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The discovery of autoantibodies directed against muscle-specific kinase (MuSK)

in “seronegative” myasthenia gravis (MG) patients marked a milestone in MG

research. In healthy muscle, MuSK regulates a phosphorylation pathway, which is

essential for the development andmaintenance of acetylcholine receptor (AChR)

clusters at the neuromuscular junction. Autoantibodies directed against MuSK

are predominantly of the IgG4 subclass, but there is increasing evidence that

IgG1-3 could also contribute to the pathology underlying MuSK-MG. MuSK-IgG4

are monovalent and block the binding site for LRP4 on MuSK, thereby inhibiting

the downstream phosphorylation pathway and compromising the formation of

AChR clusters. Clinically, MuSK-MG is commonly associated with the

predominant involvement of bulbar, facial, shoulder and neck muscles.

Cholinesterase inhibitors should be avoided in MuSK-MG due to the risk of

clinical impairment and cholinergic crisis. Corticosteroids and other non-

steroidal immunosuppressants are less effective with the need for higher doses

and prolonged treatment. Rituximab, by contrast, has been shown to be

particularly effective and is now often used early in the disease course. Its use

is associated with a significant improvement in the clinical outcome of MuSK-MG

patients over time. This review aims to describe the pathophysiology underlying

MuSK-MG and provide a comprehensive overview of the clinical features and

therapeutic options.
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1 Introduction

The first known documentation of myasthenia gravis (MG) by Thomas Willis dates

back to the second half of the seventeenth century, and around 200 years later W.H. Erb

(1879) and S. Goldflam (1893) published the first detailed descriptions of the disease (1–3).

In 1895, Jolly first theorized that an impairment of signal transmission at the
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neuromuscu la r junc t ion (NMJ) was the under ly ing

pathomechanism (4), but it was not until the 1970s that the

acetylcholine receptor (AChR) antibody (Ab) was identified (5).

In the year 2001, Hoch et al. followed with the publication of their

discovery of Abs against muscle specific kinase (MuSK) (6). Both

discoveries were significant milestones: the identification of AChR-

Abs proved the proposition of John Simpson in 1960 that MG was

an autoimmune disease (7), and the discovery of MuSK-Abs

confirmed hints of clinical distinctions between “AChR positive”

and previously “seronegative” MG.

MG with underlying MuSK-Abs (MuSK-MG) is characterized

by specific clinical features and a distinct treatment response when

compared to patients with AChR-Abs (8). Muscle weakness and

fatigability primarily affect bulbar, respiratory and neck muscles (9–

14). Atrophy of affected muscle groups was observed in later stages

of the disease, although imaging studies have also revealed early

subclinical muscular wasting (12, 14–19). Before the identification

of MuSK-Abs, the treatment of “seronegative” MG patients

followed the standard regimen for AChR-Ab positive MG

(AChR-MG). However, part of that regimen, namely thymectomy

and cholinesterase inhibitors, was ineffective in MuSK-MG (20–22).

Cholinesterase inhibitors were even associated with the potential to

worsen symptoms of MuSK-MG patients (10, 12, 22, 23).

Advancements in our understanding of the molecular

mechanisms underlying MuSK-MG have been successfully

translated into clinical practice and led to improved treatment

strategies. Clinical guidelines on MG now take the antibody status

into consideration (24, 25). Different recommendations for AChR-

MG and MuSK-MG have been implemented, respectively, which

has led to a significant improvement of the clinical outcome of

MuSK-MG patients over time (25, 26). In light of these

developments, this review aims to address our understanding of

the pathomechanisms involved in MuSK-MG, the clinical features,

as well as current and future therapeutic approaches.
2 MuSK is a crucial component of the
AChR clustering pathway

Muscle specific tyrosine kinase is a 120 kDa transmembrane

protein located in the postsynaptic muscle cell membrane and plays

a crucial role in the development, function, and maintenance of the

NMJ (27–29). Structurally, MuSK is composed of three Ig-like

domains followed by a frizzled-like cysteine-rich domain in the

N-terminal extracellular regions, a transmembrane region, and a

cytoplasmic domain with kinase activity (30–33).
2.1 The agrin/LRP4/MuSK/Dok7 pathway as
a positive regulator of AChR clustering

Neural agrin, a large heparan-sulfate proteoglycan secreted

from the motor nerve terminal, and the low-density lipoprotein

receptor-related protein 4 (LRP4), another transmembrane protein

of the muscle cell membrane, interact with MuSK molecules in a
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2:2:2 configuration (34–39). In a recently published study analyzing

the structure of the agrin/LRP4/MuSK complex using cryogenic

electron microscopy, LRP4 was shown to act as a “clamp” resulting

in a direct interaction between agrin and MuSK, thereby promoting

MuSK dimerization and (auto)phosphorylation of its cytoplasmic

domain (37). Downstream of tyrosine kinase 7 (Dok7) is recruited

and binds to the juxtamembrane cytoplasmic region of MuSK.

Upon phosphorylation, Dok7 fosters full MuSK activation by

enhancing MuSK dimerization (40). Subsequently, MuSK

activation induces tyrosine-phosphorylation of 43 kDa receptor-

associated protein of the synapse (rapsyn), which then undergoes

liquid-liquid phase separation (LLPS) to form membraneless

condensates (41). These co-condense with AChR subunits and

cytoskeletal proteins, facilitating the formation of rapsyn-AChR-

aggregates together with components of the cytoskeleton (41).

Different intermediate proteins including Crk, Abl, Src and Rho

are recruited by MuSK activation and further amplify the process of

LLPS and AChR clustering (42–49). Ultimately, rapsyn interacts

with the cytoplasmic loops of all AChR subunits and connects

receptors by up to three bridges, which is the minimum number

required to form a 2D network (50–52). Many of these pathways are

involved in actin remodeling and cytoskeletal rearrangements to

anchor and immobilize the AChR clusters within the postsynaptic

plasma membrane (52, 53) (Figure 1).
2.2 Negative regulators of AChR clustering

It is important to acknowledge that AChR clustering underlies a

homeostatic regulation of positive and negative regulators. As highlighted

before, the reciprocal activation of MuSK and Dok7 is the strongest

promoter of AChR clustering. Acetylcholine (ACh), by contrast, is a

strong negative regulator. Sustained cholinergic stimulation associated

with prolonged calcium influx through the AChRs (e.g., in the absence of

acetylcholine esterase in the synaptic cleft) with accumulation of

intracellular calcium activates a calpain-Cdk5 pathway, which mediates

AChR dispersal (54–58). This pathway is counterbalanced by rapsyn,

which was reported to interact with calpain and inhibit its activity,

thereby stabilizing AChR clusters in an agrin-dependent manner (54).

Another negative regulator of AChR clustering is the SRC homology two

domain-containing phosphotyrosine phosphatase 2 (SHP2). Agrin-

stimulation of MuSK was shown to phosphorylate signal regulatory

protein a 1 (SIRPa 1), an activator of SHP2, which, in a negative

feedback loop, reduces MuSK phosphorylation and activity (59).

Endocytosis of MuSK was suggested to be another important regulator

of AChR clustering and is directly linked to its activation, specifically in

response to stimulation with agrin (60, 61). Other factors promoting

MuSK endocytosis include Wnt, a family of glycoproteins secreted from

the nerve terminal that regulate AChR clustering and play a critical role

in neuromuscular development (62).MuSK also acts as a receptor for the

bone morphogenic protein (BMP). The MuSK-BMP pathway has been

suggested to inhibit Ca2+ signaling via regulator of G protein signaling 4

(RGS4) (63). Together, all these mechanisms constitute a complex

network of pathways that contribute to the fine-tuned regulation of

AChR clustering and cholinergic signaling at the NMJ (Figure 1).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1502480
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Keritam et al. 10.3389/fimmu.2024.1502480
3 Unravelling the pathogenicity of
MuSK antibodies

The pathogenicity of MuSK-Abs is related to the nature of the

antibodies, which are predominantly of the IgG4 subclass and

therefore unable to bind complement or activate immune cells via

interaction with Fcg receptors (64, 65). Instead, IgG4 is considered

to mediate anti-inflammatory tolerance effects; in general, by

competitive blocking of epitopes on autoantigens, IgG4 can

prevent the binding of other antibody classes and neutralize their

effector mechanisms (64). In the case of MuSK-MG, the

pathogenicity of MuSK-IgG4-Abs relies on their ability to block

the MuSK-LRP4 interaction and prevent MuSK activation, which

disturbs the balance between MuSK-induced clustering and ACh-

induced dispersal of AChR clusters (66, 67).
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3.1 MuSK antibodies are monovalent and
undergo Fab-arm exchange

MuSK-IgG4-Abs are, unlike IgG1-3 antibodies, functionally

monovalent. Due to variations in the amino acid sequence (Ser228),

IgG4 are characterized by a greater stereometric flexibility in the hinge

region, which causes an instability of the interchain disulfide bridges,

and the alternative formation of more stable intrachain bridges under

reducing conditions (68–70). As a result, IgG4-Abs dissociate into two

half-molecules, each consisting of a heavy and a light chain, which then

recombine randomly into chimeric, bi-specific antibodies (64, 68, 71).

This mechanism is further facilitated by another single amino acid

change in the CH3 region (Arg409) that reduces the non-covalent

interaction between both heavy chains. Taken together, these amino

acid changes allow for ~99% of MuSK-IgG4-Abs to undergo Fab-arm

exchange (71, 72), which are therefore monovalent for their antigen.
FIGURE 1

The AChR clustering pathways in health and MuSK-MG. MuSK, agrin and LRP4 bind in a 2:2:2 configuration, facilitating transmembrane
autophosphorylation of MuSK. Recruitment of Dok7 initiates a signaling cascade through various pathways (including Src, Crk, Abl and Rho) which in
turn enhances rapsyn-condensation and subsequent AChR clustering. The two-dimensional AChR network is connected through rapsyn, which
forms up to three bridges with all AChR subunits. This network is further stabilized in the third dimension by the cytoskeleton via MACF1. Formation
and stabilization of AChR clusters is essential for physiological neuromuscular activity. However, excessive cholinergic activation leads to a
prolonged Ca2+ influx through the AChRs, thereby activating the Calpain/Cdk5 pathway and dispersing AChR clusters. Further upstream, MuSK-
dimerization is inhibited by the SIRPa1/SHP2 pathway in a negative feedback loop. Endocytosis of MuSK, either mediated by agrin or Wnts, is
suggested as another important negative regulator. LRP4-MuSK is hypothesized to increase the quantal content, which balances AChR clustering.
However, the exact mechanisms underlying this effect are yet to be unraveled. Monovalent IgG4 antibodies inhibit MuSK dimerization and the
downstream (and upstream) pathways important for AChR clustering. Abl, Abelson murine leukemia viral oncogene homolog 1; ACh, acetylcholine;
AChR, acetylcholine receptor; Cdk5, Cyclin-dependent kinase 5; Crk, CT10 regulator of kinase; Dok7, Downstream of tyrosine kinase 7; LRP4, low-
density lipoprotein receptor-related protein 4; MACF1, microtubule actin crosslinking factor 1; MuSK, muscle specific kinase; Rho, Ras homology;
SHP2, Src homology region 2 domain-containing phosphatase-2; SIRPa 1, signal regulatory protein a1; Src, from “sarcoma”, Wnt, wingless-related
integration site. Created in BioRender.com.
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3.2 MuSK-IgG4 antibody inhibition of
LRP4-MuSK signaling and complex
interactions with both pre- and post-
synaptic proteins

The reactivity of MuSK-Abs can be directed against several

extracellular MuSK domains (64, 73), with epitope spreading

reported in 19% of MuSK-MG patients (73). Disease severity,

however, is determined by reactivity of the autoantibodies against

the MuSK-Ig-like domain 1 (MuSK-Ig1) (66, 67, 73, 74), which is

required for MuSK to bind LRP4 (38). MuSK-IgG4-Abs block the

interaction between MuSK and LRP4 and prevent MuSK

phosphorylation and activation (Figure 1). As a result, MuSK

becomes unable to respond to agrin-LRP4 stimulation, and the

agrin-LRP4-MuSK-Dok7 cascade does not form, resulting in

reduced AChR clustering at the NMJ (66, 67). The disrupted

LRP4-MuSK interaction was also shown to correlate with a lack

of the compensatory presynaptic increase of released acetylcholine

vesicles (i.e., quantal content, QC) in in vivo models of MuSK-MG,

which, by contrast, is commonly observed in AChR-MG disease

models and in patient muscles (75–77). A potential explanation is

based on the function of LRP4 as a retrograde signal molecule (78,

79). LRP4-MuSK is suggested to increase the QC, which would

balance the LRP4-MuSK induced AChR clustering by increasing

AChR-dispersal. MuSK-Abs could then disrupt this mechanism

and prevent the compensatory increase of the quantal content,

although this has not been shown directly so far (76, 77, 80).

The loss of acetylcholinesterase (AChE) has also been proposed

as a pathomechanism in MuSK-MG. MuSK interacts with collagen

Q (ColQ), which is arranged as trimers to form a triple helix in the

synaptic cleft, where each ColQ molecule binds and anchors a

tetramer of AChE to the basal lamina (81, 82). The MuSK-Ig1 and

-Fz domains have been determined as the binding sites for ColQ

(74) with MuSK-Abs shown to block these interaction sites and

inhibit the binding of MuSK to ColQ (83). This could lead to the

loss of AChE from the extracellular matrix of the NMJ and increase

the availability of acetylcholine in the synaptic cleft, which, as a

negative regulator of AChR clustering, could facilitate dispersal of

the receptors. This was hypothesized to be responsible for the

hypersensitivity of many MuSK-MG patients towards AChE

inhibitors, although there was no correlation between drug

hypersensitivity and autoantibodies against specific epitopes in a

longitudinal epitope mapping study in MuSK-MG (73).
3.3 MuSK-IgG1-3 antibodies could
contribute to the pathogenic process in
some MuSK-MG patients

MuSK-IgG1-3 can be detected at low concentrations in most

MuSK-MG patients and have been proposed to contribute to the

pathogenic process in MuSK-MG (67, 84). They were shown to inhibit

agrin-induced AChR clustering in C2C12 cells, surprisingly without

affecting LRP4-MuSK interaction. Both IgG1-3 and IgG4 prevented

AChR cluster formation in C2C12 cells or in C2C12 cells

overexpressing Dok7, which induces dimerization and activation of
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MuSK and thereby facilitates AChR clustering independent of the

agrin-LRP4 pathway (67). In a more recent study, MuSK IgG1-3

induced a similar phosphorylation time course for MuSK, Dok7 and

the AChR b-subunit as agrin but still prevented the formation of AChR

clusters induced by agrin in C2C12 cells (84). Further evidence for the

potential pathogenic role of MuSK IgG1-3 antibodies derives from

experiments utilizing monoclonal antibodies isolated from MuSK-MG

patient B cell clones (85–87). Here, even in the absence of agrin,

divalent antibodies recognized the MuSK-Ig-like domain 2 and

enhanced MuSK phosphorylation but inhibited AChR clustering,

irrespective of the subclass backbone (86). In another study, divalent

MuSK-Abs were found to target the MuSK Ig-like 1 domain and again

resulted in increased MuSK phosphorylation. However, instead of

inhibiting the clustering of AChRs, these antibodies induced low

levels of AChR clustering, which was explained by the ability of

divalent antibodies to crosslink MuSK molecules (85). These findings

could indicate different downstream MuSK phosphorylation and

AChR clustering pathway aspects depending on the IgG subclass or

on the different MuSK epitopes targeted by the monoclonal or

polyclonal (patient serum) antibodies. This hypothesis is supported

by experiments analyzing MuSK mutations identified in patients with

congenital myasthenic syndromes. Here, a mutation in the MuSK Fz-

like domain ablated MuSK phosphorylation and AChR clustering,

whereas anothermutation in the kinase domain ofMUSKwas found to

increaseMuSK phosphorylation while impairing AChR clustering (88).

Therefore, the modification of different MuSK domains or epitopes by

mutations or antibodies could differentially affect the conformation and

activation of MuSK and, thereby, also the downstream signaling

pathway required for AChR clustering (87, 89, 90).

The activation of complement could represent another

mechanism underlying MuSK IgG1-3 pathogenicity, with

evidence deriving from in vivo disease models. MuSK-immunized

mice show elevated levels of complement-fixing anti-MuSK IgG

isotypes in sera and NMJs, and complement deposition can be

observed widely in muscle samples (91, 92). Moreover, MuSK-

immunized IgG1 knock-out mice (where mouse IgG1 is the murine

analogue of human IgG4 with poor complement activation

potency) and WT both developed comparable disease severities,

serum MuSK-Ab levels, and NMJ immunoglobulin and

complement deposition ratios (91). However, in vivo experiments

performed by another group revealed the induction of experimental

autoimmune MG in mice by the passive transfer of MuSK-IgG4 but

not MuSK-IgG1-3 together with complement (93), although the

MuSK-specific IgG1-3 antibodies could not be detected in the

mouse sera. It was therefore suggested that this model was not

representative of the situation in MuSK-MG patients, in which

MuSK-IgG1-3 antibodies are commonly detectable (67, 93).
4 Epidemiology of MuSK-MG

MuSK-Abs can be detected in up to 70% of generalized MG

patients without AChR-Abs (6, 10), and LRP4-Abs can be found in

7-33% of double-seronegative patients without AChR- and MuSK-

Abs (94). Double positive patients with MuSK- and LRP4-Abs were

found more frequently than double positive patients with AChR-
frontiersin.org
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and LRP4-Abs (14.9% versus 7.5%) (94). The overall female-to-

male ratio of MuSK-MG ranges between 3:1 and 9:1 (10, 12, 13),

with higher rates of male MG patients in late-onset disease (9, 95).

In contrast to AChR-MG, a bimodal pattern of incidence is not

common in MuSK-MG (10), with only one study from China

reporting a bimodal distribution of disease onset (9). Prevalence

ratios vary significantly across countries (Table 1), with differences

between ethnic groups. In a Norwegian and Dutch study, MuSK-

MG was more frequent in Asian immigrants than in patients of

European descent (8% vs. 0-4%) (96). In an US-American study,

50% of patients with MuSK-MG were African-American, as

compared to only 10% within the AChR-MG cohort (97).

Interestingly, different rates of MuSK-MG were reported within

individual countries. In a Chinese study, only 4% of AChR-Ab

negative patients in the HuBei province had MuSK-Abs (98), while

another study reported a rate of 26.7% among AChR-Ab negative

patients in Northeast China (99). However, these differences are

likely due to the use of different assays in the two studies, with cell-

based assays resulting in a lower proportion of MuSK-Ab positives

compared to enzyme-linked immunosorbent assays. A particularly

high prevalence (43.0 per 1,000,000 population) of MuSK-MG was

reported in Sardinia (100). The same study reported a much higher

overall incidence and prevalence of MG in Sardinia compared to

other regions/countries (96, 100–104). Notably, Sardinia is

burdened by particularly high frequencies of other autoimmune

disorders, such as multiple sclerosis (MS) and systemic lupus

erythematosus (SLE) (105, 106). The TNFSF13B variant, resulting

in an overexpression of the B cell activating factor (BAFF), was

found to be associated with MS and SLE in a genome-wide

association study in Sardinia (107) and can help to explain the

higher frequencies of myasthenia gravis. Differences in the

frequencies of specific HLA alleles across populations could also

explain the geographical variations. A meta-analysis published in

2018 concluded that DQ5-DR14 and DQ5-DR16 haplotypes are

associated with an increased risk of developing MuSK-MG, whereas

DQ3-DR4 and DQ3-DR11 were found to be protective (108).
Frontiers in Immunology 05
5 MuSK-MG patients present with
distinct clinical features

MuSK-MG patients are characterized by specific clinical

symptoms that differ from those of MG patients with AChR-Abs.

An acute or subacute onset of extraocular or bulbar muscle

weakness is common, with bulbar muscles often remaining

severely affected throughout the disease (9–13, 95). In contrast to

AChR-MG, extraocular muscle paresis is mostly conjugated in

MuSK-MG, manifesting as symmetrical upward or horizontal

gaze limitation and, in some cases, progressing to complete

ophthalmoplegia (109). In patients with a purely ocular onset,

symptoms usually generalize within 1-3 months (109). Neck

muscles are also often affected resulting in head drop (11, 13),

whereas neck flexors can only be mildly involved (8, 110). Limb

muscle affection is less severe and inconsistent (10, 12), and

fluctuations of myasthenic symptoms may be less evident than in

AChR-Ab positive MG patients (8). Myasthenic crises, by contrast,

are frequent and often occur early in the disease course (9, 12, 13).

Compared to LRP4-MG, MuSK-MG has been associated with a

more severe clinical phenotype at disease onset, with MuSK/LRP4-

Abs double positive patients being more severely affected than

single positive MuSK-MG patients (94). Muscle atrophy and fatty

replacement have been reported to occur frequently in chronic

MuSK-MG patients, often affecting facial and bulbar muscles (16).

Subclinical changes may even be detected at early disease stages by

magnetic resonance imaging (111).
6 Diagnostic considerations in
MuSK-MG

Diagnosis of MuSK-MG is based on the clinical presentation

together with electrophysiological studies and the detection of

MuSK-IgG-Abs. Repetitive nerve stimulation (RNS) and single-

fiber jitter recording are helpful in supporting the diagnosis of MG

but must be applied in affected muscles in order to prevent false-

negative results in MuSK-Ab positive MG, with the sensitivity of

RNS reported to increase up to 70-80% when tested in facial

muscles and ranging around 20% in (unaffected) limb muscles

(97, 112–114). Edrophonium/neostigmine testing is also commonly

performed in MuSK-MG patients to enhance neuromuscular

transmission by increasing the synaptic concentration of

acetylcholine, and was shown to be positive in up to 60-70% of

tested MuSK-MG patients (10, 12), which is generally lower than in

AChR-Ab positive MG patients (115). However, edrophonium/

neostigmine testing should be performed with caution as nicotinic

side effects are common (23, 116).

Three different assays are available for the detection ofMuSK-IgG-

Abs, which represents the gold standard for confirmation of MuSK-

MG diagnosis in suspected cases. The radioimmunoprecipitation assay

(RIPA) utilizes immunoprecipitation of the extracellular domain

of 125I-radiolabelled MuSK upon incubation with patients’ sera

(117). This method is characterized by a specificity of almost 100%

(118) and allows the quantification of autoantibody titers by counting
TABLE 1 Prevalence of MuSK-MG *.

Region Publication
year

Prevalence
(per million)

China, HuBei Province (98) 2007 0.02**

Netherlands (101) 2007 1.9

Greece (102) 2009 2.9

Italy, Trento (173) 2011 1.9

Northern Europe (Norway &
Netherlands) (96)

2016 3.6

Northern Portugal (103) 2016 5.8

Latvia (174) 2017 8.9

Italy, Sardinia (100) 2024 43.0
* Only epidemiological studies with available prevalence estimations or with figures that
permitted prevalence calculations were included.
** Another study from Northeast China reported higher rates of MuSK-MG (99); this study,
however, did not permit prevalence calculations and was thus not included in the table.
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the 125I precipitation at different serum concentrations. However, the

strict regulations of radiation disposal limit its application. As a non-

radioactive method, enzyme-linked immunosorbent assays (ELISA)

are commercially available, and their application do not require

specific licenses for diagnostic laboratories. MuSK-ELISA plates

are coated with the extracellular domain of MuSK and allow

quantification of MuSK-IgG titers, but the sensitivity and specificity

of the assay were shown to be suboptimal compared to RIPA and cell-

based assays (CBAs) (71, 119), indicating potential limitations in their

diagnostic accuracy for MuSK-MG. Cell-based assays, by contrast, are

characterized by higher diagnostic accuracy compared to RIPA and

ELISA (120). Here, HEK293 cells are commonly used to express full-

length MuSK with appropriate posttranslational modifications and

conformation in the more physiological environment on the cell

surface. In contrast to fixed cells, the application of live cells in

CBAs was shown to be associated with higher sensitivity (121), and

the use of IgG-specific secondary antibodies is recommended to avoid

detection of non-specific binding of IgM to MuSK, which can be a

problem with anti-human IgG antibodies that include anti-IgM

activity (122). Ideally, CBAs should be used as a first-line assay in

the diagnosis of MuSK-MG, as well as in the evaluation of patients

tested negative by RIPA or ELISA (120).
7 Current therapeutic options in
MuSK-MG

Specific considerations have to be taken into account for the

successful treatment of MuSK-MG, owing to its distinct

pathophysiological mechanisms that differ from those of MG with

AChR-Abs (Figure 2). Gaining insight into these pathomechanisms

has helped to improve the clinical management of MuSK-MG,

which has evolved from an AChR-antibody negative, severe, and

difficult-to-treat disease to a MuSK-antibody positive condition

with a beneficial outcome in most cases. The excellent treatment

response of MuSK-MG to rituximab is one major factor in this

development (26).
7.1 Acetylcholinesterase inhibitors

Acetylcholinesterase inhibitors (AChEI) are often ineffective

and associated with an increased risk of adverse events in MuSK-

MG (10, 12, 23). In a retrospective cohort analysis of 165 MuSK-

MG patients receiving AChEI, only 4% reported an initial clinical

improvement, whereas 34% reported an impairment of muscle

weakness. Side effects were experienced by 77% of patients, with

cholinergic crises occurring in 7% of the cohort (23). Impaired

tolerance against AChEI could be explained by an increased

sensitivity to cholinergic agents or an inherent cholinergic

hyperactivity in MuSK-MG patients. Electrophysiological studies

revealed a higher frequency of repetitive compound action

potentials in MuSK-MG patients using AChEI (116, 123), which

correlated with poor tolerance to pyridostigmine (123). These

clinical data are in line with data from MuSK-immunized mice
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AChEI (124). In another study, pyridostigmine treatment

potentiated the MuSK-IgG-induced decline in AChR density and

endplate potential (EPP) amplitude, whereas treatment with 3,4-

diaminopyridine elevated EPP amplitude without exacerbating the

MuSK-IgG-induced loss of AChRs (125). Some patients have also

been reported to carry a polymorphism in the promoter region of

the ACHE gene that encodes the catalytic subunit of AChE

associated with increased susceptibility to adverse events upon

(even low dose) AChEI treatment (126).
7.2 3,4-diaminopyridine

3,4-diaminopyrdine improves neuromuscular transmission by

increasing the presynaptic release of acetylcholine. Evidence for

effectiveness in MuSK-MG derives from animal models (125), case

reports (127, 128), and a randomized-controlled study on 7 patients

(129). Here, treatment with 3,4-diaminopyrdine in a daily dose of

30-60mg was associated with improvement of disease severity

according to different clinical scores including the Quantitative

MG score and the MG-specific Activities of Daily Living score.

However, as the number of patients was very low in this study, there

is a need for confirmation of the results in a large multi-center trial.
7.3 b-adrenergic agonists

Sympathomimetics have been shown to maintain NMJ

structure by increasing the shape and size of the postsynaptic

folds (130, 131), and to improve NMJ function (131). The b-
adrenergic agonists salbutamol and ephedrine have been well

established for the therapy of congenital myasthenic syndromes

with AGRN, COLQ, DOK7, LRP4 and MUSK mutations (132, 133),

but with only anecdotal clinical experience of salbutamol in MuSK-

MG (134, 135). When tested in 5 patients who had not tolerated

pyridostigmine, there was a notable clinical response in 3 patients,

whereas treatment had to be discontinued in 2 patients due to side

effects or lack of efficacy after six months (134).
7.4 Corticosteroids and non-
steroidal immunosuppressants

Immunosuppression is the mainstay treatment in both AChR-

MG and MuSK-MG. Despite the lack of randomized-controlled

trials, there is general consensus that MuSK-MG patients respond

to corticosteroids and/or non-steroidal immunosuppressants (13,

136, 137), which are recommended and often used as the first-line

therapy in MuSK-MG (24, 25). However, the frequency of

exacerbations during corticosteroid tapering is notably higher in

patients with MuSK-MG compared to those with AChR-MG, often

requiring higher dosages and prolonged treatment durations (136,

138, 139). Non-steroidal immunosuppressants such as azathioprine,

mycophenolate mofetil, cyclosporine, methotrexate and tacrolimus
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are therefore often introduced early in the disease course as steroid-

sparing agents to avoid side effects associated with long-term

administration of high-dose corticosteroids (13, 136, 139).

However, a significant proportion of MuSK-MG patients on high-

dose immunosuppression with corticosteroids alone or in

combination with azathioprine have a refractory disease (136,

139). Periodic relapses and myasthenic crises can be effectively

treated with acute plasma exchange or the administration of

intravenous immunoglobulins (IVIG) (25), with evidence for

higher rates of clinical improvement associated with plasma

exchange as compared to IVIG treatment (10, 13, 140).
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7.5 Anti-CD20 monoclonal antibodies

Rituximab is a mouse/human monoclonal chimeric IgG1

targeting CD20, a transmembrane phosphoprotein expressed on

the surface of developing B lymphocytes but not on progenitor cells

and mature plasma cells (141). Upon binding to CD20, immune

effector cells are recruited and cause B cell lysis and depletion.

Rituximab has been shown to be particularly effective in IgG4

related diseases (142–144). In MuSK-MG, there is currently class IV

evidence for a beneficial effect upon treatment with rituximab

deriving from a prospective blinded multicenter study (145).
FIGURE 2

Main mechanisms of action of several established and novel therapeutic approaches in MuSK-MG. (A) At the neuromuscular endplate, 3,4-
diaminopyridine increases pre-synaptic acetylcholine release. b-adrenergic agonists (e.g., salbutamol) stabilize AChR-clustering and increase shape
and size of post-synaptic folds. Agonistic MuSK-antibodies may induce MuSK-dimerization and have been shown to reduce disease activity in a
preclinical mouse model. (B) The FcRn are expressed on endothelial cells and mediate recycling of MuSK-Abs, thereby extending their half-life. FcRn
inhibitors block the IgG-FcRn interaction and expedite the clearance of MuSK-Abs. (C) The pathway from antigen presentation to naïve T cells and
subsequent antibody production presents different target points for therapeutic interventions. Various novel therapeutics target B cell activation and
B cell lineages (see also Table 2). Available treatment options are highlighted in green, while novel therapeutic agents proposed for MuSK-MG are
highlighted in orange. ACh, acetylcholine; AChR, acetylcholine receptor; APCs, antigen-presenting cells; APRIL, A proliferation-inducing ligand; BAFF,
B cell activating factor; CAAR, chimeric autoantibody receptor; CAR, chimeric antigen receptor; CD, cluster of differentiation; Dok7, Downstream of
tyrosine kinase 7; FcRn, neonatal fragment crystallizable receptor; IAS, immunoadsorption; IL-6, interleukin-6; IVIG, intravenous immunoglobulin;
LRP4, low-density lipoprotein receptor-related protein 4; MuSK, muscle specific kinase; PLEX, plasma exchange; Th cells, T helper cells. Created
in BioRender.com.
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Especially in patients with high disease activity or refractory disease,

rituximab treatment should therefore be considered early in the

disease course (24, 25), which together with corticosteroids and

immunosuppression results in an overall favorable outcome in most

MuSK-MG patients (26). The intravenous application of rituximab

is generally well tolerated and safe (146), with a rapid and sustained

effect (147, 148) that correlates with a reduction of MuSK-IgG4

titers, but not with total IgG4 titers (148, 149). This may be related

to MuSK-Ab production by short-lived Ab-secreting plasmablasts

derived from CD20+ memory B cells (86, 150), in contrast to AChR-

MG, where autoantibody production is maintained by long-lived

plasma cells (151, 152). Relapse after treatment with rituximab was

shown to correlate with the occurrence of antibody-secreting

CD27+ CD38+ plasmablasts (150), and CD27+ memory B cell and

MuSK-Ab titer monitoring were proposed as a sensitive biomarker

for prediction of clinical relapses and for adjustment of rituximab

infusion frequencies (150, 153). Moreover, MuSK-Ab secreting B

cell clones were shown to survive B cell depletion therapy and

recirculate up to several months prior to clinical relapse (154).

These clones could differentiate from CD20low plasmablasts (154),

and their survival might be explained by the ineffectiveness of

rituximab to reach tissue-based B cells (155–157).
7.6 FcRn blockade

The neonatal Fc receptor (FcRn) binds to the Fc region in a pH-

dependent manner and protects IgG from lysosomal degradation,

allowing it to return to the circulation. FcRn inhibitors such as

efgartigimod and rozanolixizumab prevent FcRn from interacting

with IgG, thereby disrupting the recycling process and leading to

increased degradation and clearance of IgG from the circulation

(158). In MuSK-MG, there is both preclinical and clinical evidence

for the therapeutic potential of FcRn inhibition. Efgartigimod-

treated MuSK-myasthenic mice functionally outperformed control

mice, and electromyography demonstrated improved decrement
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correlated with reduced MuSK-IgG4 levels (159). Efgartigimod has

been tested in the phase III ADAPT trial including 129 AChR-MG

and 38 AChR-Ab negative MG patients, among which 6 patients

were MuSK-Ab positive and 3 patients received efgartigimod (160).

However, all MuSK-MG patients responded to the therapy as

defined by a ≥2 point improvement in the MG Activities of Daily

Living (MG-ADL) score, including those in the placebo-group.

Rozanolixizumab has also been tested in a phase III trial

(MycarinG) including 21 MuSK-MG patients, with 13 patients

receiving rozanolixizumab and 8 patients in the placebo group

(161). All 12 MuSK-MG patients in the treatment group with

available data were MG-ADL responders, in contrast to only one

of seven responding patients in the placebo group. Despite the low

number of MuSK-Ab positive patients included in these clinical

trials, the available data suggest that FcRn inhibitors pose a

promising therapeutic option for MuSK-MG and can be

considered in refractory patients with unsatisfactory response to

rituximab (25).
8 Future therapies

Despite the availability of various treatment options, a

significant proportion of MuSK-MG patients remain symptomatic

or experience periodic clinical exacerbations. Therefore, there is an

urgent need for novel therapeutic strategies targeting the underlying

immune machinery that produces the autoantibodies (162).

Given the pivotal role of B cell pathophysiology in MuSK-MG,

as highlighted by the efficacy of rituximab, expanding therapeutic

options to include agents that directly or indirectly target B cell

lineages may provide valuable treatment alternatives. Inebilizumab

(MEDI-551), an anti-CD19 monoclonal antibody, is currently

under investigation in a phase III trial (MINT trial ,

NCT04524273). Mezagitamib (TAK-079), targeting CD38

expressed on plasma cells, completed a phase II trial in 2023

(results pending, NCT04159805). Targeting IL-6 to inhibit B cell

proliferation and activation, the monoclonal antibody satralizumab

(phase III LUMINESCE trial completed in 2024, preliminary results

published (163), NCT04963270) and tocilizumab (ongoing phase II

trial, NCT05067348) may also have therapeutic potential in MuSK-

MG. Preliminary results from the LUMINESCE trial indicate

significant improvement in clinical scores in generalized MG

(163). However, only 9 MuSK-MG patients were included, and

they were not considered in the analyses. Telitacicept (RC18), an

inhibitor of the B cell activation factor (BAFF), demonstrated

efficacy in reducing clinical severity in generalized MG in a phase

II study (164), but this study was not able to recruit MuSK-MG

patients. Similarly, in a phase II trial on the BAFF inhibitor

belimumab, the primary endpoint was unmet, and MuSK-MG

patients were limited to the placebo arm (165). Bortezomib, a

proteasome complex inhibitor, was successfully used in a single

case with MuSK-MG (166).

A novel approach utilizes chimeric antigen receptor (CAR) T

cells that were genetically engineered to target the B cell maturation

antigen and cause mature plasma cells to undergo apoptosis. In a
TABLE 2 Clinical studies on novel therapeutic agents for the treatment
of MuSK-MG.

Target Name Study identifier
and phase

CD19 (B cells) Inebilizumab
(MEDI-551)

NCT04524273, phase III

CD38 (Plasma cells, B &
T cells)

Mezagitamib
(TAK-079)

NCT04159805, phase II

IL-6 Sartralizumab
Tocilizumab

NCT04963270, phase III
NCT05067348, phase II

BAFF Belimumab
Telitacicept

NCT01480596, phase II
NCT04302103, phase II

B cell maturation
antigen (BCMA)

CAR-T cells NCT05451212, phase IIb

B cells expressing MuSK MuSK-CAAR-T NCT05451212, phase I

FcRn Batoclimab
Nipocalimab

NCT05403541, phase III
NCT04951622, phase III
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prospective, open-label phase 1b/2a proof-of-concept study (MG-

001), the safety and efficacy of this approach was investigated in 14

patients with generalized MG, of whom 2 patients were MuSK-Ab

positive (167). Both patients improved in all clinical scales, without

any dose-limiting toxicity, neurotoxicity, or cytokine release

syndrome across the whole cohort. A similar approach was tested

in an experimental autoimmune MuSK-MG mouse model. T cells

were engineered to express the MuSK chimeric autoantibody

receptor (CAAR) with CD137-CD3z signaling domains for

precision targeting of B cells expressing anti-MuSK-Abs (168).

The results were promising and indicated MuSK-specific B cell

depletion without decreasing total B cell numbers or total IgG levels.

In another recently published preclinical study, agonistic MuSK

antibodies were successfully utilized to treat mice with severe

disease activity after passive transfer of pathogenic MuSK-Abs

derived from patients with MuSK-MG (169). Overall, these

innovative approaches have the potential to specifically target the

underlying immune mechanisms responsible for autoantibody

production or directly target the disease mechanism.

C5 complement inhibitors have demonstrated efficacy in

treating generalized AChR-Ab positive MG (161, 170–172).

MuSK-Abs, by contrast, are predominantly of the IgG4 subclass

and do not activate complement (64); therefore, the use of

complement inhibitors does not appear to be indicated in MuSK-

MG. However, since MuSK-IgG1-3 can also be detected at low

concentrations in most MuSK-MG patients (67, 84), and given the

evidence for complement activation in animal models (91, 92),

complement inhibition may also represent a potential therapeutic

approach for MuSK-MG with IgG1-3, which has not yet been

validated in clinical trials.
9 Conclusion

Due to a better understanding of the underlying

pathophysiological mechanisms and due to advances in the

clinical management of the disease, MuSK-MG has become a

condition with a favorable outcome in most cases. However,

MuSK-MG patients are underrepresented in clinical trials and

comparative investigations between existing drugs are yet to be

performed, rendering attempts to develop treatment algorithms

challenging. The implementation of consensus guidelines for

clinical trials on MuSK-MG would help to standardize research
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efforts, ensuring more robust and comparable data across studies.

Biomarker research on refractory disease may further bolster

decision making processes.
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