIA_NFKB are closely

associated with the oxidative stress response (67, 68). The

expression levels of genes in these pathways are significantly

influenced by the occurrence and development of T2DM.

Inflammatory cytokines involved in the TNFA signalling pathway

regulate the insulin signalling pathway through serine

phosphorylation to reduce T2DM severity (69). In addition, the T-

cell receptor signalling pathway may be a pathological mechanism

for GDM (70), and the T2DM phenotype of GK rats may be closely

related to the T-cell receptor signalling pathway (71). Studies have

revealed that the NF-kB signalling pathway is involved in the

pathobiology of T2DM (72). Metformin and liraglutide effectively

(beneficially) modulate immune-related NF-kB and TNFA

signalling (73). The chemokine signalling pathway is involved in

islet b-cell damage (74) and influences the onset and progression of

T2DM (75).

The 50 genes whose expression varied with developmental time

were divided into 4 clusters associated with lymphocyte-mediated

immunity, protein folding, immunoglobulins and cytoplasmic

translation. In T2DM patients, vascular calcification has been

associated with increased S100A9 expression, which promotes the

release of extracellular vesicles with a high propensity for calcification

frommonocytes (76). Under hyperglycaemic conditions, islets trigger

an inflammatory response associated with increased expression of

S100A8 (77). Research has shown that plasma S100A12 levels are

higher in patients with T2DM than in patients without DM. Stepwise

multiple regression analyses revealed that S100A12 may be involved

in chronic inflammation in T2DM patients (78). SH3BGRL3

expression levels are closely related to IGF-1 levels. IGF-1

effectively stimulates glucose uptake into muscle tissue and

increases glucose metabolism throughout the body; thus, IGF-1 can

lower blood glucose levels by reducing IR (79). Increased RPS10

expression, which is driven by the maternal allele, has been shown to

be a risk factor for paediatric-onset T2DM (65).
5 Conclusions and
clinical implications

We performed scRNA-seq analysis to generate a transcriptional

map of immune cells from PBMCs, thus providing a framework for

understanding the immune status of T2DM patients. In addition,

we explored the immune state of T cells and monocytes from many

perspectives. Analysis of the target genes revealed that they were

differentially expressed in each of the two groups, revealing

potential key genes such as TNFRSF1A. These factors may be

important in the pathogenesis and development of T2DM

immunity in PBMCs. These findings may provide new insights
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into the treatment of T2DM. Our study also has limitations that

should be noted. The sample size of this study is relatively small,

and there may be some bias in the results due to factors such as the

severity of the patient’s condition, large age differences, and being

conducted at a single research centre. In the future, we will further

validate these results through multicentre clinical trials with larger

sample sizes that can also include correlation analysis with

pancreatic samples from patients with T2DM. Research on the

interactions of different types of immune cells may be valuable for

the dissection of clinical mechanisms and treatments. Molecular

biology experiments should be performed to validate the

mechanisms of the genes related to immunity in T2DM.

Moreover, we will identify drugs that may affect these genes and

observe their clinical effects through intervention.
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