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PANoptosis is a newly identified inflammatory programmed cell death (PCD) that

involves the interplay of apoptosis, necrosis, and pyroptosis. However, its overall

biological effects cannot be attributed to any one type of PCD alone. PANoptosis

is regulated by a signaling cascade triggered by the recognition of pathogen-

associated molecular patterns (PAMPs) and damage-associated molecular

patterns (DAMPs) by various sensors. This triggers the assembly of the

PANoptosome, which integrates key components from other PCD pathways

via adapters and ultimately activates downstream execution molecules, resulting

in cell death with necrotic, apoptotic, and pyroptotic features. Autoimmune

diseases are characterized by reduced immune tolerance to self-antigens,

leading to abnormal immune responses, often accompanied by systemic

chronic inflammation. Consequently, PANoptosis, as a unique innate immune-

inflammatory PCD pathway, has significant pathophysiological relevance to

inflammation and autoimmunity. However, most previous research on

PANoptosis has focused on tumors and infectious diseases, leaving its

activation and role in autoimmune diseases unclear. This review briefly outlines

the characteristics of PANoptosis and summarizes several newly identified

PANoptosome complexes, their activation mechanisms, and key components.

We also explored the dual role of PANoptosis in diseases and potential

therapeutic approaches targeting PANoptosis. Additionally, we review the

existing evidence for PANoptosis in several autoimmune diseases and explore

the potential regulatory mechanisms involved.
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1 Introduction

Programmed cell death (PCD) refers to a controlled, autonomous

process mediated by various biomolecules to maintain intracellular

homeostasis (1).Recently, researchers classified cell death based on

morphological features, triggering mechanisms, and cellular context,

identifying additional PCD types, including apoptosis, necrosis,

autophagy, pyroptosis and cuproptosis (2, 3). PCD is crucial for

regulating physiological and pathological processes, including tissue

development, inflammation, and immune responses (4, 5). Earlier

studies mainly focused on the mechanisms and functions of

individual PCD types. However, increasing evidence suggests that

PCDs do not operate independently but form a complex network of

interactions (6). Recent studies have begun to uncover the

interactions and crosstalk among the complex mechanisms of

different PCDs (7). In 2019, Malireddi et al. (8) documented a

novel innate immune-inflammatory PCD pathway called

PANoptosis. PANoptosis is regulated by the PANoptosome

complex, which involves crosstalk and collaboration among

apoptosis, necrosis, and pyroptosis. However, the overall biological

effects of PANoptosis cannot be attributed to any single type of

PCD (9).

Autoimmune diseases are disorders characterized by a

breakdown of immune tolerance to self-antigens, leading to

abnormal immune responses that damage tissues or organs (10).

These diseases often affect multiple organs and are incurable,

severely impacting patients’ quality of life and imposing

significant economic burdens on individuals and society (11, 12).

The pathogenesis of these diseases is complex and involves multiple

factors, with molecular mechanisms still not fully understood.

Increasing evidence indicates that PCD plays a critical role in

autoimmune diseases, particularly apoptosis, necrosis, and

pyroptosis (13, 14). Given the complexity of autoimmune

diseases, a single type of PCD seems inadequate to explain disease

progression. Consequently, the role of PANoptosis, which

integrates features of these PCDs, has gained attention. Emerging

studies suggest that PANoptosis may act as a key regulator in

autoimmune diseases (15, 16). This review examines the

mechanisms of PANoptosis activation and maintenance, as well

as its connection to autoimmune diseases. Our goal is to provide a

comprehensive understanding of PANoptosis in autoimmune

diseases to identify new therapeutic targets and strategies for

better disease management.
2 Overview of PANoptosis

Apoptosis, necrosis, and pyroptosis are three well-established

types of PCD. Initially thought to operate independently, research

now shows extensive crosstalk and connections among these types as

our understanding of PCD deepens (17, 18). For example, caspase-8,

traditionally a key regulator of apoptosis, also mediates pyroptosis by

modulating the NLRP3 inflammasome or cleaving gasdermin D

(GSDMD) directly (19). Similarly, caspase-3, a key regulator of

apoptosis, can induce mitochondrial damage and secondary
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necrosis by cleaving BH3 interacting domain death agonist (BID)

without GSDMD (20). PANoptosis incorporates key components

from apoptosis, necrosis, and pyroptosis. It is regulated by a cascade

of signaling molecules triggered by pattern recognition receptors

(PRRs) that detect pathogen-associated molecular patterns (PAMPs)

and damage-associated molecular patterns (DAMPs). This

initiates the assembly of the PANoptosome complex, activating

downstream execution molecules, including caspase-3/7, GSDMD,

gasdermin E (GSDME), and Mixed Lineage Kinase Domain-

Like (MLKL), leading to membrane perforation and cell lysis (21).

The concept of PANoptosis highlights the coordination and

crosstalk among apoptosis, necrosis, and pyroptosis in response

to pathogens and innate immune triggers, addressing a gap in

understanding the interactions between molecular components of

distinct PCDs (22).
3 The composition and regulatory
mechanisms of the PANoptosome

The assembly of the PANoptosome is a critical step in

PANoptosis. It integrates core components from apoptosis,

necrosis, and pyroptosis pathways, such as inflammasomes,

death-inducing signaling complexes (DISC), and necrosomes (23).

PANoptosome proteins can be categorized into three functional

groups: sensors that respond to stimuli, effectors that execute

functions, and adapters that link sensors to effectors (24).To

respond to diverse stimuli, PANoptosomes with varying sensors

and effectors are required to initiate PANoptosis. These

PANoptosomes are distinguished by their composition and the

downstream molecular mechanisms they activate (23). So far,

several established PANoptosomes include Z-DNA binding

protein 1 (ZBP1), Absent in Melanoma 2 (AIM2), Receptor-

Interacting Protein Kinase 1 (RIPK1), NOD-like receptor family

pyrin domain-containing 12 (NLRP12), and NOD-like receptor

family CARD domain-containing 5 (NLRC5)-PANoptosomes.

Furthermore, interferon (IFN) signaling serves as a key upstream

regulator of PANoptosome assembly. For example, IFN regulatory

factor 1 (IRF1) regulates the expression of several PANoptosis

sensor molecules (25). Studies show that blocking IFN-a, IFN-b,
or IRF1 to inhibit IFN signaling can suppress ZBP1 expression

induced by influenza A virus (IAV) (26) (Figure 1A).
3.1 ZBP1-PANoptosome

The ZBP1-PANoptosome was first identified during IAV

infection, comprising the primary sensor ZBP1, secondary sensor

NLRP3, adapters Fas-associated protein with a death domain

(FADD) and apoptosis-associated speck-like protein containing a

CARD (ASC), along with effectors Caspase-1/6/8, RIPK1, and

receptor-interacting protein kinase 3 (RIPK3) (27). ZBP1 has two

Z-nucleic acid binding domains (Za1 and Za2) at its N-terminus,

where the Za2 domain recognizes viral infections (28). In the early

stages of IAV infection, innate immune sensing of viral RNA
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activates ZBP1, initiating the assembly of the ZBP1-PANoptosome

and triggering PANoptosis. ZBP1 interacts with RIPK3 through its

RHIM domain, activating caspase-8 and promoting MLKL

phosphorylation, which triggers both apoptosis and necroptosis
Frontiers in Immunology 03
pathways. Simultaneously, ZBP1 interacts with NLRP3 through the

FADD- and caspase-8-containing DISC, leading to the release of

interleukin (IL)-1b and IL-18, thereby activating pyroptosis

pathway (29).
FIGURE 1

Mechanisms of PANoptosis activation and the regulatory mechanisms of PANoptosis in autoimmune diseases. (A) Various mechanisms of
PANoptosis activation mediated by different types of PANoptosomes. Sensor molecules such as ZBP1, AIM2, PIPK1, NLRP12, and NLRC5 detect
pathogens like IAV, HSV, Yersinia, and heme, regulated by upstream mechanisms like TLR2/4 and IFN. Subsequently, they assemble the
PANoptosome by integrating key components from other programmed cell death (PCD) pathways with the help of adapters. This process ultimately
activates downstream effector molecules, leading to GSDMD-mediated pyroptosis, Caspase-3/7-mediated apoptosis, and MLKL-mediated necrosis
(PANoptosis). (B) The regulatory mechanisms of PANoptosis in autoimmune diseases. Various immune cells, including macrophages, dendritic cells,
and T lymphocytes, regulate upstream pathways like GAS/STING, resulting in the release of significant amounts of IFN (IFN-a, IFN-b, IFN-g). This
process activates PANoptosome assembly and inducing PANoptosis in various cell types. PANoptosis may exacerbate systemic inflammatory
responses and tissue damage associated with autoimmune diseases by releasing inflammatory factors like IL-1b/18 and harmful cytokines.
Additionally, it may affect the onset and progression of the disease through other potential pathways, warranting further investigation.
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3.2 AIM2-PANoptosome

AIM2 is a cytosolic pattern recognition receptor (PRR) that

detects pathogens and endogenous double-stranded DNA (dsDNA)

(30). Previous studies have demonstrated that AIM2, as an

inflammasome sensor, binds cytosolic dsDNA from pathogens

through its C-terminal HIN-200 domain and interacts with ASC

via its N-terminal pyrin domain, promoting inflammasome assembly

and inducing pyroptosis (31). However, a recent study revealed that

during Herpes Simplex Virus Type 1 (HSV-1) and F. novicida

infections, AIM2 interacts with ZBP1 and Pyrin to form the AIM2-

PANoptosome, inducing PANoptosis (32). Given AIM2’s role as an

inflammasome sensor, investigating the components and

mechanisms of the AIM2-PANoptosome is crucial for

understanding innate immunity, inflammation, and cell death.
3.3 RIPK1–PANoptosome

Malireddi et al. (33) discovered that Yersinia induces RIPK1-

independent PANoptosis. Immunoprecipitation revealed that RIPK1

co-precipitates with RIPK3, caspase-8, ASC, FADD, and NLRP3

during Yersinia infection, suggesting that RIPK1 may form a

PANoptosome with these key cell death components. The toxin

YopJ, produced by Yersinia, activates RIPK1 and drives cell death by

inhibiting transforming growth factor b-activated kinase 1 (TAK1)

(34). TAK1 serves as a major negative regulator of RIPK1-mediated

PANoptosis, preventing spontaneous pyroptosis, apoptosis, and

necroptosis by inhibiting RIPK1 phosphorylation (35). However,

studies show that knocking out RIPK1 during Yersinia infection does

not fully prevent cell death. This could be due to ZBP1 activation in the

absence of RIPK1 or the initiation of other compensatory mechanisms

that promote cell death (9). Currently, studies have only demonstrated

the TAK1-regulated activation and assemblymechanism of the RIPK1-

PANoptosome in Yersinia infection. Further research is needed to

clarify its regulatory mechanisms in other disease contexts.
3.4 NLRP12-PANoptosome

NLRP12, a member of the NOD-like receptor (NLR) family, is

closely linked to innate immunity and inflammatory diseases (36).

Previous studies have demonstrated that during Yersinia pestis or P.

chabaudi infections, NLRP12 functions as a cytosolic PRR, serving as

an inflammasome sensor to drive pyroptosis (36, 37). Besides activating

the inflammasome, recent studies suggest that under co-stimulation

with heme and PAMPs, NLRP12 can also act as a PANoptosome

sensor, driving PANoptosis (38). In this process, upstream Toll-like

receptors (TLR) 2 and 4 regulate NLRP12 expression via IRF1.
3.5 NLRC5-PANoptosome

NLRC5, a member of the NLR family, has primarily been

studied for its role in regulating the expression of Major
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Histocompatibility Complex Class I (MHC I) genes (39).

However, its role in regulating innate immunity, inflammation,

and cell death remains largely unexplored. A recent study revealed

that under stimulation by heme and PAMPs, NLRC5 interacts with

NLRP12 and other cell death molecules to activate the TLR and

NAD+-dependent assembly of the NLRC5-PANoptosome,

inducing PANoptosis (40). Although this study identified the

NLRC5-PANoptosome under heme and PAMP stimulation, the

direct interactions among its complex components need

further characterization.
3.6 Caspase family

The caspase family is a core regulator of apoptosis, necrosis, and

pyroptosis, serving as a critical component of PANoptosis and

playing essential roles throughout the process. Caspase-1/3/7 serve

as downstream executioners in PANoptosis, responding to

PANoptosome assembly and ultimately leading to cell death.

Caspase-8 is a key effector in PANoptosomes, regulating the

interaction and balance among the three cell death pathways in

PANoptosis (41).During apoptosis, caspase-8 is activated by the

DISC, which contains FADD and RIPK1. Caspase-8 then cleaves

and inactivates RIPK1, preventing necrosome formation (42).

When caspase-8 is inhibited, RIPK1 forms a necrosome with

RIPK3 and FADD, triggering necrosis (9). Additionally, the

RIPK1/FADD/caspase-8 complex can directly activate the NLRP3

inflammasome, releasing caspase-1, which leads to GSDMD pore

formation and the release of IL-1b and IL-18 (43). A recent study

found that caspase-6, a key apoptotic effector, acts as a scaffold to

enhance RHIM domain-dependent interactions between RIPK3

and ZBP1, promoting PANoptosome assembly (44).
4 Dual role of PANoptosis in diseases
and therapeutic implications

Research suggests that PANoptosis, an integrated form of

necrosis, pyroptosis, and apoptosis, plays a crucial dual role in

various diseases. In microbial infections, ZBP1-induced

PANoptosis and cytokine storms raise mortality in COVID-19

patients (45), whereas AIM2-induced PANoptosis enhances host

defense against HSV1 or F. novicida infections (32). In tumors,

studies indicate that high expression of PANoptosis-related genes

harms low-grade glioma (LGG) and kidney renal cell carcinoma

(KIRC), but benefits skin melanoma (SKCM) (46). PANoptosis can

also worsen inflammation and organ damage in diseases. The

stimulator of IFN genes (STING) agonist diABZI triggers

PANoptosis, causing inflammation and acute respiratory distress

syndrome (ARDS) (47). Uysal E et al. showed that inhibiting

PANoptosis specifically protects rats from kidney ischemia-

reperfusion injury (48). Given PANoptosis’s dual role in diseases,

endogenous molecules or compounds targeting its inhibition or

promotion have shown therapeutic potential across various

conditions (49). The endogenous molecule DKK1 reduces diabetic
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retinopathy in rats by inhibiting PANoptosis (50), whereas CurE

promotes ZBP1-dependent PANoptosis to suppress ACC tumor

growth in nude mice (51); miR-29a-3p agomir injection therapy

reduces lung damage in mice with acute lung injury (ALI) by

inhibiting PANoptosis in alveolar epithelial cells (52). Although

PANoptosis modulators show promising therapeutic potential,

current strategies have only been tested in vitro and in animal

models, and the relationship between PANoptosis and diseases

remains unclear. Further research into the specificity, efficacy, and

safety of PANoptosis modulators is needed.
5 The potential mechanisms of
PANoptosis in autoimmune diseases

Rheumatoid Arthritis (RA), Systemic Lupus Erythematosus

(SLE), Sjögren’s Syndrome (SS), and several other autoimmune

diseases, including Psoriasis, Ulcerative Colitis(UC), and Crohn’s

disease(CD), have been confirmed to be associated with

PANoptosis. Here, we summarize the evidence for PANoptosis

occurrence in various autoimmune diseases (Table 1) and explore
Frontiers in Immunology 05
the potential mechanisms underlying PANoptosis activation and

regulation (Figure 1B).
5.1 SLE and PANoptosis

SLE is a complex autoimmune disease marked by a loss of

tolerance to self-antigens, leading to autoantibody production. This

overactive immune system causes immune complexes to deposit in

tissues and organs, leading to damage (61, 62). The pathogenesis of

SLE is multifactorial, involving genetics, sex, and environmental

factors.Among these, IFN signaling is central to SLE pathogenesis

(63, 64). Plasmacytoid dendritic cells (pDCs) synthesize Type I IFN,

especially IFN-a, the predominant IFN in SLE. Other cell types, like

macrophages and fibroblasts, primarily produce IFN-b (65, 66).

Type II IFN also significantly contribute to SLE. Studies show that

PBMCs from SLE patients have higher levels of IFN-g and IRF1

than those from healthy individuals. Abnormal IFN-g accumulation

can be detected early in SLE, even before autoantibodies or Type I

IFN appear (67, 68). Continuous IFN production worsens the

immune response, promoting immune cell proliferation and
TABLE 1 Evidence for the occurrence of PANoptosis in autoimmune diseases.

Autoimmune
Disease

Study type Analytical technique Result Reference

SLE Peripheral blood samples/PBMCs
from SLE patients

Bioinformatics analysis and validation
based on GeneCard database and
GEO database

Five key PANoptosis signature genes were
identified and validated, including ZBP1,
MEFV, LCN2, IFI27, HSP90AB1

(53)

RA Synovium in patients with RA Bioinformatics analysis based on
GeneCard database and GEO database

Identified the PANoptosis biomarker SPP1,
discriminated between two distinct RA
subtypes, and developed a scoring model
with potential in distinguishing subtypes

(54)

SS NSG mice transplanted with PBMCs
from SS patients

Expression of type I IFN and
PANoptosis-related genes in
submandibular glands of NSG mice
transplanted with PBMCs from SS
patients detected by
laboratory techniques

IFN signaling activation and PANoptosis
characterized genes

(55)

psoriasis Lesion skin samples Bioinformatics analysis based on
GeneCard database and GEO database

Ten PANoptosis-related hub genes were
identified, namely AIM2, BAK1, CASP1,
CASP4, CASP5, GZMA, GZMB, IL18,
IRF1, PYCARD

(56)

psoriasis Lesion skin samples/spleen and skin
samples from psoriasis mice

Bioinformatics analysis and validation
based on MSigDB database and single-
cell dataset

PANoptosis-related hub genes (S100A12,
CYCS, NOD2, STAT1, HSPA4, AIMAM2,
MAPK7) were identified

(57)

DC DC patient intestinal mucosa/
DC mouse

Bioinformatics analysis and validation
based on GeneCard database and
GEO database

Ten PANoptosis-associated core genes
were identified and validated, and two
PANoptosis clusters with unique immune
penetration and functional patterns
were identified

(58)

UC Intestinal mucosa of UC patients/
UC mice

Bioinformatics analysis and validation
based on GeneCard database and
single-cell datasets

Identification of key genes associated with
autophagy in PANoptosis

(59)

UC Intestinal mucosa of UC patients/
UC mice

Bioinformatics analysis and validation
based on GEO database

Five key genes for PANoptosis were
identified (ZBP1, AIM2, CASP1/8, IRF1), a
ceRNA network for the key genes was
established, and three potential small
molecule drugs were obtained

(60)
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differentiation while activating B cells to produce autoantibodies,

leading to complications like lupus nephritis (LN) (69). Previous

studies show various types of PCD occur in SLE. For instance,

NLRP3 expression correlates with disease activity in SLE patients

and is upregulated in macrophages (13, 70); neutrophil apoptosis

increases in SLE (71); MLKL, a key necroptosis protein, is elevated

in SLE PBMCs (72). Multiple PCD types can also occur within the

same cell type in SLE. Guo et al. (73) found that both necroptosis

and pyroptosis are activated in podocytes from LN patients and

lupus mice kidneys. Bioinformatics analyses identify key

PANoptosis-related genes like ZBP1, AIM2 and NLRP3 as

biomarkers for SLE (53, 74, 75). All studies identified ZBP1 as a

diagnostic biomarker for SLE. This suggests that in SLE, these cell

death processes may interact via ZBP1-mediated PANoptosis to

influence disease progression. As mentioned, IFN signaling is a key

regulator of PANoptosome assembly. Chronic inflammation in SLE

causes continuous accumulation of mitochondrial reactive oxygen

species (ROS), with mitochondrial DNA (mtDNA) released as

DAMPs (76, 77). DNA sensors like cyclic GMP-AMP synthase

(cGAS) and ZBP1 trigger the release of large amounts of IFNs (78).

These IFNs upregulate ZBP1 expression, promoting ZBP1-

PANoptosome assembly and inducing PANoptosis. This may

indicate a potential PANoptosis mechanism in SLE. In

conclusion, the relationship between SLE and PANoptosis is still

unclear. Further studies are needed to identify which

PANoptosomes mediate PANoptosis in specific cell types and

how PANoptosis influences disease progression.
5.2 RA and PANoptosis

RA is a chronic autoimmune disease that can progressively

damage tissues and organs beyond the joints, affecting the heart,

liver, kidneys, and skin (79, 80). RA is associated with

environmental, gender, and genetic factors. The immune system

mistakenly attacks the joints, leading to inflammation and damage

(81, 82). Recent research shows complex connections between cell

death and RA. For instance, fibroblast-like synoviocytes (FLS) in

RA resist apoptosis, leading to synovial proliferation and

inflammation (83). A cohort study indicates that the percentage

of granulocytes undergoing apoptosis and primary necrosis is

significantly higher in RA patients than in healthy controls (84).

Pyroptosis has also been observed in FLS, monocytes, and

macrophages from RA patients (85). RA involves crosstalk among

various programmed cell death (PCD) types across different cell

populations, regulating inflammation and immune responses. One

type of PCD alone is insufficient to explain the progression of RA.

Studies show that several PANoptosis-related molecules are

significantly upregulated in different RA cell types. For example,

NLRP3 and GSDME are increased in FLS (86, 87). Caspase-3 and

GSDME are upregulated in RA monocytes and macrophages (88),

and neutrophils in RA joints exhibit CD44 and GM-CSF-dependent

necrosis with increased RIPK1, RIPK3, and MLKL (89). This

suggests that PANoptosis may occur in various cell populations

in RA. A meta-analysis found higher levels of the PANoptosis
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sensor AIM2 in PBMCs from RA patients (90). Two bioinformatics

analyses identified AIM2 as a key gene for RA (91, 92). Chen et al.

(93) detected higher levels of AIM2 and the adapter ASC in RA

patients’ synovial tissues using immunohistochemistry. Introducing

AIM2 siRNA into FLS significantly inhibited their proliferation.

This indicates that PANoptosis in RA may involve the AIM2-

PANoptosome. However, the specific cell types involved and the

upstream regulatory mechanisms are still unclear and need

further investigation.
5.3 SS and PANoptosis

SS is a systemic autoimmune and lymphoproliferative disorder

characterized by uncontrolled lymphoplasmacytic infiltration in

exocrine glands, such as the salivary and lacrimal glands,

resulting in inflammation and tissue damage. Abnormally

proliferating lymphocytes can also damage other organs,

including the lungs, kidneys, and blood vessel walls (94, 95). IFN

is also a key pathogenic factor in SS. Multiple studies have shown

that IFN response genes are upregulated in various cell types in SS,

and inhibiting IFN signaling can effectively alleviate SS progression

(96). In SS, IFN production stems from stimulation of the DNA

sensing pathway. Damaged genomic DNA accumulates in the

cytoplasm, activating the DNA sensor cGAS, which produces

cyclic GMP-AMP (cGAMP) and activates the STING, inducing

Type I IFN production (97, 98). Previous studies have shown that

the expression of multiple PANoptosis components related to

apoptosis, pyroptosis, and necroptosis is upregulated in SS. For

instance, Type I IFN increases the expression of key pyroptosis

proteins such as AIM2, ASC, caspase-1, and GSDMD in the salivary

gland epithelial cells (SGECs) of SS patients (99). In SGECs of SS

patients, the expression of apoptosis-related protein caspase-8 and

necroptosis markers p-MLKL and RIPK3 is also upregulated (100);

in NSG mouse models transplanted with PBMCs from SS patients,

submandibular glands exhibited upregulation of Type I IFN and

genes related to PANoptosis (necroptosis and apoptosis) (55, 101).

This evidence suggests that these key PCD components may

integrate into a larger PANoptosome in SS, influencing disease

progression. Additionally, studies have revealed abnormal

cytoplasmic accumulation of damaged genomic DNA in SS

patient samples, with impaired DNase1 expression and activity in

the SGECs and ductal tissues of SS patients (102). AIM2 is a typical

cytosolic DNA sensor activated by accumulated genomic DNA

in the cytoplasm (103). Vakrakou et al. (102) suggest that

the intrinsic activation of ductal epithelial cells in SS patients is

caused by the sustained activation of AIM2 due to the accumulation

of cytoplasmic DNA. This suggests that in SS, AIM2, with the

assistance of IFN signaling, may recognize abnormally accumulated

cytoplasmic DNA, assemble the AIM2-PANoptosome, and

trigger PANoptosis in multiple tissues. Furthermore, a study has

shown that mitochondrial damage in SS leads to the release

of mtDNA into the cytoplasm, which, like cytoplasmic DNA,

may serve as a potential pathway for activating the AIM2-

PANoptosome (104).
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5.4 Other autoimmune diseases
and PANoptosis

Different types of cell death occur in autoimmune diseases like

psoriasis, UC, and CD (105–107). Similarly, IFN is a key pathogenic

factor in these diseases. Research indicates that sustained IFN-g
release characterizes psoriasis (108), while the joint disruption of

intestinal epithelial barriers by IFN-g and TNF-a is crucial in UC

and CD (109). This suggests that IFN may induce PANoptosis in

these diseases through the activation of various sensor molecules.

Several studies have demonstrated that PANoptosis sensor

molecules and key components are activated in these diseases

(110, 111). The inflammasome sensor AIM2 has been identified

as a susceptibility gene locus for psoriasis, closely associated with

the genetic and epigenetic factors of the disease, with increased

expression in psoriatic keratinocytes (112); a recent study found

significant upregulation of DNA sensors ZBP1, the NLRP3

inflammasome, and cGAS/STING, along with IFN signaling

molecules (IFN-b, IFN-g, and TNF-a) in colonocytes from active

UC patients (98). Furthermore, multiple bioinformatics analyses

identified PANoptosis-related genes as diagnostic markers for these

diseases, confirming the involvement of PANoptosis and

highlighting its potential as a therapeutic target (56, 58–60). For

example, one study identified 10 PANoptosis-related core genes in

psoriasis by analyzing 33 skin samples across three datasets.

Immune infiltration analysis indicated that PANoptosis might

influence psoriasis progression by regulating M1 and M2

macrophage polarization. Another study identified 10

PANoptosis-related core genes in 279 CD samples and created

gene-miRNA, gene-transcription factor, and drug-gene interaction

networks, revealing two distinct PAN clusters with unique immune

infiltration and functional patterns. Although evidence suggests the

potential for IFN-mediated PANoptosis in these autoimmune

diseases, further experiments, including Co-IP, are necessary to

confirm the presence of PANoptosis and clarify the specific cell

types and mechanisms involved.
6 Discussion and perspectives

PANoptosis, a newly identified PCD form, highlights the

crosstalk and redundancy among PCDs, providing a deeper

understanding of the link between innate immunity and PCD. As

a unique innate immune-inflammatory PCD pathway, PANoptosis

has significant pathophysiological relevance to infections,

autoimmune diseases, and inflammation. Consequently, the link

between autoimmune diseases and PANoptosis represents an

emerging and highly promising research area. Moreover, several

key components of PANoptosis have been identified in various

autoimmune diseases and implicated in their development. This

suggests PANoptosis could be a novel therapeutic target in

autoimmune diseases.

Although PANoptosis shows great potential in autoimmune

diseases, like many emerging fields, research on PANoptosis in this
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area faces numerous unresolved challenges. First, the structure and

activation mechanisms of the PANoptosome in autoimmune

diseases remain poorly understood. Validating the structure and

regulatory mechanisms of the PANoptosome in any single disease is

challenging. Further characterization of the PANoptosome’s

structure and upstream regulatory mechanisms in autoimmune

diseases is essential. Secondly, the role of PANoptosis in

autoimmune diseases remains unclear, and most therapeutic

strategies targeting it have only been validated in other disease

models. Given the dual role of PANoptosis in various diseases, it

may similarly affect autoimmune diseases. In RA, PANoptosis of

FLS may reduce synovial proliferation, while inflammatory factors

produced by PANoptosis could worsen inflammation and tissue

damage. However, the role of PANoptosis in autoimmune diseases

is both complex and unclear. Further research is required to explore

overall role of PANoptosis in autoimmune diseases, as well as its

specific roles in different disease stages and cell types, to develop

safe and effective therapeutic strategies.
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