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Cross-disease transcriptomic
analysis reveals DOK3 and
PAPOLA as therapeutic targets
for neuroinflammatory and
tumorigenic processes
Xingqiao Wang †, Yusong Bian † and Weiguang Chen*

Emergency Department, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai,
Shandong, China
Objective: Subarachnoid hemorrhage (SAH) and tumorigenesis share numerous

biological complexities; nevertheless, the specific gene expression profiles and

underlying mechanisms remain poorly understood. This study aims to identify

differentially expressed genes (DEGs) that could serve as biomarkers for diagnosis

and prognosis.

Methods: Gene expression datasets (GSE122063, GSE13353, GSE161870) were

analyzed using machine learning algorithms and logistic regression to identify

DEGs associated with both SAH and tumorigenesis. Lasso regression and receiver

operating characteristic (ROC) curve analysis were employed to evaluate the

classification accuracy of these genes. Validation of critical DEGs was performed

through pan-cancer analysis and experimental studies, focusing on the role of

DOK3 in modulating inflammation and oxidative stress in U251MG glioblastoma

and BV2 microglia cells.

Results: Fifteen common DEGs were identified, with DOK3 and PAPOLA

highlighted as crucial genes implicated in SAH and neurodegenerative

processes. Experimental validation demonstrated that DOK3 overexpression

significantly reduced pro-inflammatory cytokine levels and oxidative stress

markers while enhancing antioxidant enzyme activity. Additionally, DOK3

influenced tumorigenic processes such as apoptosis, cell cycle regulation, and

proliferation, effectively mitigating LPS-induced cytotoxicity and inflammation in

BV2 microglial cells.

Conclusions: DOK3 and PAPOLA play critical roles in both SAH and related

neurodegeneration, presenting themselves as potential prognostic biomarkers

and therapeutic targets. Notably, DOK3 exhibits potential as an antitumor agent

with anti-inflammatory and antioxidative properties, offering therapeutic benefits

for both cancer and neuroinflammatory conditions.
KEYWORDS

pan-cancer, differentially expressed genes, biomarkers, machine learning, DOK3,
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Introduction

Aneurysmal subarachnoid hemorrhage (aSAH) is a critical

cerebrovascular condition characterized by the rupture of an

intracranial aneurysm, leading to blood leakage into the

subarachnoid space (1, 2). Among older individuals, traumatic

dissection contributes to approximately 5% of all strokes, with an

incidence rate of around 9 per 100,000 (3). Despite significant

advancements in treatment and monitoring strategies, the mortality

rate for aSAH remains approximately 40% (4, 5). Furthermore,

around 40% of aSAH survivors experience persistent neurological

deficits (6). Dementia, marked by memory impairment and

cognitive decline, impacts daily activities, learning, work, and

social engagement (7, 8). Cerebrovascular mechanisms

significantly contribute to its onset, with vascular dementia

accounting for 20%-40% of all dementia cases, making it the

second most prevalent form after Alzheimer’s disease (9, 10).

The primary objective of this study is to explore the potential

molecular links between subarachnoid hemorrhage (SAH) and

vascular dementia (VaD) using integrative bioinformatics

approaches, including the integration of multiple datasets (11, 12).

Network analysis of miRNA-mRNA interactions provides a

comprehensive bioinformatics framework for uncovering complex

relationships between miRNAs and their target mRNAs (13, 14). By

identifying shared differentially expressed genes (DEGs) and

constructing miRNA-mRNA interaction networks, we aim to

elucidate the interconnections among tumors, dementia, and

cerebral hemorrhage, and to identify novel therapeutic targets that

could benefit patients with SAH, VaD, and even cancer (15, 16).

Transcriptomic analysis plays a crucial role in identifying DEGs

across various disease states, thereby providing valuable biomarkers

for diagnosis and prognosis (17–19). This approach is particularly

vital in investigating complex biological processes such as SAH and

tumorigenesis, which share overlapping biological complexities.

Despite these shared complexities, the specific gene expression

profiles and underlying mechanisms of SAH and tumor

development remain largely unexplored. Consequently, identifying

DEGs associated with these conditions may reveal potential

biomarkers for diagnosis and prognosis, paving the way for

evidence-based, personalized treatment strategies.

The combination of big data and bioinformatics allows

researchers to integrate transcriptomic and proteomic data across

a broad spectrum of diseases to identify potential therapeutic

targets. Such multi-level data integration and analysis is

extensively applied in research on cancer, neurodegenerative

disorders like Alzheimer’s disease, and various inflammation-

related conditions, offering a broader scope for developing

treatment strategies (20, 21). The roles of free radicals and

antioxidants in immune dysfunction and metabolic disorders

have also been comprehensively studied, contributing to the

potential pool of treatment options (22, 23). Furthermore, studies

on the immune microenvironment emphasize the critical role of

transcriptomic analysis in understanding immune cell activity,

particularly in complex processes such as immune evasion in

cancers, which is vital for developing new immunotherapy

strategies (24–26). In the field of proteomics, extensive research
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mechanisms has underscored their crucial importance in

regulating cell signaling and function, providing new therapeutic

avenues for diseases such as cancer (27, 28).

This study not only aims to enhance the monitoring of disease

progression and the prevention of dementia in SAH patients but also

seeks to provide valuable insights into the complex interrelationships

among tumors, dementia, and cerebral hemorrhage (29, 30). By

integrating multi-omics data with bioinformatics analyses-

particularly focusing on transcriptomics and proteomics—this

research holds significant promise for advancing precision

medicine. It aspires to improve diagnostic accuracy, refine

prognostic assessments, and support the implementation of

individualized therapeutic strategies (31–33). Identifying novel

molecular targets for therapeutic intervention could enhance

patient care and inform policy decisions related to the management

of SAH, dementia, and cancer, thus advancing the field (34, 35). This

comprehensive approach contributes to the scientific understanding

of these diseases and paves the way for innovative treatments

targeting their underlying molecular mechanisms (36, 37).
Materials and methods

Dataset acquisition

GEO (http://www.ncbi.nlm.nih.gov/geo) is a publicly accessible

database hosting numerous high-throughput sequencing and

microarray datasets contributed by global research institutions

(38, 39). We utilized keywords such as subarachnoid hemorrhage

and vascular dementia to search for gene expression datasets related

to these conditions. The inclusion criteria required two independent

expression profiles to originate from the same sequencing platform

with the largest possible sample sizes. Moreover, the specimens

included had to be derived from human sources. Ultimately, we

downloaded three microarray datasets in FPKM format from the

GEO database: GSE122063, GSE13353, and GSE161870. The

GSE122063 dataset, sourced from frontotemporal lobe tissue,

comprised gene expression profiles of 18 patients with vascular

dementia (VaD) and 22 normal controls (40), which allows for a

comparison of gene expression patterns that may be associated with

the pathophysiology of VaD. GSE13353 contained 11 samples from

ruptured aneurysm walls and 8 samples from unruptured aneurysm

walls (41), which explores the molecular mechanisms underlying

aneurysm rupture. The GSE161870 dataset assessed miRNA,

including 2 samples from ruptured aneurysm walls and 2 control

samples from intercostal arteries, allowing us to compare miRNAs’

expression in a vascular context.
Identification of differentially
expressed genes

The R package limma (42) was employed to calculate DEGs

between various groups (42). An intersection analysis was

conducted on genes upregulated and downregulated in both SAH
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and dementia, identifying common DEGs between these

conditions. Probe sets lacking corresponding gene symbols were

excluded, and for probe sets with the same gene symbol, their values

were averaged. For mRNA, genes with an adjusted P-value < 0.05

were considered DEGs. For miRNA, only those with an adjusted P-

value < 0.05 and |log2 fold change (FC)| ≥ 0.5 were identified as

differentially expressed miRNAs.
Functional enrichment analysis

The Gene Ontology (GO) database, developed by the Gene

Ontology Consortium, offers straightforward annotations of gene

products concerning their functions, biological pathways, and

cellular locations (43, 44). The Kyoto Encyclopedia of Genes and

Genomes (KEGG) Pathway database specializes in storing gene

pathway information across various species. The “clusterProfiler”

package was utilized for enrichment analysis, while the

“org.Hs.eg.db” package facilitated the conversion between gene

symbols and IDs. An adjusted P-value of < 0.05 was

considered significant.
Machine learning

A random forest model was applied to rank the variables based

on their importance within the model (45, 46). Univariate logistic

regression was then utilized to analyze risk factors associated with

dementia occurrence. LASSO regression analysis was conducted to

screen disease-related common genes further, employing 10-fold

cross-validation to prevent overfitting. Principal Component

Analysis (PCA) was used to visualize the performance of the

included variables in classifying outcomes.
Construction of miRNA–mRNA
interaction network

The miRWalk platform facilitates the exploration of

relationships between proteins of interest, including direct

binding and co-regulated pathways, enabling the prediction of

miRNAs that regulate core genes (47, 48). Cytoscape (http://

www.cytoscape.org) was used to visualize this network, allowing

observation of the interactions between core genes and miRNAs

within the network.
ROC curve analysis

To assess the predictive performance of core genes related to the

disease outcomes, time-dependent Receiver Operating Characteristic

(ROC) curves were plotted (49, 50). The area under the ROC curve

(AUC) was calculated using the “pROC” package in R, and the

visualization of the ROC curves was done with the ggplot2 package.

The ROC curve evaluated the molecular classification ability

concerning outcomes, where the AUC ranges from 0.5 to 1. An
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AUC close to 1 indicates a better diagnostic performance. An AUC

between 0.5 and 0.7 suggests low accuracy, 0.7 to 0.9 indicates

moderate accuracy, and above 0.9 signifies high accuracy.
Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed using the

clusterProfiler package in R (51, 52). The species selected was

“Homo sapiens,” and the reference gene set was chosen from the

MSigDB Collections (http://www.gsea-msigdb.org/gsea/msigdb/

collections.jsp), specifically “c2.cp.v7.2.symbols.gmt [Curated].”

Pathways were considered significantly enriched if they met the

criteria of a False Discovery Rate (FDR) < 0.25 and an adjusted p-

value < 0.05.
The U251 cell line

The U251 cell line was obtained from the American Type

Culture Collection (ATCC, Rockville, MD, USA). These cells were

maintained in DMEM (Gibco, Grand Island, NY, USA)

supplemented with 10% fetal bovine serum (FBS, BI, Kibbutz Beit

Haemek, Israel) at a temperature of 37°C in an atmosphere of 5%

CO2. The DOK3 gene was introduced into U251 cells through

lentiviral vectors for gain-of-function experiments. The targeting

sequences utilized were sourced from Open Biosystems.
Quantitative real-time PCR

Following the manufacturer’s instructions, total RNA was

extracted using the Cell Total RNA Isolation Kit (FOREGENE,

Chengdu, China). RNA was reverse transcribed into cDNA

using the StarScript II First-strand cDNA Synthesis Mix (GenStar,

Beijing, China). Quantitative real-time PCR (qRT-PCR)

was performed using the CFX96 Touch™ Real-Time PCR Detection

System (BIO-RAD, USA). The results were analyzed using the 2^

−DDCt method, with GAPDH mRNA as the internal control.
Cell viability assay and clonogenicity

Cell proliferation was assessed using the CCK-8 assay. Cells

were seeded in a 96-well plate at a density of 1×106 cells/ml and

treated with various concentrations of CVB-D (0, 15, 30, 60, 120,

240 µmol/l) for 24, 48, and 72 hours. The condition resulting in a

significant decrease in cell viability was 240 µmol/l for 72 hours,

which was the highest concentration and longest duration used in

the experiment. Each group consisted of six replicates and was

performed in three independent experiments. After treatment, wells

were washed with PBS (0.01 M), and 10 µl of CCK-8 solution was

added to 90 µl of serum-free medium. The cells were incubated in

the dark at 37°C for 1-2 hours. Absorbance was measured at 450 nm

using a microplate reader (Tecan Group, Ltd.). For the clonogenic

assay, T98G and Hs683 cells were treated with different
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FIGURE 1

Exploration of shared molecular mechanisms between subarachnoid hemorrhage (SAH) and vascular dementia (VaD). This figure investigates the
potential molecular connections between SAH and VaD, focusing on the roles of DOK3 and PAPOLA in apoptotic pathways. The upper section
presents the research objective, emphasizing how these genes may mediate shared pathways in the progression of both conditions. The middle
section identifies differentially expressed genes (DEGs) associated with SAH and dementia from three GEO datasets (GSE122063, GSE13353, and
GSE161870). Comparative analyses, including volcano plots and Venn diagrams, were used to determine overlapping DEGs, followed by functional
enrichment analysis to categorize these genes into relevant biological pathways, particularly those related to apoptosis and neurodegenerative
processes. The lower section further investigates core genes using various approaches: machine learning and LASSO-logistic regression were
applied to prioritize and select key genes for further analysis. Heatmaps illustrate the expression of seven significant DEGs across different
conditions. Additionally, a miRNA-mRNA interaction network was constructed to explore regulatory mechanisms, and ROC curve analysis was
performed to evaluate the diagnostic potential of these genes. The figure also includes a representation of miRNA-mediated regulation through
circular plots. Finally, gene set enrichment analysis (GSEA) was conducted to explore the involvement of core genes in broader biological pathways,
while pan-cancer and immune infiltration analyses provided insights into their expression across different cancer types and their association with
immune cell infiltration.
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concentrations of CVB-D (0, 5, 10, 20, 40, 80 µmol/l) for 24 hours.

Cells were seeded at 500 cells per well in a 6-well plate and cultured

for 10 days post-treatment. Subsequently, the cells were fixed with

4% paraformaldehyde (room temperature for 10 minutes) and

stained with 0.05% crystal violet solution. Statistical analysis was

conducted using GraphPad Prism 8 (GraphPad Software, Inc.).
Flow cytometry analysis of apoptosis

Cells from the four groups were collected and centrifuged at 1,000

rpm for 5 minutes, then fixed in 70% pre-cold ethanol at -20°C for

24 hours. The samples were rinsed with phosphate-buffered saline

(PBS) and incubated at 37°C with 1 mg/ml RNase (Sigma) for 30

minutes. After suspension in PBS, they were fixed with 70% ethanol for

a minimum of 6 hours, followed by another PBS wash. Subsequently,

the samples were resuspended in 1 ml of Propidium Iodide (PI)

staining solution (50 µg/ml PI, Sigma), incubated in the dark at 4°C

for 30 minutes, and analyzed by fluorescence-activated cell sorting

(FACS) using a flow cytometer (FACScan, Becton Dickinson).
Immunofluorescence

GBM cells were fixed with 4% paraformaldehyde for 30 minutes

at room temperature. The cells were then permeabilized with 0.3%

Triton X-100 in PBS for 15 minutes and blocked with normal goat

serum for 1 hour at room temperature. After blocking, the cells were

incubated overnight at 4°C with rabbit anti-NMDAR2B antibody

(Cell Signaling, 1:300). The following day, the cells were washed and

incubated with goat anti-rabbit Alexa Fluor 555-conjugated

secondary antibody (Thermo Scientific, 1:500) for 1 hour at room

temperature. The cell nuclei were stained with Hoechst 33258 (MO,

USA). Images were captured using a confocal laser scanning

microscope (Zeiss LSM710, Germany).
LDH release assay

The release of lactate dehydrogenase (LDH) from neurons was

measured using a commercial LDH assay kit. LDH activity was

determined using an LDH cytotoxicity detection kit (Nanjing,

China), based on a coupled enzyme reaction that converts

tetrazolium salt to formazan. Absorbance was measured at 450 nm,

and results were expressed as a percentage of LDH release relative to

the control group. All experiments were conducted in triplicate.
Assessment of oxidative stress and
inflammatory cytokines

Indicators of oxidative stress, including superoxide dismutase

(SOD), glutathione peroxidase (GSH-Px), reactive oxygen species

(ROS), and malondialdehyde (MDA), were measured using

commercial assay kits according to the manufacturer’s instructions.

Samples were analyzed with a SpectraMax M2 spectrophotometer
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(450 nm), GSH-Px activity as U/mg protein (412 nm), ROS levels as

pmol/mg protein/min (excitation wavelength = 488 nm, emission

wavelength = 520 nm), and MDA levels as nmol/mg protein (523

nm). Inflammatory cytokines, including TNF-a, IL-1b, and IL-6,

were measured using ELISA kits after 24 hours of treatment,

following the manufacturer’s guidelines. Data were analyzed using

the SpectraMax M2 spectrophotometer (Molecular Devices).
Statistical analysis

Statistical analyses for this study were performed using R software

(version 4.0.2, https://www.r-project.org/). Correlation analysis was

conducted using Pearson’s method. Categorical data were analyzed

with the chi-square test, while continuous data were assessed using

either the t-test or the Wilcoxon test. Sankey diagrams were created

using the ggalluvial package [version 0.12.3]. A P-value of less than

0.05 was deemed statistically significant for all analyses.
Results

Machine learning-driven analysis of gene
expression in SAH and dementia

Figure 1 explores the shared molecular mechanisms between

subarachnoid hemorrhage (SAH) and vascular dementia (VaD),

focusing on the roles of DOK3 and PAPOLA in apoptotic pathways.

Using datasets from GSE122063, GSE13353, and GSE161870,

differentially expressed genes (DEGs) were identified through

comparative analyses, including volcano plots and Venn diagrams.

Functional enrichment analysis revealed their involvement in apoptosis

and neurodegenerative processes. Core genes were prioritized through

LASSO-logistic regression and machine learning, with heatmaps

depicting their expression profiles. miRNA-mRNA interaction

networks and circular plots illustrated regulatory mechanisms, while

gene set enrichment analysis (GSEA) and pan-cancer analyses

provided insights into broader pathways and immune infiltration. In

this study, we utilized machine learning techniques to identify 15

common DEGs between SAH and dementia, discovering 494 DEGs in

GSE122063, 1436 in GSE13353, and 115 miRNAs in GSE161870

(Figures 2A–C). Venn diagram analysis (Figures 2D, E) revealed 10

upregulated and 5 downregulated DEGs shared between the

conditions, including C5AR1, DOK3, KHDRBS1, etc. Functional

enrichment analysis (Figure 2F) revealed vital pathways such as

mRNA processing regulation, neurotransmitter transport control,

and neutrophil degranulation, indicating significant roles of these

genes in nucleotide activity, transporter activity, and immune

response modulation. The random forest model identified key DEGs

crucial for classifying SAH and dementia, with METRNL, KHDRBS1,

SLC6A1, TNFAIP8L1, and PAPOLA being the primary discriminators

for SAH, andMETRNL, NT5DC1, ZNF627, TUBG2, and TNFAIP8L1

crucial for dementia classification (Figures 2G, H). These genes are

significantly associated with dementia (Figure 2I) and may have

important implications for disease progression and pathophysiology.
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Lasso logistic regression analysis for
predictive biomarkers in dementia and
core differential gene expression in SAH
and dementia

We applied logistic regression and Lasso logistic regression analyses

to identify dementia-associated genes. Univariate logistic regression

analysis showed that 13 out of 15 differentially expressed genes, such

as ZNF627, KHDRBS1, and SLC6A1 (Figure 3A), were significantly

linked to dementia. Lasso logistic regression further refined this list to

seven genes: DOK3, LONRF3, MILR1, PAPOLA, SLC6A1, STK11IP,

and ZNF627 (Figure 3B). Principal Component Analysis (PCA)

demonstrated a clear separation between dementia patients and

controls, proving the classification effectiveness of these genes

(Figure 3C). Additionally, we constructed a miRNA-mRNA interaction

network for the seven core DEGs identified in SAH and dementia using
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the miRWALK website, highlighting DOK3 and PAPOLA as hub genes

with the most connections (Figure 3D), showcasing their potential in

predicting dementia and their molecular mechanisms.

Classification and co-expression of seven
differentially expressed genes in SAH: a
GSEA of DOK3 and PAPOLA gene sets

The classification performance of seven core DEGs identified in

SAH and dementia was evaluated, with ROC curve analysis

demonstrating their strong discriminative capabilities, particularly

PAPOLA in dementia with an AUC of up to 0.989, followed by

DOK3, LONRF3, and MILR1, all exceeding 0.900 (Figures 3G, H). In

SAH, these genes also showed good classification capabilities, with

AUC values ranging from 0.864 to 0.966, highlighting PAPOLA,

DOK3, and SLC6A1 as significant predictors (Figures 4A, B).We also
FIGURE 2

Machine learning-driven analysis of gene expression in SAH and dementia. (A) The Volcano plot of differentially expressed mRNAs in SAH highlights
significant changes. Each point represented an mRNA, with red indicating upregulation and blue indicating downregulation, based on log2 fold change
and -log10 (p-value). (B) Volcano plot of differentially expressed mRNAs in dementia, with similar color coding for expression changes. (C) Volcano plot
for differentially expressed miRNAs in SAH, illustrating expression patterns for statistical significance and fold change. (D) Venn diagram showing 10
commonly upregulated mRNAs between SAH and dementia, indicating potential shared pathways or mechanisms. (E) Venn diagram displaying 5
commonly downregulated mRNAs between SAH and dementia, suggesting common regulatory effects or targets. (F) Functional enrichment analysis of
15 commonly differentially expressed genes between SAH and dementia, highlighting key GO and KEGG pathways, such as nucleotidase activity and
neurotransmitter transport regulation. Bars represented log10 (p.adjust), categorizing pathways into biological process (BP) and molecular function (MF).
(G) Random forest model ranking of 15 common differentially expressed genes for classifying SAH (subarachnoid hemorrhage) from normal controls.
The top five most essential genes were METRNL, KHDRBS1, SLC6A1, TNFAIP8L1, and PAPOLA, indicating their significant role in disease classification.
(H) Random forest model ranking for classifying dementia from normal controls, highlighting METRNL, NT5DC1, ZNF627, TUBG2, and TNFAIP8L1 as the
top five genes, emphasizing their importance in distinguishing dementia cases. (I) Univariate logistic regression analysis of the 15 shared differentially
expressed genes, along with sex and age, to predict dementia. Thirteen genes showed significant statistical association with dementia occurrence, with
odds ratios (OR) and 95% confidence intervals (CI) displayed. This analysis underscored the predictive value of these genes in dementia.
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explored the regulation of DOK3 and PAPOLA by specific miRNAs,

finding DOK3 negatively correlated with SLC6A1 and ZNF627 but

positively with LONRF3, MILR1, PAPOLA, and STK11IP; PAPOLA

showed negative correlations with ZNF627 and SLC6A1 but positive

with LONRF3, MILR1, STK11IP, and DOK3 (Figures 4C, D).

Additionally, GSEA indicated that upregulation of DOK3 and

PAPOLA affected crucial biological pathways potentially linked to

processes like immune response modulation and apoptosis, with

implications for conditions such as dementia (Figures 4E, F).
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Comprehensive pan-cancer and immune
infiltration analysis of core genes DOK3
and PAPOLA

In our pan-cancer analysis, we examined the expression of

DOK3 and PAPOLA across various cancer types. Figure 5A depicts

the distribution of copy number variation (CNV) rates across 20

cancer types, with different colors representing each type, revealing

significant CNV variations that may influence tumor progression.
FIGURE 3

Lasso logistic regression for predictive biomarkers in dementia and core differential gene expression in SAH and dementia. (A) Correlation heatmap
illustrating the co-expression of 13 differentially expressed genes. Notably, ZNF627, KHDRBS1, and SLC6A1 exhibited significant positive correlations,
while other genes also show strong positive correlations. (B) Variable selection process in the LASSO-logistic regression analysis. The model identified
seven genes as optimal predictors of dementia based on the minimum binomial deviance at specific lambda values. (C) Principal Component Analysis
(PCA) plot showing a clear separation between dementia patients and normal controls based on the selected seven genes. (D) miRNA-mRNA interaction
network depicting the interactions of differentially expressed miRNAs (DEmiRNAs) with the seven selected genes in subarachnoid hemorrhage (SAH).
DOK3 and PAPOLA were highlighted as having the most connections within the network. (E) Heatmap illustrating the expression levels of the seven core
differentially expressed genes in patients with SAH compared to controls. The color scale represented gene expression levels, with yellow indicating
higher expression and blue indicating lower expression. (F) Heatmap showing the expression of these genes in dementia patients versus controls. Group,
sex, and age were annotated above the heatmap for context. (G, H) Receiver Operating Characteristic (ROC) curves demonstrating the classification
performance of the seven differentially expressed genes in dementia. The area under the curve (AUC) values range from 0.909 to 0.989, indicating
discriminative solid ability. Each curve corresponds to a specific gene labeled with its respective AUC value.
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The differential expression analysis in Figure 5B highlighted the

significant log2 fold change and -log10 FDR values for DOK3 and

PAPOLA, emphasizing their potential as biomarkers. Further

correlation analyses (Figures 5C–E) demonstrated how genetic

and epigenetic factors impact gene expression. Additionally, the

expression of DOK3 and PAPOLA showed significant positive or

negative correlations with various immune cell infiltration levels

(Figures 5F–H). These findings were reinforced by the EPIC

method in Figure 5I, indicating that PAPOLA might play a dual

role in influencing immune cell presence in tumors. The consistent

findings across different methodologies for DOK3 and PAPOLA

emphasize their importance in shaping the immune landscape of

various cancers, suggesting that these genes could be critical targets

for therapeutic interventions to modulate tumor immunity. This

comprehensive analysis provides a solid foundation for future

studies to elucidate the precise mechanisms through which DOK3

and PAPOLA influence immune infiltration in cancer.
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Tumor prognosis and functional analysis of
DOK3 and PAPOLA in glioblastoma

In this study, we investigated the role of DOK3 and PAPOLA in

tumor prognosis using U251MG glioblastoma cells. Kaplan-Meier

survival analysis revealed that high DOK3 expression was

significantly associated with poor prognosis, including worse overall

survival (OS), disease-specific survival (DSS), and progression-free

interval (PFI), compared to low expression (Figure 6A). Patients with

low PAPOLA expression also demonstrated better survival rates,

further suggesting the prognostic importance of these genes in

glioblastoma. Meta-analysis of multiple datasets confirmed that

DOK3 is a significant risk factor for glioblastoma survival (HR > 1),

withmoderate heterogeneity across studies (Figure 6B). PCR validation

showed that DOK3 was successfully overexpressed in the DOK3 OE

group (Figure 6C). Functionally, DOK3 overexpression led to increased

cell proliferation, as indicated by a significant rise in colony numbers in
frontiersin.or
FIGURE 4

Classification and co-expression of seven differentially expressed genes in SAH. (A, B) ROC curves demonstrated the classification performance of the
seven genes in SAH, with AUC values ranging from 0.864 to 0.966, indicating good predictive ability. Gene-specific AUC values highlighted PAPOLA,
DOK3, LONRF3, MLK1, SLC6A1, STK11IP, and ZNF627. (C) Chord diagram illustrating the co-expression correlations among the seven genes. Notably,
DOK3 and PAPOLA exhibited negative correlations with ZNF627 and SLC6A1 while showing positive correlations with the remaining genes, emphasizing
the complex regulatory interactions. (D) Sankey diagram displaying the microRNAs (miRNAs) regulating DOK3 and PAPOLA. Each miRNA was connected
to its target gene, showcasing the regulatory network and potential miRNA-mediated modulation of gene expression. (E) GSEA results for samples with
upregulated DOK3. The plot displayed enrichment scores indicating biological pathways that were either upregulated (curves trending upwards) or
downregulated (curves trending downwards). Notable pathways included the WP_NUCLEAR_RECEPTORS_METAPATHWAY, KEGG_CYTOKINE_
CYTOKINE_RECEPTOR_INTERACTION, and REACTOME_NEUTROPHIL_DEGRANULATION. (F) GSEA results for samples with upregulated PAPOLA,
highlighting significant pathways, including upregulation in apoptosis pathways. Pathways were labeled with their respective enrichment scores acrossed
the ordered dataset, providing insight into the differential pathway activation associated with PAPOLA expression. Data analysis was performed using
standard GSEA methodology, with specific pathways identified based on their enrichment scores and rank in the ordered dataset.
g

https://doi.org/10.3389/fimmu.2024.1504629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1504629
FIGURE 5

Comprehensive immune infiltration analysis of DOK3 and PAPOLA across multiple cancer types. (A) Distribution of copy number variation (CNV)
rates of core genes (DOK3 and PAPOLA) across 20 different cancer types. Each bar represented the percentage of samples with CNV alterations in
specific cancer types, color-coded by cancer type. (B) Differential expression of DOK3 and PAPOLA acrossed multiple cancers, showing the number
of upregulated (red) and downregulated (green) samples. The lower panel showed the corresponding log2 fold change and -log10 FDR values,
highlighting significant expression changes. (C) Correlation between CNV and expression levels of DOK3 and PAPOLA in various cancers. The size
and color of the dots represented the strength and direction of the correlation, with larger and more colored dots indicating stronger correlations.
(D) Correlation between promoter methylation levels and core gene expression (DOK3 and PAPOLA) acrossed different cancer types. The color
gradient represented the correlation coefficient, with blue indicating negative, red indicating positive correlations, and dot size indicating statistical
significance (-log10 p-value). (E) Association between tumor mutational burden (TMB) and the expression of DOK3 and PAPOLA in different cancer
types. The size of the dots represented the significance level, while the color gradient showed the direction and strength of the correlation.
(F) Immune infiltration analysis of DOK3 across cancer types, using various immune cell markers. The heatmap depicted the correlation between
DOK3 expression and immune cell infiltration levels, with the color scale representing the correlation coefficient (red for positive and blue for
negative). Filled squares indicated significant correlations (p<0.05). (G) Immune infiltration analysis of DOK3 using the EPIC method across different
cancers. This heatmap displayed the correlation between DOK3 expression and immune cell infiltration levels, with the same color coding and
significance representation as panel (F, H) The immune infiltration analysis of PAPOLA across different cancer types using various immune markers
showed the correlation between PAPOLA expression and immune cell infiltration levels. The color coding and significance levels were identical to
panel (F, I) Immune infiltration analysis of PAPOLA using the EPIC method, displaying the correlation between PAPOLA expression and infiltration
levels of immune cells across cancer types. Similar to panel (G) color scale and significance were represented by filled squares and color intensity.
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FIGURE 6

Experiments on tumor prognosis of U251MG cells. (A) Kaplan-Meier survival curves illustrating the association between PAPOLA and DOK3
expression and various survival outcomes in GBM patients, including overall survival (OS), disease-specific survival (DSS), and progression-free
interval (PFI). The curves compared high (red) and low (blue) expression levels, with significant differences indicated in DOK3 for OS, DSS, and PFI
(p-values < 0.001), while PAPOLA does not show statistically significant differences. (B) A meta-analysis combining hazard ratios from univariate Cox
survival analysed across multiple datasets, demonstrating the prognostic value of DOK3 and PAPOLA in GBM survival. The forest plot represents the
effect sizes and confidence intervals. (C) Bar chart showing the relative expression levels of DOK3 in cells after overexpression (OE) validation.
Statistical significance was noted (p < 0.001), confirming successful overexpression compared to the control groups (NC, EV). (D) Colony formation
assay of U251MG cells comparing the control group (NC), empty vector (EV), and DOK3 overexpression (OE-DOK3) group, with increased colony
numbers in the DOK3 OE group, indicating enhanced proliferative ability. (E) Migration assay displaying the number of migrating cells across the
membrane under different conditions (NC, EV, and OE-DOK3). The OE-DOK3 group showed a significant increase in migration ability, suggesting
enhanced metastatic potential. (F) GSEA of KEGG pathways comparing high and low DOK3 expression groups. The heatmap highlighted critical
biological processes and pathways significantly enriched in the high and low-expression groups, including metabolism, signal transduction, and
disease pathways. (G) GSVA scores comparing metabolic pathway differences between high and low DOK3 expression groups. Metabolic pathways
with the most significant differential expression were highlighted, with bars ranked based on enrichment scores.
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the plate colony formation assay (Figure 6D), and enhanced cell

migration in the Transwell migration assay (Figure 6E), indicating

that DOK3 plays a crucial role in promoting tumor cell aggressiveness.

Furthermore, GSEA and KEGG pathway analysis revealed that cell

cycle-related pathways were enriched in the high DOK3 expression

group, with metabolic pathways such as galactose metabolism activated

and lysine degradation pathways inhibited, further suggesting

that DOK3 impacts both cellular proliferation and metabolism

(Figure 6F, G). These results collectively demonstrate the critical

involvement of DOK3 and PAPOLA in glioblastoma prognosis and

tumor progression, making them potential therapeutic targets for

future interventions.
Pathway and immune
microenvironment analysis

The pathway and immune microenvironment analysis revealed

significant correlations between immune-related scores and gene

expression levels within the cohort, as shown in Figure 7A. The

Spearman correlation of Tumor Immune Profile (TIP) scores

highlighted strong interactions between various immune processes,

with thicker lines representing stronger correlations. Notably, in the

DOK3 high-expression group, immune stimulation genes,

immunosuppressive genes, chemokines, and human leukocyte

antigen (HLA) expressions were generally elevated, as depicted in

the heat maps (Figure 7B). These findings demonstrate that

DOK3 overexpression is associated with an overall increase in

immune activity. Additionally, the regulatory landscape of

immunomodulators, including somatic copy number alterations

(SCNA) and epigenetic factors, underscores the complex immune

landscape influenced by DOK3 expression (Figure 7C). Further

exploration of the relationship between genomic instability markers

(e.g., mutation rates, homologous recombination defects) and immune

responses revealed distinct patterns of immune engagement,

with higher MeTIL scores observed in the high chemokine

expression group. In contrast, groups with low expression of CYT,

IFNg, T cell-inflamed markers, and TLS showed lower MeTIL scores

(Figures 7D, E). These findings underscore the role of DOK3 in

modulating immune responses and its potential impact on tumor

progression and immune infiltration. Integrating genomic status with

immune profiles provides a comprehensive view of the tumor

microenvironment and highlights potential therapeutic targets.
Results of U251MG cells under different
experimental treatments

In this study, we evaluated the effects of LPS treatment and

DOK3 overexpression (OE) on U251MG glioblastoma cells,

focusing on inflammatory cytokine expression, oxidative stress

markers, and tumor-related processes. As shown in Figure 8A,

qPCR analysis revealed that LPS treatment significantly upregulated

the expression of pro-inflammatory cytokines TNF-a, IL1b, and
IL6 compared to the control group (p < 0.001). However, DOK3 OE
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significantly attenuated this increase (p < 0.001), indicating its

potential anti-inflammatory effects. Further, Figure 8B

demonstrates that superoxide dismutase (SOD) activity was

markedly reduced following LPS treatment (p < 0.001), while

DOK3 OE partially restored SOD activity to near-control levels

(p < 0.001), highlighting its role in combating oxidative stress. The

measurement of malondialdehyde (MDA) levels, a marker of lipid

peroxidation, showed a significant increase in the LPS group (p <

0.001), as shown in Figure 8C, whereas DOK3 OE resulted in a

dramatical reduction in MDA levels (p < 0.01). Similarly, Figure 8D

indicates that LPS treatment significantly decreased glutathione

peroxidase (GSH-Px) activity (p < 0.001), but DOK3 OE restored

this activity (p < 0.001), suggesting improved antioxidant defense.

The reactive oxygen species (ROS) level comparison in Figure 8E

further confirmed that LPS treatment significantly elevated ROS

levels (p < 0.001), while DOK3 OE mitigated this increase (p <

0.001), reinforcing its role in reducing oxidative damage.

Additionally, Figure 8F illustrates the quantification of cytokines

(TNF-a, IL1b, IL6) via ELISA, which revealed a significant

elevation of these cytokines in the LPS group, but DOK3 OE

substantially reduced their levels (p < 0.01), demonstrating an

anti-inflammatory effect. Finally, Figure 8G shows Pearson’s

correlation analysis, where DOK3 expression was positively

correlated with various tumor-related processes such as apoptosis

(R = 0.65, p = 2.2e-16), cell cycle (R = 0.54, p = 2.1e-06), and

proliferation (R = 0.42, p = 1.6e-08), suggesting that DOK3 may

play a crucial role in regulating these processes in glioblastoma cells.

These results collectively indicate that DOK3 overexpression can

counteract LPS-induced inflammatory and oxidative stress

responses while also regulating critical tumor-related pathways.
Anti-inflammatory and protective effects of
DOK3 overexpression in BV2 cells

In the present study, we explored the role of DOK3 in

modulating inflammation and oxidative stress in BV2 cells. LPS

treatment markedly reduced cell viability, as demonstrated by the

CCK-8 assay, while DOK3 overexpression (OE) partially restored

cell viability, indicating its protective effect against LPS-induced

cytotoxicity (Figure 9A, p<0.001). Furthermore, the LDH release

assay showed increased LDH levels in LPS-treated cells, indicative

of cell membrane damage, whereas DOK3 overexpression

significantly reduced LDH release, suggesting a reduction in

cellular injury (Figure 9B, p<0.001). Flow cytometry analysis

revealed that DOK3 overexpression mitigated LPS-induced

apoptosis, demonstrating its anti-apoptotic effect (Figure 9C,

p<0.001). Immunofluorescence analysis further confirmed

that DOK3 overexpression reduced the expression of key

inflammatory markers, including IL-1b (Figure 9D), NLRP3

(Figure 9E), and TNF-a (Figure 9F), following LPS treatment.

Additionally, flow cytometric analysis of ROS levels showed that

LPS significantly increased ROS production, while DOK3

overexpression effectively decreased oxidative stress in BV2 cells

(Figure 9G). Collectively, these findings indicate that DOK3
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FIGURE 7

Further pathway versus immune microenvironment analysis. (A) The triangular heatmap illustrated the correlations between immune-related scores,
focusing on the TIP (Tumor Immune Profile) scores and gene expression within the cohort. Each cell represents a correlation between two immune
processes, with the intensity and direction (positive or negative) of the correlation denoted by a color gradient ranging from blue (negative
correlation) to red (positive correlation). Curved lines connecting the scores highlight significant relationships, with thicker lines indicating stronger
correlations. (B) The heatmaps depicted the expression differences in immune stimulation and suppression genes, chemokines, and HLA genes
between high and low DOK3 expression groups. Each gene was color-coded, where red denotes higher expression, and blue indicated lower
expression, showcasing how immune-related gene expressions vary with DOK3 levels. (C) A detailed heatmap illustrated the regulatory changes in
various immunomodulators under different conditions or across various immune cell types. This included key factors such as antigen-presenting
cells, checkpoint molecules, and other immunomodulatory proteins, indicating how these elements contributed to the immune landscape in the
tumor microenvironment. (D) Heatmap showing the relationship between immune responses (e.g., BCR/TCR evenness and richness) and genomic
instability markers (e.g., mutation rate, homologous recombination defects). Each block in the heatmap reflected the strength of association, with a
color gradient from red (high association) to blue (low association). This analysis helped to elucidate how genomic characteristics could influence
immune profiling and cancer progression. (E) Violin plots showing the distribution of MeTIL scores between high and low DOK3 expression groups.
These plots visualize differences in TIL infiltration, with higher MeTIL scores typically indicative of better immune engagement in the tumor.
Differences were displayed for multiple immune cell types or markers (e.g., CD8 T cells, IFN-gamma expression). The symbols "*", "**", and "***"
indicate statistical significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, based on comparisons between experimental and control groups in the
analysis of immune and pathway-related data.
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FIGURE 8

Results of U251MG cells under different experimental treatments. (A) The relative mRNA expression levels of key inflammatory cytokines TNF-a, IL1b,
and IL-6 were measured using qPCR in U251MG cells. Three groups were compared: control, LPS (Lipopolysaccharide) treatment, and LPS with
DOK3 overexpression (OE). Results showed significant upregulation of TNF-a, IL1b, and IL-6 in the LPS-treated group, which were reduced upon
DOK3 overexpression (p < 0.001 for most comparisons). (B) A bar graph illustrating the activity of SOD in U251MG cells across different experimental
groups. SOD activity was significantly reduced in the LPS-treated group compared to controls (p < 0.001) but partially restored in the LPS + DOK3
OE group (p < 0.001). (C) The level of MDA was measured as an indicator of lipid peroxidation in U251MG cells. MDA levels were significantly
elevated in the LPS-treated group compared to the control group, with the difference being statistically significant (p < 0.001), indicating increased
oxidative stress in the LPS-treated cells. As shown in Figure 6F, DOK3 overexpression significantly inhibited LPS-induced MDA production (p < 0.01
vs. LPS). (D) The activity of GSH-Px, a key enzyme in antioxidant defense, was assessed. LPS treatment resulted in a significant reduction in GSH-Px
activity (p < 0.001), whereas DOK3 overexpression restored this activity to levels close to those of the control group (p < 0.001). (E) The levels of
ROS were measured to compare oxidative stress between the experimental and control groups. LPS treatment caused a significant increase in ROS
levels (p < 0.001), which was effectively reduced by DOK3 overexpression (p < 0.001), suggesting a favorable shift in oxidative balance. (F) Levels
of cytokines (TNF-a, IL1b, IL-6) in the culture media were quantified using ELISA. The LPS group showed a significant increase in cytokine levels,
which were reduced in the LPS + DOK3 OE group, indicating an anti-inflammatory effect of DOK3 overexpression (p < 0.01 for TNF-a, IL1b, and
IL-6). (G) Pearson’s correlation analysis between DOK3 expression and tumor state scores: correlation plots showing the relationship between
DOK3 z-scores and various tumor states assessed by GSVA (Gene Set Variation Analysis) z-scores. Positive correlations were observed with
tumor-related processes such as angiogenesis (R = 0.36, p = 3.2e-06), apoptosis (R = 0.65, p = 2.2e-16), cell cycle (R = 0.54, p = 2.1e-06), and
more, indicating DOK3’s potential involvement in these processes.
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FIGURE 9

Results of BV2 cells in inflammatory studies of DOK3 anti-inflammatory effects. (A) The cell viability was measured by the CCK-8 assay to evaluate
the proliferation and survival of BV2 cells under three conditions: control, LPS treatment, and LPS + DOK3 overexpression (OE). The results showed
that LPS treatment significantly reduces cell viability (p<0.001), while DOK3 overexpression partially restores viability compared to LPS alone
(p<0.001). (B) LDH release was measured to assess cellular damage. Cells treated with LPS exhibited significantly higher LDH release, indicating
increased cytotoxicity (p < 0.001). In contrast, cells overexpressing DOK3 demonstrated reduced considerably LDH release compared to the LPS-
only treatment group (p < 0.001), suggesting a protective effect of DOK3. (C) The extent of apoptosis was determined using flow cytometry. LPS
treatment significantly increased the apoptosis rate in BV2 cells (p < 0.001), whereas DOK3 overexpression markedly decreased apoptosis compared
to the LPS-only group, highlighting its anti-apoptotic effect (p < 0.001). (D) IL-1b expression in BV2 cells was assessed using immunofluorescence
staining. LPS treatment caused a substantial increase in IL-1b expression, which was reduced in the LPS + DOK3 group, indicating DOK3’s anti-
inflammatory properties. (E) The expression of the inflammasome marker NLRP3 was detected via immunofluorescence. LPS treatment significantly
upregulated NLRP3 expression, but DOK3 overexpression reduced NLRP3 protein levels, suggesting that DOK3 may inhibit the inflammasome
pathway. (F) LPS treatment elevated the expression of the pro-inflammatory cytokine TNF-a, whereas cells overexpressing DOK3 showed a
reduction in TNF-a levels, demonstrating DOK3’s anti-inflammatory role. (G) ROS production was measured via flow cytometry. LPS treatment
induced a significant increase in ROS production in BV2 cells, while DOK3 overexpression was associated with a reduction in ROS levels, suggesting
DOK3’s protective effect against oxidative stress.
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overexpression exerts significant anti-inflammatory and protective

effects by reducing apoptosis, inflammation, and oxidative stress,

thus highlighting its potential therapeutic applications in

inflammation-related diseases and cancer research.
Discussion

Transcriptomic techniques and bioinformatics tools are pivotal for

gene function annotation and pathway enrichment analysis (53, 54).

These approaches have identified numerous potential signaling

pathways and regulatory networks, providing valuable evidence for

understanding the mechanisms of aneurysmal subarachnoid

hemorrhage (aSAH) and developing targeted therapies (55–57). This

study aimed to explore the relationship between aSAH and the

increased risk of dementia, emphasizing the roles of DOK3 and

PAPOLA as critical genes in this process. aSAH is a devastating

cerebrovascular event that leads to severe neurological deficits, coma,

and even death, profoundly impacting both patients and their families

(58, 59). The onset of dementia following aSAH further complicates the

situation, significantly diminishing the quality of life and necessitating

extensive care, which can leave the patient severely disabled (60, 61).

Understanding the molecular dysfunction of DOK3 and PAPOLA in

aSAH patients may provide valuable insights into the deregulated

molecular pathways that contribute to dementia development, thereby

suggesting novel therapeutic targets (35, 62).

This study aimed to uncover the shared molecular mechanisms

between SAH and vascular dementia (VaD) (11, 63). To investigate

the miRNA-mRNA regulatory network involved in aSAH-induced

dementia, we focused on DOK3 and PAPOLA as central genes

potentially linked to disease progression (64, 65). The involvement

of these genes in apoptotic pathways suggests a functional link

between their dysregulation and the development of both SAH

and dementia. An initial differential analysis identified 15 common

DEGs enriched in pathways related to SAH and dementia (66, 67).

Further Lasso regression analysis highlighted seven core co-DEGs

across both conditions: DOK3, LONRF3, MILR1, PAPOLA,

SLC6A1, STK11IP, and ZNF627 (68, 69). Subsequently, a SAH-

associated miRNA-mRNA regulatory network was constructed

based on these core genes and SAH-related differentially

expressed miRNAs (64, 70). In this network, DOK3 and

PAPOLA, both upregulated, were identified as potential hub

genes associated with increased dementia risk post-SAH through

apoptotic pathways (68, 71).

The Dock Homolog 3 (DOK3) adapter protein, a member of the

DOK protein family, plays a significant role in regulating immune

responses, particularly in macrophages and B cells (72, 73). It is

involved in various biological processes, such as cell migration and

signal transduction. Recent genomic studies have identified DOK3 as a

potential risk locus for neurological disorders, likely due to its influence

on microglial activation, a critical component of the central nervous

system’s innate immune response (72, 74). Emerging evidence suggests

that after an aSAH, DOK3 may contribute to cognitive decline or

dementia by influencing apoptotic pathways and modulating immune

cell trafficking (75, 76). Moreover, DOK3 has been shown to regulate

signaling cascades involved in cell proliferation, survival, invasion, and
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tumor microenvironment regulation, establishing its role in cancer

development and progression. These findings indicate that DOK3

could be a pivotal factor in this pathway, and understanding its role

may lead to the development of novel therapeutic strategies for

preventing cognitive dysfunction following aSAH and in cancer.

PAPOLA is an enzyme crucial for the maturation of the 3’ end

of mRNA in eukaryotic cells (77, 78). It adds a poly(A) tail to

mRNA, which is essential for RNA stability, translation, and

nuclear export (79, 80). Recent studies have linked PAPOLA to

neurological diseases such as dementia, which may complicate the

course of aSAH (81). The role of PAPOLA in post-aSAH dementia

may be tied to its involvement in gene expression and mRNA

stability, both critical for neuronal function and brain repair after

injury (82, 83). An increase in A8RNA levels and a corresponding

decrease in C9orf72 transcription, coupled with reduced PAPOLA

activity, could contribute to cognitive deficits after aSAH by

hindering the activation of stress response pathways (82, 84).

Further research is warranted to explore PAPOLA’s impact on

cognition following aSAH and to assess its potential as a therapeutic

target for preventing post-aSAH dementia (85, 86).

The roles of DOK3 and PAPOLA as central players in multiple

diseases, including glioma, are further supported by existing research

(87, 88). Cross-disease analysis identified 15 shared DEGs between

SAH and VaD, highlighting potential molecular connections. DOK3,

involved in immune signaling and apoptosis regulation, and

PAPOLA, crucial for mRNA stability and linked to cancer, appear

to be key components of the pathways through which SAH may

parallel the effects observed in VaD (84). Gene Set Enrichment

Analysis (GSEA) suggested that DOK3 and PAPOLA might

influence both SAH and dementia through apoptotic pathways,

which aligns with literature indicating dysregulated apoptosis in

neurodegenerative diseases and neurovascular injury. Excessive

apoptosis, for instance, has been shown to cause neuronal loss in

dementia and exacerbate brain injury post-SAH (67). The inhibition

of USP30 has been found to play a significant role in modulating

mitochondrial dynamics and autophagy, offering protection against

early brain injury following subarachnoid hemorrhage (89).

Furthermore, a pan-cancer analysis revealed that DOK3 and

PAPOLA exhibit differential expression across various cancer types,

reflecting their involvement in fundamental cellular processes like

apoptosis and inflammation (90, 91). This cross-disease relevance

highlights their potential as critical therapeutic targets (92). The dual

role of these genes in both cancer and neuroinflammation broadens

our understanding of their influence on oncology and neurobiology

(93, 94). Targeting autophagic pathways may represent a promising

and innovative approach to mitigating ischemic injury, warranting

further investigation (95).

These findings align with previous research into the molecular

mechanisms of SAH and dementia. Earlier studies have highlighted

the distinct roles of DOK3 and PAPOLA in apoptosis and immune

responses (67). However, this study introduces a novel perspective

by demonstrating their cooperative effect on both SAH and VaD

through bioinformatics-driven analysis (96). While prior study has

often focused on individual aspects of SAH or dementia, our

integrative approach provides a clearer understanding of their

shared molecular pathways (66, 97). This study fills a critical gap
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1504629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1504629
in the literature by identifying overlapping genes and pathways,

paving the way for new potential therapeutic strategies (66, 98).

DOK3 is amember of the DOK protein family, which are common

substrates for multiple tyrosine protein kinases, including receptor and

non-receptor tyrosine kinase signaling pathways. These pathways are

involved in various cellular processes, such as proliferation, apoptosis,

growth, and migration. Recent studies have identified DOK3 as a

potential risk locus for neurological disorders, potentially due to its

impact onmicroglial activation. Amicroarray gene expression profiling

study found that DOK3 is upregulated in Alzheimer’s disease.

Upstream analysis revealed that its activating molecule is LPS, and

its receptor is TLR4, indicating that DOK3 inhibits the LPS signaling

pathway through TLR4 receptors. Additionally, DOK3 has been shown

to regulate junction proteins in tyrosine kinase signaling feedback loops

and inhibit oncogenic pathways mediated by protein tyrosine kinases

(PTKs), which are implicated in tumor development and progression.

DOK3 has also been demonstrated to regulate multiple signaling

cascades related to cell proliferation, survival, invasion, and the

tumor microenvironment, establishing its importance in cancer

development and progression. High DOK3 expression positively

regulates pathways involved in cytokine-cytokine receptor

interactions, neutrophil degranulation, and apoptosis while negatively

influencing nicotine’s effects on dopaminergic neuron signaling.

Similarly, elevated PAPOLA levels have been associated with

activating apoptosis-related pathways and downregulating pathways

involved in metabolic diseases, biooxidation, the respiratory electron

transport chain, and alanine/aspartate metabolism. Studies in laryngeal

cancer, SAH, and VaD indicate that these observations remain

consistent across various diseases. Furthermore, integrating immune

response analysis, methylation patterns, and autophagy assessments

may enhance the accuracy of associations with pathogenesis and

prognosis (99).

Despite the well-defined outcomes of this study, several

limitations exist. A primary limitation is that the GEO datasets

used contain only mRNA and miRNA expression data, which do

not provide a comprehensive view of gene regulation across

multiple biological levels in vivo (100). Moreover, variations in

sample sizes across datasets may affect the statistical power and

generalizability of our findings. Additionally, using bioinformatics

and machine learning techniques, while powerful, may introduce

biases related to data preprocessing and algorithm selection (101).

The diversity of patient populations and the inherent heterogeneity

in the datasets may also contribute to bias and pose challenges for

data interpretation. Another limitation is the lack of in vivo

validation of the identified central genes and pathways (102, 103).

Although experimental validation provided some insights, further

study using animal models or clinical samples is necessary to

confirm these findings and elucidate the precise mechanisms

involved (104).

Bioinformatics analysis methods, particularly gene-environment

interaction analysis, have been widely applied to survival analysis of

large-scale genomic data, providing insights into the molecular

mechanisms underlying many complex diseases (105–107).

Research should focus on validating these findings in clinical

settings and exploring the therapeutic potential of targeting DOK3

and PAPOLA, particularly with patient stratification, prognosis, and
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precision therapies (108, 109). The role of DOK3 as a biomarker

could be confirmed through prospective clinical trials or studies

evaluating its predictive value for treatment outcomes. Additionally, a

thorough investigation into the biological functions of DOK3,

especially its role in pathways related to disease progression or

therapeutic response, would be highly beneficial. Examining the

functions of other identified core genes, such as LONRF3, MILR1,

SLC6A1, STK11IP, and ZNF627, could also deepen our

understanding of the molecular links between SAH and dementia

(68). Moreover, conducting cell and animal experiments to

corroborate bioinformatics results will be crucial (110, 111). In the

future, integrating network pharmacology with experimental

validation will offer innovative strategies for drug development

(112). By modulating the function and activity of specific pathways,

these drugs have demonstrated significant therapeutic effects in

reducing tissue damage, offering promising new directions for

treatment development (113). The application of big data and

bioinformatics in disease diagnosis and prognosis has accelerated

the evolution of precision medicine, promoting earlier interventions

and more personalized treatment approaches (114, 115).

The integration of clinical and genomic data has led to the

development of various models and tools for predicting disease

progression and treatment response, significantly improving the

accuracy of disease forecasts and supporting personalized medicine

(116, 117). This study represents the first attempt to use a

bioinformatics approach to explore the molecular mechanisms

underlying dementia following SAH (118, 119). Our findings

suggest that DOK3 and PAPOLA may contribute to disease

progression through apoptotic pathways, acting as key players in

the shared mechanisms between SAH and VaD, with significant

potential for clinical application and further research (11, 12). As

target molecules for therapeutic intervention in both conditions, they

could serve as biomarkers for early diagnosis (120, 121). Furthermore,

their involvement in apoptosis and neuroinflammation suggests that

inhibiting these genes may help reduce the risk of developing SAH

and dementia (122). This study provides new insights into the

molecular mechanisms underlying SAH-associated cognitive decline

and potential prevention or treatment strategies (66, 123). The

development of novel targeted therapeutic strategies and ongoing

investigations into molecular mechanisms across various diseases

further deepen our understanding of SAH pathogenesis and

progression, offering new perspectives and possibilities for future

clinical applications (124–127).
Conclusion

Through a comprehensive investigation of the molecular overlap

between SAH and VaD, DOK3 and PAPOLA have emerged as key

players in these shared mechanisms. PAPOLA and DOK3may play a

critical role in mediating neuroinflammatory response, neuronal

apoptosis, and vascular dysfunction, and they participate in the

post-transcriptional regulation of genes involved in neurovascular

processes, such as cellular stress response. By combining

bioinformatics analysis with experimental validation, we identified

frequently altered pathways that could serve as platforms for targeted
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therapeutic interventions. These key factors have highlighted

potential therapeutic targets for intervention and disease

management. Targeting DOK3- or PAPOLA-related pathways

could offer specific benefits for clinical practice, such as developing

new treatment strategies, identifying biomarkers for early diagnosis

or disease progression monitoring, and implementing personalized

treatment approaches.
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Giralt-Steinhauer E, Bojtos L, et al. The role of epigenetics in brain aneurysm and
subarachnoid hemorrhage: A comprehensive review. IJMS. (2024) 25:3433.
doi: 10.3390/ijms25063433

99. Kang X, Chen Y, Yi B, Yan X, Jiang C, Chen B, et al. An integrative
microenvironment approach for laryngeal carcinoma: the role of immune/
methylation/autophagy signatures on disease clinical prognosis and single-cell
genotypes. J Cancer. (2021) 12:4148–71. doi: 10.7150/jca.58076

100. MaChado R, Sachinidis A, Futschik ME. Detection of Novel Potential
Regulators of Stem Cell Differentiation and Cardiogenesis through Combined
Genome-Wide Profiling of Protein-Coding Transcripts and microRNAs. Cells.
(2021) 10:2477. doi: 10.3390/cells10092477

101. Franklin G, Stephens R, Piracha M, Tiosano S, Lehouillier F, Koppel R, et al.
The sociodemographic biases in machine learning algorithms: A biomedical
informatics perspective. Life. (2024) 14:652. doi: 10.3390/life14060652

102. Liu J, Hua P, Hui L, Zhang L-L, Hu Z, Zhu Y-W. Identification of hub genes and
pathways associated with hepatocellular carcinoma based on network strategy. Exp
Ther Med. (2016) 12:2109–19. doi: 10.3892/etm.2016.3599

103. Frost HR, Amos CI. A multi-omics approach for identifying important
pathways and genes in human cancer. BMC Bioinf. (2018) 19:479. doi: 10.1186/
s12859-018-2476-8

104. Fakhoury M. New insights into the neurobiological mechanisms of major
depressive disorders. Gen Hosp Psychiatry. (2015) 37:172–7. doi: 10.1016/
j.genhosppsych.2015.01.005

105. Vasilik MP, Belova NI, Lazareva EM, Kononenko NV, Fedoreyeva LI. Salt
tolerance assessment in triticum aestivum and triticum durum. Front Biosci (Landmark
Ed). (2024) 29:150. doi: 10.31083/j.fbl2904150

106. Li T, Feng W, Yan W, Wang T. From metabolic to epigenetic: Insight into
trained macrophages in atherosclerosis (Review). Mol Med Rep. (2024) 30:145.
doi: 10.3892/mmr.2024.13269

107. Wang J-H, Yang C-T. Identification of gene-environment interactions by non-
parametric kendall’s partial correlation with application to TCGA ultrahigh-
dimensional survival genomic data. Front Biosci (Landmark Ed). (2022) 27:225.
doi: 10.31083/j.fbl2708225

108. Veeck J, Dahl E. Targeting the Wnt pathway in cancer: The emerging role of
Dickkopf-3. Biochim Biophys Acta (BBA) - Rev Cancer. (2012) 1825:18–28.
doi: 10.1016/j.bbcan.2011.09.003

109. Wang Y-F, Hu Y-Q, Hu Y-N, Bai Y-C, Wang H, Zhang Q. Expression and
clinical significance of DOK3 in renal clear cell carcinoma. J Int Med Res. (2023)
51:30006052311749. doi: 10.1177/03000605231174974

110. Xia L, Yang Z, Xv M, Wang G, Mao Y, Yang Y, et al. Bioinformatics analysis
and experimental verification of TIGD1 in non-small cell lung cancer. Front Med.
(2024) 11:1374260. doi: 10.3389/fmed.2024.1374260

111. Defreitas S, Rowe M, Paculis L, Jia D. Integration of bioinformatics approaches
and experimental validations to understand the role of notch signaling in ovarian
cancer. JoVE. (2020), 60502. doi: 10.3791/60502

112. Huang W-B, Qin S-Y, Zou J-B, Li X, Kang W-L, Yuan P-W. Efficacy of Juanbi
capsule on ameliorating knee osteoarthritis: a network pharmacology and experimental
verification-based study. Tradit Med Res. (2024) 9:33. doi: 10.53388/TMR20230829002

113. Zhou B-Y, Yang J, Luo R-R, Sun Y-L, Zhang H-T, Yang A-X, et al.
Dexmedetomidine alleviates ischemia/reperfusion-associated acute kidney injury by
enhancing autophagic activity via the a2-AR/AMPK/mTOR pathway. Front Biosci
(Landmark Ed). (2023) 28:323. doi: 10.31083/j.fbl2812323

114. Wu J, Zhi Z, Xu W, Li D, Li Q, Han Y, et al. LIM1863 is useful to explore
collective cancer cell migration, and the group of heterogeneous cells undergoing
collective migration behaves like a supracellular unit. BIOCELL. (2023) 47:2671–80.
doi: 10.32604/biocell.2023.043494

115. Ou S, Xu Y, Liu Q, Yang T, ChenW, Yuan X, et al. Analysis of large datasets for
identifying molecular targets in intestinal polyps and metabolic disorders. BIOCELL.
(2024) 48:415–29. doi: 10.32604/biocell.2024.046178

116. Li M, Liu X, Jiang M, Lei Y, Li Z, Li S, et al. Prognostic capability of clinical
SYNTAX score in patients with complex coronary artery disease and chronic renal
insufficiency undergoing percutaneous coronary intervention. Rev Cardiovasc Med.
(2024) 25:18. doi: 10.31083/j.rcm2501018

117. Figueredo VM. The heart renaissance. Rev Cardiovasc Med. (2024) 25:91.
doi: 10.31083/j.rcm2503091

118. Kim BJ, Youn DH, Chang IB, Kang K, Jeon JP. Identification of differentially-
methylated genes and pathways in patients with delayed cerebral ischemia following
subarachnoid hemorrhage. J Korean Neurosurg Soc. (2022) 65:4–12. doi: 10.3340/
jkns.2021.0035

119. Kikkawa Y. Gene expression profiling and bioinformatic analysis of rabbit
basilar artery after experimental subarachnoid hemorrhage. J Neurol Neurophysiol.
(2014) 5:101–7. doi: 10.4172/2155-9562.1000201
frontiersin.org

https://doi.org/10.1186/s12883-021-02156-1
https://doi.org/10.1186/s12883-021-02156-1
https://doi.org/10.3389/fimmu.2020.566192
https://doi.org/10.1128/MCB.20.8.2743-2754.2000
https://doi.org/10.1146/annurev-med-050715-104343
https://doi.org/10.3389/fnagi.2022.979869
https://doi.org/10.3389/fnagi.2022.979869
https://doi.org/10.3389/fncel.2018.00488
https://doi.org/10.3389/fncel.2018.00488
https://doi.org/10.1242/jcs.252304
https://doi.org/10.1101/gad.17268411
https://doi.org/10.1080/15476286.2017.1306171
https://doi.org/10.1128/MMBR.63.2.405-445.1999
https://doi.org/10.3390/ijms22179492
https://doi.org/10.3389/fnins.2018.00096
https://doi.org/10.1038/srep46577
https://doi.org/10.1016/j.jocn.2011.08.038
https://doi.org/10.3390/ijms19072035
https://doi.org/10.1038/jcbfm.2010.101
https://doi.org/10.1016/j.intimp.2020.106400
https://doi.org/10.1016/j.jare.2021.06.008
https://doi.org/10.1007/s12975-023-01228-3
https://doi.org/10.1016/j.leukres.2011.01.027
https://doi.org/10.1016/j.leukres.2011.01.027
https://doi.org/10.21203/rs.3.rs-291409/v1
https://doi.org/10.1016/j.crmeth.2024.100757
https://doi.org/10.3390/ijms16010193
https://doi.org/10.1038/onc.2010.127
https://doi.org/10.1155/2022/3450207
https://doi.org/10.3389/fneur.2022.1091453
https://doi.org/10.1038/jcbfm.2015.164
https://doi.org/10.1038/jcbfm.2015.164
https://doi.org/10.3390/ijms25063433
https://doi.org/10.7150/jca.58076
https://doi.org/10.3390/cells10092477
https://doi.org/10.3390/life14060652
https://doi.org/10.3892/etm.2016.3599
https://doi.org/10.1186/s12859-018-2476-8
https://doi.org/10.1186/s12859-018-2476-8
https://doi.org/10.1016/j.genhosppsych.2015.01.005
https://doi.org/10.1016/j.genhosppsych.2015.01.005
https://doi.org/10.31083/j.fbl2904150
https://doi.org/10.3892/mmr.2024.13269
https://doi.org/10.31083/j.fbl2708225
https://doi.org/10.1016/j.bbcan.2011.09.003
https://doi.org/10.1177/03000605231174974
https://doi.org/10.3389/fmed.2024.1374260
https://doi.org/10.3791/60502
https://doi.org/10.53388/TMR20230829002
https://doi.org/10.31083/j.fbl2812323
https://doi.org/10.32604/biocell.2023.043494
https://doi.org/10.32604/biocell.2024.046178
https://doi.org/10.31083/j.rcm2501018
https://doi.org/10.31083/j.rcm2503091
https://doi.org/10.3340/jkns.2021.0035
https://doi.org/10.3340/jkns.2021.0035
https://doi.org/10.4172/2155-9562.1000201
https://doi.org/10.3389/fimmu.2024.1504629
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1504629
120. Zhou S, Jin J, Wang J, Zhang Z, Freedman JH, Zheng Y, et al. miRNAS in
cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta
Pharmacol Sin. (2018) 39:1073–84. doi: 10.1038/aps.2018.30
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GSEA Gene Set Enrichment Analysis
KEGG Kyoto Encyclopedia of Genes and Genomes
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FDR False Discovery Rate
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miRNAs MicroRNAs
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NCBI National Center for Biotechnology Information
ML Machine Learning
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MGE Microarray Gene Expression
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