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Background:Osteosarcoma (OS) is one of the most common primary malignant

bone tumors, primarily originating frommesenchymal tissue. It is notorious for its

high invasiveness, high disability rate, high mortality rate, and poor prognosis. In

most primary and metastatic malignant tumors, bone destruction can promote

cancer progression, which is closely related to osteoclast activation and the

imbalance between osteoblasts and osteoclasts. A large number of studies

confirmed that osteoclasts are an important part of OS, which play an active

role in destroying bone homeostasis and promoting the progress of OS.

Therefore, we conducted a detailed study of osteoclasts at the single cell level,

aiming to find new OS therapeutic targets to prevent tumor progression and

local spread.

Methods: We analyzed the single-cell sequencing data of OS patients and

usedMonocle2, Cytotrace, and Slingshot software to analyze the pseudo-

sequential trajectory during OS progression. CellChat was used to reveal the

communication between cells. PySCENIC was used to identify active

transcription factors in osteoclasts. Finally, we further demonstrated the

results by RT-qPCR analysis, CCK-8 assay, wound healing assay, Transwell

assay, etc.

Results: Through the analysis of single-cell sequencing data in OS, we identified

a highly specific subgroup, C2MKI67+ Osteoclast. The key signaling pathway APP

and the top 1 transcription factor PPARG in this subgroup played essential roles in

osteoclast proliferation and differentiation. Given the pivotal role of osteoclasts in

OS progression, we speculated that these signaling pathways and transcription

factors could emerge as novel therapeutic targets, offering innovative strategies

for OS treatment.

Conclusion: This study enhanced our understanding of OS and osteoclasts

through scRNA-seq. Furthermore, we discovered that PPARG amplifies

osteoclast activation and proliferation, resulting in excessive bone resorption

and degradation of the bone matrix, thereby creating a favorable environment
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for tumor cell proliferation and growth. By innovatively targeting PPARG, it

affected osteoclast proliferation and thus affected tumor progression; this

work offered new insights and directions for the clinical treatment of

OS patients.
KEYWORDS

single-cell sequencing, osteoclasts, osteosarcoma, cell communication, transcription
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Introduction

Osteosarcoma (OS) (1) is one of the most prevalent primary

malignant bone tumors, originating predominantly from

mesenchymal tissue. It is characterized by high aggressiveness, high

disability rates, high mortality rates, and a poor prognosis, with

pulmonary metastases potentially emerging within months (2, 3). OS

was one of the common pediatric cancers, which occured in children

and adolescents (4–8). The typical sites of OS onset are the long

bones, most commonly affecting the distal femur, proximal tibia, and

proximal humerus; they account for about 85% of all limb OS (9).

Patients commonly present with symptoms such as pain, palpable

masses, and other systemic manifestations (7). OS patients are

classified into two categories: localized and metastatic. Localized OS

accounts for about 80% of cases, with a five-year overall survival rate

below 70% and an amputation rate between 10% and 20% (10, 11).

Furthermore, about 70% of metastatic OS patients experience

pulmonary metastases, with a five-year survival rate of less than

30% (11). Among all OS cases, the classical subtype constitutes

approximately 70%, further divided into osteoblastic,

chondroblastic, and fibroblastic variants. This study focuses on

primary osteoblastic and primary chondroblastic classical OS,

employing single-cell transcriptomics for in-depth analysis (12).

Currently, surgery remains the cornerstone of OS treatment, with

chemotherapy and radiotherapy serving as adjuvant therapies. A

multimodal approach involving neoadjuvant chemotherapy (pre-

surgery), surgical resection, and adjuvant chemotherapy (post-

surgery) is commonly employed to achieve optimal treatment

outcomes (13, 14). Advances in gene testing, targeted therapy,

immunotherapy, CAR-T therapy, and stereotactic radiotherapy

have significantly extended survival times and improved the five-

year survival rates of OS patients. Concurrently, the development of

novel therapeutic agents for OS has progressed markedly. Commonly

used drugs include doxorubicin, cisplatin, methotrexate,

cyclophosphamide, epirubicin, carboplatin, and apatinib (15).

Targeted therapy, celebrated for its efficiency, low toxicity, and

convenience, has rapidly evolved. A large number of tyrosine kinase

inhibitors are under investigation for OS, with notable examples

including anti-angiogenic agents like pazopanib, sorafenib and

apatinib, and others. Despite these advancements, many patients

still face challenges in obtaining effective diagnosis and treatment. OS
02
is marked by strong chemoresistance, high recurrence, and a

proclivity for metastasis, leaving survival rates suboptimal. Thus,

enhancing early diagnosis, suppressing recurrence and metastasis,

and improving prognosis remain urgent and formidable challenges

addition, we also use a multimodal approach involving neoadjuvant

chemotherapy, surgery, and adjuvant chemotherapy to achieve the

purpose of treating OS. Although multimodal treatment significantly

improved the 5-year survival rate of OS patients, a substantial

number still experienced recurrence and metastasis, and the

survival rate remained suboptimal (16, 17).

The tumor microenvironment (TME) (18–21), composed of

tumor cells, tumor-associated fibroblasts, immune cells, endothelial

cells, various other cell types, and non-cellular components, creates a

complex and dynamic ecosystem (22). In most metastatic

malignancies, disruption of bone matrix integrity is closely linked

to cancer progression (20, 23). Overactivation of osteoclasts and

suppression of osteoblasts are pivotal factors driving bone metastases

(24). In OS, osteoclasts play a crucial role; their hyperactivity can lead

to degenerative bone diseases such as arthritis and osteoporosis (25–

27). Research indicates that osteoclasts promote bone resorption

through their osteolytic activity, disrupting bone homeostasis and

contributing to bone metastases in malignancies (28, 29). Osteoclasts

interact with various cell types in the OS TME, particularly OS cells

and osteoblasts, with key signaling pathways, such as the Wnt/b-
catenin pathway (30) and the RANK-RANKL pathway (31),

regulating their activity and involvement in bone metastases.

Additionally, osteoclasts secrete cytokines that further accelerate OS

progression (32, 33). While some studies suggest that osteoclasts are

potential therapeutic targets for OS, research on inhibiting their

overactivation remains insufficient, presenting new therapeutic

opportunities for OS treatment (34, 35).

Single-cell sequencing (scRNA-seq) (36–41), a high-throughput

method for analyzing gene expression at the single-cell level, has

been instrumental in deciphering the cellular composition of the

TME in OS patients. This study utilizes scRNA-seq to explore the

heterogeneity of osteoclasts, identifying key subpopulations and

specific targets. Experimental validation confirms these targets’

essential roles in osteoclast proliferation, activation, and

migration. These findings offer novel insights for clinical

treatment of OS, aiding in the optimization of diagnostic tools

and the development of more precise therapeutic strategies.
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Methods

OS data source

scRNA-seq data was obtained from the Gene Expression

Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/),

accession number GSE152048. Since the data comes from a

public database, ethical approval was not required.
ScRNA-seq data processing and cell
type identification

The Seurat package (version 4.3.0) was used to analyze OS data

(37). First, the DoubletFinder program (version 2.0.3) was employed

to filter out poor-quality cells, including doublets and multiplets,

from the OS samples (42–44). The criteria were set as follows:

300 ≤ nFeature_RNA ≤ 7500, 500 ≤ nCount_RNA ≤ 50000,

mitochondrial gene expression ≤ 25%, erythrocyte gene expression

≤ 5%, to select qualified cells. The data was normalized by the

“NormalizeData”function. Next, we identified 2000 highly variable

genes (HVGs) (45–47). The “scaleData” function standardized the

data. Principal component analysis (PCA) (48–51) was performed on

these highly variable genes using the “RunPCA” function, selecting the

top 30 PCs for dimensionality reduction clustering, and harmony

(version 0.1.0) was used to address batch effects. UMAP was used for

dimensionality reduction clustering analysis, and the results were

displayed in a two-dimensional space (52–54). For clustering the

reduced data, the FindNeighbors and FindClusters functions from the

Seurat package were used (55, 56). In addition, the “FindAllMarkers”

function, single-cell public databases (CellMarker), and published

articles were utilized to find corresponding single-cell annotation

reference datasets, marker genes, and differentially expressed genes

(DEGs) to improve annotation accuracy (57).
Gene Ontology, Kyoto Encyclopedia of
Genes and Genomes, Gene Set
Enrichment Analysis

GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes

and Genomes) (58–61) were commonly used databases. GO’s

functional datasets (62, 63) were divided into three subclasses:

Biological Process (BP), Molecular Function (MF), and Cellular

Component (CC). The fixed thresholds were set as |log2FoldChange|

> 1 and FDR <0.05 to screen for differentially expressed genes, followed

by pathway enrichment analysis. Gene set enrichment analysis (GSEA)

(64–66) sorted the predefined gene set according to the degree of

differential expression in the two types of samples and evaluated the

enrichment of the gene set in the ranking list, with P-values <0.05

indicating significant pathways and the normalized enrichment score

(NES) ranking pathways from high to low.
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Pseudotemporal ordering of OS

The Monocle2 software (67) toolkit (version 2.22.0) was used to

construct single-cell pseudotime trajectories, analyzing cellular

changes during OS progression. DDRTree technology was

employed for dimensionality reduction, followed by cell sorting

and assigning each cell a pseudotime value. Reduced-dimension

cells were displayed in a two-dimensional space, forming a tree

structure, with cells at the root considered the initial state. Cells

were colored based on pseudotime values for visualization.

CytoTRACE evaluated stemness and differentiation potential in

Osteoclasts in OS single-cell data. Slingshot(version 2.6.0) observed

the cell trajectory during differentiation, which was used to infer the

dynamic expression level of cells in different differentiation

trajectories. The getLineages and getCurves functions constructed

a minimum spanning tree (MST) based on cell clusters,

determining the overall lineage structure and depicting gene

expression changes over the differentiation trajectory. The results

were visualized and evaluated.
Cell-cell communication

To study intercellular communication in OS, the “CellChat”

package (version 1.6.1) (68)was used, primarily exploring cell

interactions, ligand-receptor pairs, and signaling pathways

between osteoclasts and other cell types (67).
Transcription factor analysis

SCENIC, based on co-expression and motif analysis, revealed

gene regulatory network reconstruction and transcription factor

activity. This study used the pySCENIC (version 0.10.0) package in

Python (version 3.7). AUCell was mainly used to evaluate the

activity of regulon in each cell.
Cell culture and transfection

Cell culture Osteoclast cell lines were collected from American

Type Culture Collection (ATCC). The cell line was cultured in

human osteoclast complete medium containing 10% fetal bovine

serum (FBS), 1% streptomycin, and penicillin (Gibco BRL, USA).

The standard incubation conditions were 37°C, 5% CO2, and 95%

humidity. In this study, PPARG knockdown was achieved using

small interfering RNA (siRNA) constructs. The cells were seeded in

a 6-well plate at a confluence of 50% and transfected with two small

interfering RNAs that knocked down PPARG (Si-PPARG-1 and Si-

PPARG-2) and a negative control (Si-NC). The steps described

were performed according to Lipofectamine 3000RNAiMAX

(Invitrogen, USA).
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RT-qPCR analysis

RT-qPCR was a molecular biology technique used for

detecting and quantitatively analyzing the expression levels of

specific genes (69). We extracted total RNA from cell lines using

TRIzol reagent and subsequently reverse transcribed the mRNA

into cDNA using the PrimeScript™ RT reagent kit (Vazyme,

R232-01). For real-time quantitative PCR (RT-qPCR), we used the

SYBR Green Kit (TaKaRa Biotechnology, Dalian, China), with

GAPDH as the internal control. The specific primer sequences are

listed in Supplementary Figure 1.
Cell-counting kit-8 assay

The cell viability of transfected osteoclasts was assessed using

the CCK-8 assay. Cell suspensions were seeded into 96-well plates

(Corning, USA, 3599) at a density of 5×10³ cells per well and

cultured for 24 hours. Cells were then treated with CCK-8 reagent

(A311-01, Vazyme) and incubated in a dark environment at 37°C

for 2 hours. On days 1, 2, 3, and 4, the absorbance at 450 nm was

measured using a microplate reader. The average OD values were

calculated and represented as a line graph.
Wound healing assay

Also known as the scratch assay, the wound healing assay is

commonly used to study cell migration ability and cell-cell

interactions. Transfected osteoclasts were placed in a 6-well plate

(Corning, USA, 3516) and cultured in an incubator until the cell

density reached approximately 95%. A sterile 200 μL pipette tip was

then used to create a straight-line scratch on the cell monolayer. We

washed away cell debris and floating cells with PBS (phosphate-

buffered saline) to avoid interference with subsequent observations.

The cells were then transferred to serum-free cell culture medium

and cultured. We captured images at the same location at 0 hours

and 48 hours, and the change in scratch width was measured using

image analysis software (ImageJ).
Transwell assay

The Transwell assay was a commonly used in vitro method to

study cell migration and invasion, focusing on cell migration ability

and invasion ability. Transwell chambers with or without Matrigel

matrix (BD Biosciences, USA). The upper chamber (using serum-

free medium), the lower chamber (using complete medium), we

inoculated 1 × 104 cells in the upper chamber and cultured for 48

hours. The cells were then fixed with 4% paraformaldehyde (PFA)

and stained with 0.1% crystal violet (Solarbio, China). Cell counting

was performed under an optical microscope, and the migrated cells

were photographed and quantified.
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Statistical analysis

We used R software (version 4.3.0) and Python software

(version 4.2.0). In addition, the Wilcoxon paired nonparametric

test and Pearson correlation coefficient were used in the study (70).

Statistically significant data with P-values <0.05 were considered,

including * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns

indicated no statistical difference.
Results

Identification of cell types and
heterogeneity in OS

First of all, we showed the flow chart of this article as shown in

Figure 1. The data of this study were derived from sample number

GSE152048. We analyzed it by scRNA-seq. Visualized using UMAP

plots, OS was categorized into nine cell types: ECs, Osteoblastic

proliferating cells, Osteoclasts, Myeloid cells, Chondroblastic,

Osteoblastic, Pericytes, Myoblasts, and TIL (Figure 2A). A total of

43 seurat clusters were identified (Figure 2B), and the sample origins

included BC10 (15229), BC11 (11874), BC16 (9025), BC17 (3877),

BC2 (5650), BC20 (9361), BC21 (5615), BC22 (7981), BC3 (8061),

BC5 (17032), and BC6 (17651) (Figure 2D). The dataset comprised

two distinct groups:osteoblastic OS (94014) and chondroblastic OS

(17342), with the latter primarily located in the lower left region

(Figure 2C). Notably, in the cell cycle distribution, G2M and S phases

were concentrated in the upper right and left sides, indicating rapid

cell proliferation and a highly differentiated state (Figure 2E). In

addition, bar diagrams illustrate the cell cycle, group and sample of

the nine cell subtypes Osteoblastic was highly expressed in both tissue

types, whereas Osteoclast was predominantly found in OS, with a

proportion second only to Osteoblastic and Myeloid cells (Figure 2F).

The bubble diagram showed the top 5 marker genes of each cell type

in OS (Figure 2G). Violin plots displayed the expression of S.Score,

G2M.Score, Cell_Stemness_AUC, and nFeature_RNA among the

nine cell types. Results showed higher S.Score and G2M.Score in

Osteoblastic proliferating cells, correlating with its proliferative phase.

ECs exhibited the highest Cell_Stemness_AUC, while Myeloid cells,

Chondroblastic, and Osteoclasts showed strong performances in

nFeature_RNA (Figure 2H). Finally, GOBP enrichment analysis for

the nine cell types highlighted their enriched pathways: chromosome

segregation, ameboidal-type cell migration, muscle organ

development in myoblasts, cytoplasmic translation, aerobic

respiration, leukocyte-mediated immunity, and so on (Figures 2I-K).
Annotation and enrichment analysis
of osteoclasts

Previous experience showed that osteoclasts were a key link in

the formation and progression of OS, and their performance in OS

was also highly specific. Therefore, this study mainly analyzed

osteoclasts from a single-cell perspective. Visual analysis of
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Osteoclasts via UMAP plots identified six seurat clusters (Figure 3B)

and six cell subtypes: C0 AK5+ Osteoclast, C1 MALAT1+

Osteoclast, C2 MKI67+ Osteoclast, C3 C1QC+ Osteoclast, C4

CD2+ Osteoclast, and C5 MX1+ Osteoclast (Figure 3A). The

sample origins included BC10 (394), BC11 (58), BC16 (1064),

BC17 (153), BC2 (493), BC20 (56), BC21 (1697), BC22 (66), BC3

(1398), BC5 (1487), and BC6 (3281) (Figure 3C). G1 phase was

primarily on the right, while G2M and S phases were on the left,

notably in the C2 MKI67+Osteoclast cluster, indicating high

proliferation and differentiation (Figure 3D). The samples were

divided into Chondroblastic OS (122) and Osteoblastic OS (10025)

(Figure 3E). Violin plots showed C2 MKI67+ Osteoclast exhibited

high S Score, G2M Score, CNVscore, and Cell_Stemness_AUC

(Figure 3F), suggesting its crucial role in osteoclast generation and

differentiation. Bubble plots highlighted the marker genes of the six

osteoclast cell subtypes: C0 AK5+ Osteoclast (CTSK, CA2, CKB,

GLRX, ACP5), C1 MALAT1+ Osteoclast (COL1A1, COL1A2,

LUM, SPARC, COL3A1), C2 MKI67+ Osteoclast (HLA-DRA,

HIST1H4C, C1QA, CD74, C1QB), C3 C1QC+ Osteoclast (CD14,

C1QC, C1QB.1, C1QA.1, APOC1), C4 CD2+ Osteoclast (GZMA,

CD69, CD52, CCL5, IL32), and C5MX1+ Osteoclast (IFIT3, ISG15,

IFI6, NUPR1, IFI27) (Figure 3G). Enrichment analysis displayed

pathways for each osteoclast subtype (Figure 3H). GSEA

enrichment analysis for C2 MKI67+ Osteoclast showed

upregulation in pathways like antigen processing and presentation

of exogenous peptide antigen and so on (Figure 3I). The enrichment
Frontiers in Immunology 05
network diagram further showed the enrichment of osteoclast

subsets (Figure 3J).
Visualization of pseudo-sequential analysis
of osteoclasts in OS

CytoTRACE software was used to analyze and visualize the

differentiation of osteoclasts, and the differentiation potential of

osteoclasts was predicted to be C2-C0-C4-C5-C3-C1 from high to

low. Among these, C2 MKI67+ Osteoclasts demonstrated the

highest stemness and differentiation potential (Figures 4A, B).

Monocle2 computed the overall differentiation sequence, moving

from the lower left to the upper right to differentiation point 2,

then branching into two paths from differentiation point 3

(Figure 4C). The differentiation sequence of osteoclasts across

different states, cell subtypes, and cell cycles was confirmed. The

analysis revealed that C2 and C3 subtypes were positioned at the

starting phase, C1 subtypes were evenly distributed throughout,

while C0, C4, and C5 subtypes were concentrated near

the terminal phase (Figure 4D). State differentiation aligned

with the overall sequence, with C2 primarily in state 1,

indicating the beginning of the time trajectory (Figure 4E). Cell

cycle differentiation showed G2M and S phases at the start, mainly

in the C2 subtype, indicating high cell division and proliferation

(Figure 4F). Ridge plots displayed the differentiation sequence,
FIGURE 1

Article flow chart. ScRNA-seq analysis of 10,147 osteoclasts in osteosarcoma tissues showed that C2 MKI67 + Osteoclast was a key subgroup and
expressed the characteristics of high proliferation and differentiation, which was verified by cell trajectory. In addition, we also found that the
signaling pathway APP and the transcription factor PPARG may provide new ideas for treatment of OS. The results showed that the related targets
played an important role in the proliferation, activation, and migration of osteoclasts.
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with C2 MKI67+ Osteoclast at the initial position (Figure 4G).

Named gene trajectory analysis also showed MKI67 at the

beginning of the pseudotime trajectory (Figure 4H). In addition,

the dynamic changes of osteoclast-related genes during the whole

differentiation process were shown by a heat map (Figure 4I).
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UMAP, violin, and bar plot validated this order: C2-C3-C5-

C1-C0-C4, state 1 accounting for 36.8% and state 7 for 13% in C2

(Figure 5A). UMAP, violin, and bar plot confirmed G2M phase at

67.8% and S phase at 42.3% in the C2 subtype (Figure 5B).

Slingshot pseudotime analysis was performed on 6 subgroups,
FIGURE 2

ScRNA-seq revealed the tumor microenvironment of OS. (A) UMAP plots depicted the distribution of 9 cell types in OS, with each point representing
a cell. Similar cell types clustered together, including: ECs, Osteoblastic proliferating cells, Osteoclasts, Myeloid cells, Chondroblastic, Osteoblastic,
Pericytes, myoblasts, TIL. (B) UMAP plots showed 43 cell clusters in OS patients and the number of cells in each cluster. (C) UMAP plots categorized
OS patients into two groups: osteoblastic (yellow) and chondroblastic (blue). (D) UMAP plots displayed the sample sources of OS patients, including:
BC10, BC11, BC16, BC17, BC2, BC20, BC21, BC22, BC3, BC5, BC6. (E) UMAP plots illustrated cell cycles during OS progression, including: G1 (gray),
G2M (green), and S (red). (F) Histograms depicted the percentage of 9 cell types in the cell cycles, groups, and samples. (G) The bubble diagram
displayed that the top 10 marker genes in different cell types. (H) Violin plots showed S.core, G2M.score, Cell-Stemness-AUC, cell_Stemness_AUC,
and nFeature-RNA of 9 cell types. (I) The GOBP enrichment analysis bar chart showed biological processes related to 9 cell types. (J) The
enrichment network diagram displayed the enrichment of all differential genes in various cell subsets in OS. (K) Cloud charts displayed the GO-BP
enrichment analysis results of various cell subsets in OS.
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FIGURE 3

Visualization of osteoclasts. (A) UMAP plots showed the distribution of 6 subgroups of osteoclasts, including: C0 AK5+ Osteoclast (purple), C1
MALAT1+ Osteoclast (red), C2 MKI67+ Osteoclast (green), C3 C1QC+ Osteoclast (brown), C4 CD2+ Osteoclast (orange), C5 MX1+ Osteoclast (pink).
(B) UMAP plots depicted 6 seurat clusters of osteoclasts and their cell numbers. (C) UMAP plots displayed the sample sources and cell numbers of
osteoclasts in OS patients. (D) UMAP plots illustrated the distribution of osteoclasts in cell cycles and their cell numbers. (E) UMAP plots showed the
distribution and cell numbers of osteoclasts in osteoblastic (yellow) and chondroblastic (blue) groups. (F) Violin plots displayed characteristics of 6
osteoclasts subgroups, including S.core, G2M.score, CNVscore, and Cell-Stemness-AUC. (G) Bubble plots showed differential expression of top 5
marker genes among 6 osteoclasts subgroups. Bright yellow indicated stronger specificity, with size representing the percentage of gene expression
within subgroups. (H) Enrichment analysis diagram displayed biological processes related to 6 osteoclasts subgroups in GOBP enrichment analysis.
(I) GSEA enrichment analysis plots showed 5 upregulated and 5 downregulated enrichment entries associated with the C2 subgroup. (J) The
enrichment network diagram showed the enrichment of osteoclast subsets.
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showing two lineages: lineage1 (C2-C3-C1-C0-C4) and lineage2

(C2-C3-C1-C5), with C2 MKI67+ Osteoclast at the start of both

(Figure 5C). State differentiation showed that the C0 subtype

mainly corresponded to state 2, while the C2 subgroup mainly
Frontiers in Immunology 08
corresponded to state 1 (Figure 5D). UMAP plots illustrated the

differentiation sequences of lineage 1 osteoclast trajectorie across

various cell cycles (Figure 5E). These analyses identified C2

MKI67+ Osteoclast as the key subtype. Enrichment analysis for
FIGURE 4

Pseudo-sequential analysis of osteoclasts was demonstrated through CytoTRACE and monocle. (A, B) Visual representation of CytoTRACE results for
osteoclasts predicted their differentiation sequence ranked from high to low: C2-C0-C4-C5-C3-C1. (C) Pseudo-sequential analysis of osteoclasts.
Colors transitioned from red to gray, indicating increasing differentiation. (D) Pseudotemporal differentiation trajectories of 6 osteoclasts subgroups.
(E) Pseudotemporal differentiation trajectories of osteoclasts across states. (F) Pseudotemporal differentiation trajectories of osteoclasts across cell
cycles. (G) Ridge plot displayed the differentiation sequence of 6 osteoclasts subgroups. (H) Pseudotemporal differentiation trajectories of genes
named for 6 osteoclasts subgroups (MX1, MKI67, CD2, C1QC, MALAT1, AK5). (I) Heatmap displayed dynamic changes in osteoclasts-related genes
throughout the differentiation process.
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cell subtypes showed pyrimidine, deoxyribonucleotide, cycle,

leukocyte activation, antigen chemotaxis, and other entries

enriched mainly in the C2 subtype in both differentiation

trajectories (Figure 5F).
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Cell-cell interaction in OS

Using interaction analysis, we established a cellular

communication network among various cell types in OS, including
FIGURE 5

Pseudotemporal differentiation process of osteoclasts was demonstrated through slingshot. (A) UMAP, violin plot and bar graphs illustrated the
differentiation sequence and state distribution among osteoclast subgroups, identifying the sequence as C2-C3-C5-C1-C0-C4. (B) UMAP, violin plot
and bar graphs depicted the cell cycles in osteoclast subgroups. ****p < 0.0001. (C) UMAP plots revealed two differentiation trajectories (lineage 1
and lineage 2) of osteoclasts along with their respective differentiation sequences. (D) UMAP plots depicted the differentiation sequences of lineage1
osteoclast trajectorie across different states. (E) UMAP plots illustrated the differentiation sequences of lineage1 osteoclast trajectorie across various
cell cycles. (F) The heatmaps presented the GO-BP enrichment analysis, showcasing the biological processes associated with the two osteoclast
differentiation trajectories.
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ECs, Osteoblastic proliferating cells, Myeloid cells, Chondroblastic,

Osteoblastic, Pericytes, Myoblasts, TIL, and six osteoclast subtypes

(Figure 6A). The interaction number (Figure 6B) and strength

(Figure 6C) were depicted in circle plots, and the thickness of the

connecting lines was correlated with the expression of quantity and

strength to identify key input and output signals related to the six

osteoclast subtypes, we illustrated the incoming and outgoing

communication patterns through bubble plots, predicting them.

Cell subsets could act as secretory cells (signal senders) releasing

cytokines or ligands or as target cells (signal receivers) when their

receptors were targeted by ligands released by other cells. We found

that the six osteoclast subtypes, when acting as secretory cells,

released cytokines or ligands such as APP, GALECTIN, CLEC,

ITGB2, etc. As target cells, their receptors included COLLAGEN,

APP, andMIF (Figure 6D). In addition, according to the heat map, in

incoming signaling patterns, the APP signaling pathway was strongly

expressed in some osteoclast subsets, while in outgoing signaling

patterns, the APP signaling pathway was mainly related to ECs and

chondroblastic (Figure 6E).
APP signaling pathway in osteoclasts and
APP-CD74 ligand-receptor pair

In order to further study the interaction between osteoclasts and

tumor cells, we screened out the pathways that interact with tumor

cells. We found that the specific signaling pathway in cell

interaction was the APP signaling pathway. To explore the mode

of action of the APP signaling pathway, bubble plots showed high

expression of SPP1-CD44, APP-CD74, and HLA-DRA-CD4

ligand-receptor pairs when osteoclasts acted as secretory or target

cells (Figure 7A). Then we performed a “centrality measurement”,

which showed the relative importance of each cell type as a sender,

receiver, mediator, and influencer in the APP signaling pathway

network through heatmap. The results showed that in the APP

signaling pathway, the C2 subgroup had the higher expression as a

receiver and influencer (Figure 7B). The violin plot showed cell-cell

interactions and found that the C2 subgroup was highly expressed

on CD74 and the Chondroblastic was highly expressed on APP

(Figure 7C). Then, the interaction between the cells in the APP

signaling pathway and the interaction between the cell subsets in the

APP-CD74 ligand-receptor pair with specificity were shown by the

circle plots (Figure 7D). We knew that all cell types were the source

cells of the APP signaling pathway. We needed to select specific cell

types as potential target cells and visualize the potential targets of

APP released by different cell types through hierarchical maps

(Figure 7E). The APP-CD74 ligand-receptor pair interpretation of

the layer diagram was similar to Figure 7F.
Oxidative phosphorylation metabolic
pathway in osteoclasts

We further explored cell metabolism to identifymetabolic pathways

closely associated with osteoclasts. First, we calculated and visualized the

AUCell scores of the top 5 metabolic pathways across six osteoclast
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subsets. These pathways included oxidative phosphorylation, riboflavin

metabolism, the citrate cycle (TCA cycle), glycolysis/gluconeogenesis,

and pyruvate metabolism (Figure 8A). Next, we presented the AUCell

scores of the top 5 metabolism-related pathways across different cell

cycles (Figure 8B) and groups (Figure 8C). Our analysis revealed that

oxidative phosphorylation was the metabolic pathway most strongly

associated with osteoclasts. Using UMAP and facet diagrams, we

displayed the distribution of AUCell values (Figures 8D, E) for

oxidative phosphorylation across different osteoclast subsets, groups,

and cell cycles.

Finally, bar plots indicated that oxidative phosphorylation was

highly expressed in several osteoclast subsets and exhibited higher

activity during the osteoblastic and G1 phases (Figure 8F).
Gene regulatory network of
osteoclast subgroups

To identify core transcription factors (TFs) within the six

osteoclast subgroups, we conducted an analysis using PySCENIC.

This approach also allowed us to infer the gene regulatory networks

specific to each osteoclast subset. Initially, through heatmap analysis,

we identified the top 5 TFs within the six osteoclast subgroups, with

PPARG, E2F8, MYB, SPIB, and IRF5 prominent in the C2 subgroup

(Figure 9A). Using pySCENIC software, we ranked regulons based

on their regulatory specificity scores (RSS), where a higher RSS

indicated the regulon had a closer relationship to the cell type. The

scatter diagrams showed the binarized regulon activity scores (RAS)

of the major regulators (green dots) in osteoclast subgroups. The top

5 TFs in each subgroup were MLX, RELB, ATF4, XBP1, and ZNF580

in C0; NKX3-2, KLF8, HOXD1, ZFP37, and NFIX in C1; PPARG,

E2F8, MYB, SPIB, and IRF5 in C2; PPARG, SPIC, ETV4, IRF5, and

HES1 in C3; MYCN, GFI1, GATA3, EOMES, and ETS1 in C4;

NR1L2, NFE2L3, SRF, IRF9, and TLX2 in C5 (Figure 9B). The most

active TFs in each subgroup were MLX, NKX3-2, PPARG, MYCN,

and NR1I2. UMAP plots also illustrated the distribution of these six

osteoclast subgroups (orange dots) (Figure 9C). Additionally, we

highlighted the most specific regulons: MLX in the C0 subgroup,

NKX3-2 in C1, PPARG in C2, PPARG in C3, MYCN in C4, and

NR1L2 in C5. UMAP plots demonstrated the distribution and

expression patterns of the most active TFs (Figures 9D, E). To

further understand their expression variations across subgroups

(Figure 9F) and cell cycles (Figure 9G), violin plots depicted the

distribution of MLX primarily in C1 and C4 during the G1 phase,

NKX3-2 mainly in C1 during the G2M and S phases, PPARG

predominantly in C2 and C3 during the G2M and S phases,

MYCN in C4 with less pronounced phase-specific expression, and

NR1L2 in C5. In this study, we identified the C2 subgroup as pivotal,

with PPARG identified as its most active TF. Numerous studies have

associated PPARG with osteoclast differentiation and proliferation.
TF regulatory modules of osteoclasts

We found the regulatory module of osteoclast subtypes by the

connection specific index (CSI) matrix. We categorized TFs into
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four main modules (M1, M2, M3, and M4) and mapped these

modules onto UMAP plots, initially highlighting M1-related

expression (Figure 10A). In order to understand the correlation of

transcriptional regulation activity between osteoclast subsets in OS,

we analyzed osteoclast subsets in different cell cycles. The results

were shown in the figure (Figure 10B). Using facet graphs, we

detailed the M1 distribution across various osteoclast subgroups,

noting the highest expression in C1 and the lowest in C0. Validation
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through violin plot confirmed these findings, with regulatory

activity scores sorting cell subgroups as follows: C1, C3, C5, C2,

C4, and C0 (Figure 10C). We further illustrated the distribution of

M2 (Figure 10D), M3 (Figure 10E), and M4 (Figure 10F) modules

on UMAP plots and facet graphs, providing additional

confirmation through violin plots and scatter plots. Based on the

regulatory activity score, the expression levels of each subgroup in

M2 were C2, C3, C5, C4, C1 and C0, respectively. The expression
FIGURE 6

Cell communication visualization in OS. (A) Circle plots depicted the number and weight of interactions among 9 cell types in OS. (B, C) Circle plots
depicted the number (top) and weight (down) of interactions of osteoclasts with other cell types. (D) Bubble plots displayed incoming and outgoing
communication patterns of target and secreting cells, further illustrating cell interactions between osteoclasts and other cell types. (E) Heatmap
showed input and output signal strengths of interactions among all cell types.
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levels of each subgroup in M3 were C4, C5, C2, C3, C0 and C1. In

M4, followed by C0, C4, C5, C3, C1, C2.

We sorted the TFs, with the top 5 TFs in M1 being IRF9,

STAT2, EOMES, E2F1, and E2F7 (Figure 11A). In M2, the top 3
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TFs were NR1I2, ETV7, IRF7, PPARG, and SPIB (Figure 11B). In

M3, they were NFE2L3, GATA3, SRF, IRF1, and FOS

(Figure 11C). In M4, they were MLX, RELB, ATF4, XBP1, and

SPI1 (Figure 11D). We then analyzed the top 3 TFs in each
FIGURE 7

APP signaling pathway and APP-CD74 Ligand-Receptor Pair. (A) Bubble plots displayed the expression of receptor pairs when the C2 subgroup
served as either source (left) or target (right), and when other subgroups served as targets (left) or sources (right). (B) Heatmap showed centrality
scores of cell types in the APP signaling pathway network. (C) Violin plots showed cell interactions in the APP signaling pathway network. (D) Circle
plots displayed cell interactions among the APP signaling pathway and the APP-CD74 ligand-receptor pair among osteoclast subgroups. (E, F) The
hierarchical diagram showed interactions among cells in the APP signaling pathway and the APP-CD74 ligand-receptor pair, with thicker lines
indicating stronger interactions.
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module, showing the distribution of them in each subgroup on

UMAP plots, and their expression in different cycles was shown in

the violin diagram. For instance, the distribution and expression

of EOMES, STAT2, and IRF9 in osteoclast subsets in M1 were

demonstrated (Figure 11E). Similarly, the distribution and
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expression of NR1I2, ETV7, and IRF7 in each subgroup and cell

cycle in M2 (Figure 11F). The distribution and expression of

NFE2L3, GATA3, and SRF in M3 (Figure 11G). Finally, the

distribution and expression of MLX, RELB, and ATF4 in

M4 (Figure 11H).
FIGURE 8

Metabolic pathways related to osteoclast subsets. (A) The heatmap showed the AUCell score of the top 5 metabolic pathway of osteoclast subsets.
(B) The heatmap showed the AUCell scores of top 5 metabolism-related pathways in different cell cycles (G1, G2M, and S phases). (C) The heat map
showed the AUCell scores of the top 5 metabolic-related pathways in different groups (chondroblastic, osteoblastic). (D, E) The UMAP plot and the
faceted graphs showed the distribution of AUCell values of oxidative phosphorylation in 6 osteoclast subsets, 2 groups, and 3 cell cycles. (F) The bar
plots showed differences in the expression levels of oxidative phosphorylation in 6 osteoclast subsets, 2 groups, and 3 cell cycles. ****p < 0.0001.
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Silencing PPARG inhibited osteoclast
proliferation and migration

To further understand the function of PPARG, we conducted in

vitro functional assays. First, RT-qPCR was used to detect the

expression level of PPARG after transfection to determine the
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effectiveness of siRNA-mediated PPARG knockdown in osteoclast

cell lines. The results showed that knocking down PPARG

significantly inhibited its expression in osteoclasts (Figure 12A).

Next, the CCK-8 assay demonstrated that the proliferation capacity

of the two osteoclast groups with PPARG knockdown was

significantly reduced, and cell viability markedly decreased
FIGURE 9

Gene regulatory network (GRN) of Osteoclast subgroups. (A) The heatmap displayed the expression levels of the top 5 transcription factors (TFs)
across each osteoclast subgroup. The UMAP diagram illustrated the distribution patterns of these osteoclast subsets. (B) Scatter diagrams showed
the distribution of the top 5 regulons (green dots) among the 6 osteoclast subgroups. (C) UMAP plots displayed the distribution of these 6 osteoclast
subgroups (orange dots). (D) UMAP plots displayed the distribution of the most active regulons in each osteoclast subgroup. (E) UMAP plots
displayed the distribution of the most active TFs in each osteoclast subgroup. (F) Violin plots displayed expression of the most active TFs in the 6
osteoclast subgroups. (G) Violin plots displayed expression of the most active TFs across cell cycles in the 6 osteoclast subgroups. *p < 0.05, ****p <
0.0001, ns indicated no statistical difference.
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compared to the control group (Figure 12B). The results of the

Transwell experiment showed that the staining area of the PPARG

knockdown cell line was significantly smaller than that of the

control group, indicating that silencing the PPARG gene slowed
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down the migration of osteoclasts (Figure 12C). In the wound

healing assay, the migration rate of the two osteoclast groups with

PPARG knockdown was slower, with a statistically significant

result (Figure 12D).
FIGURE 10

TF regulatory modules of Osteoclasts. (A) The heatmap showed the TF regulon modules (M1, M2, M3, and M4) of osteoclast subsets. (B) The
heatmap displayed the transcriptional regulation activity between osteoclast subsets in different cell cycles. (C) UMAP plots and facet graphs showed
expression associated with M1, with specific distribution details among osteoclast subgroups. Violin plot detailed the distribution of M1 among
osteoclast subgroups by regulon activity score, and scatter plots depicted subgroup sequences. (D) UMAP plots and facet graphs showed expression
associated with M2, with specific distribution details among osteoclast subgroups. Violin plot detailed the distribution of M2 among osteoclast
subgroups by regulon activity score, and scatter plots depicted subgroup sequences. (E) UMAP plots and facet graphs showed expression associated
with M3, with specific distribution details among osteoclast subgroups. Violin plot detailed the distribution of M3 among osteoclast subgroups by
regulon activity score, and scatter plots depicted subgroup sequences. (F) UMAP plots and facet graphs showed expression associated with M4, with
specific distribution details among osteoclast subgroups. Violin plot detailed the distribution of M4 among osteoclast subgroups by regulon activity
score, and scatter plots depicted subgroup sequences.
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Discussion

OS (1) is the most common primary malignant bone tumor,

characterized by its high aggressiveness and poor prognosis. This

disease primarily affects children and adolescents, making it one of
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the most prevalent malignancies in this population (4). Despite

advancements in treatment, the survival rate for osteosarcoma

patients remains concerning: the survival rate for primary

osteosarcoma is below 70%, while for metastatic osteosarcoma, it

further declines to less than 30% (10). Currently, osteosarcoma
FIGURE 11

Visualization of TFs in Osteoclasts. (A) Scatter plot ranked TFs in M1 by variance fraction. (B) Scatter plot ranked TFs in M2 by variance fraction.
(C) Scatter plot ranked TFs in M3 by variance fraction. (D) Scatter plot ranked TFs in M4 by variance fraction. (E) UMAP plots displayed expression of
the top 3 TFs (EOMES, STAT2, IRF9) in M1, with histograms showing their expression across osteoclast subgroups and cell cycles. (F) UMAP plots
displayed the expression of the top 3 TFs (NR1I2, ETV7, and IRF7) in M2, with histograms showing their expression.across osteoclast subgroups and
cell cycles. (G) UMAP plots displayed expression of the top 3 TFs (NFE2L3, GATA3, and SRF) in M3, with histograms showing their expression across
osteoclast subgroups and cell cycles. (H) UMAP plots displayed expression of top 3 TFs (MLX, RELB, and ATF4) in M4, with histograms showing their
expression across osteoclast subgroups and cell cycles.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1506225
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1506225
treatment primarily relies on multidisciplinary approaches,

including surgery, chemotherapy, and emerging targeted

therapies. In recent years, significant progress has been made in

research on targeted therapies for osteosarcoma. However, due to

the high drug resistance of osteosarcoma, improving patient

survival remains a pressing challenge.

Osteoclasts, as the only cells with bone-resorbing capabilities,

primarily mediate the destruction of inorganic bone components

and the degradation of collagen through the secretion of acidic

substances and proteolytic enzymes (71). The bone-resorbing

activity of osteoclasts plays a critical role in both primary and
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metastatic osteosarcoma. Additionally, the interactions between

osteoclasts, osteoblasts, and malignant osteosarcoma cells form a

vicious cycle that not only disrupts bone homeostasis but also

promotes the progression of osteosarcoma. Osteoclasts will be a key

target for the treatment of OS (33, 72). Therefore, this study aims to

utilize scRNA-seq technology to uncover the characteristics and

functions of highly heterogeneous osteoclast subpopulations in

osteosarcoma, track their dynamic changes during tumor

progression, and precisely identify key signaling pathways and

transcription factors in osteosarcoma. This provides novel

insights into the feasibility of targeting osteoclasts for
FIGURE 12

Validation of PPARG In Vitro Experiments. (A) RT-qPCR was used to detect the expression level of PPARG in osteoclasts. (B) The CCK-8 assay
showed that PPARG knockout inhibited osteoclast proliferation, with a significant decrease in cell viability. (C) The Transwell assay demonstrated that
PPARG knockdown significantly reduced the migration of osteoclasts. (D) The scratch assay indicated that PPARG knockdown significantly slowed
down osteoclast migration. ***p < 0.001.
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osteosarcoma treatment and offers a scientific basis for developing

personalized treatment plans for patients. Firstly, in order to reveal

the heterogeneity of osteoclasts in OS and further understand the

molecular characteristics of osteoclasts, we subdivided them into 6

subgroups. Each osteoclast subpopulation was named after its

highest-expressing gene: C0 AK5+ Osteoclast, C1 MALAT1+

Osteoclast, C2 MKI67+ Osteoclast, C3 C1QC+ Osteoclast, C4

CD2+ Osteoclast, and C5 MX1+ Osteoclast. The analysis of these

subgroups revealed that C2 MKI67+ Osteoclasts exhibited the

highest expression levels during the S phase and G2/M phase,

along with elevated cell stemness AUC scores. Notably,

integrating Monocle, CytoTRACE, and Slingshot analyses

highlighted that this subgroup had a higher CytoTRACE score

and was positioned at the early stage of the cell differentiation

trajectory. Additionally, we observed that the C2 MKI67+

Osteoclasts subgroup demonstrated significant activity and was in

a phase of high proliferation and differentiation, closely associated

with the generation and differentiation of a large number of

Osteoclasts. The naming gene for this subpopulation was MKI67.

Studies have shown that MKI67 is an antigen identified by the

monoclonal antibody Ki-67, a cell proliferation-associated protein

encoded by the MKI67 gene. It is predominantly expressed in

proliferating cells and widely used in clinical practice. Research

further indicates that Ki-67 (MKI67), as a vital prognostic marker,

has been extensively applied in the identification of various cancers,

including breast cancer, gastric cancer, cervical cancer, and lung

cancer (5, 73–81).

Furthermore, studies had shown that Ki-67 levels were closely

related to the proliferative activity and malignancy of OS. The

remarkable proliferation and differentiation capacity of C2 MKI67+

osteoclasts is closely associated with this gene. Given the high

biological activity of this subgroup, we speculate that it possesses

strong bone resorption capabilities, potentially leading to bone

tissue destruction and influencing the onset and progression

of osteosarcoma.

Enrichment analysis of the C2 MKI67+ Osteoclast subgroup

revealed its close association with processes such as chromosome

segregation, mitotic nuclear division, sister chromatid segregation,

mitotic sister chromatid segregation, and nuclear chromosome

segregation. Additionally, it was upregulated in pathways such as

antigen processing and presentation of exogenous peptide antigen,

as well as antigen processing and presentation of exogenous

antigen. These enriched pathways are primarily associated with

normal mitosis and cell division, providing evidence for the high

proliferation status of this subgroup. This further underscores the

importance of focusing on it as a key research subject.

We also examined the role of signaling pathways and related

ligand-receptors pair in osteoclasts, analyzing interactions between

osteoclasts and other cell types using Cellchat methods, particularly

focusing on the crosstalk between C2 MKI67+ Osteoclast and

tumor cells. Studies have shown that in outgoing signaling

patterns, the APP signaling pathway was strongly expressed in

some osteoclast subsets, while in incoming signaling patterns, the

APP signaling pathway was mainly related to ECs and

chondroblastic. Accordingly, we identified the significant

signaling pathway APP and its related APP-CD74 ligand-receptor
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pair. The amyloid precursor protein (APP) pathway was a

transmembrane precursor protein that was widely expressed in

cell types such as osteoclasts, playing various roles in the human

body. The APP pathway is also closely linked to the progression of

various cancers, including lung cancer, pancreatic cancer, and colon

cancer. CD74 is a type II transmembrane protein that acts as a

receptor for APP and can be involved in regulating inflammatory

and immune responses. In addition, studies have shown that CD74

can promote RANKL-induced osteoclast formation in vitro (82). In

this study, the APP signaling pathway and its related APP-CD74

ligand-receptor pair in C2 MKI67+ Osteoclast played a positive role

in osteoclast generation, inducing osteoclast activation, and

enhancing osteoclast function (83–85).

In addition, we studied the metabolism of osteoclasts and found

the most important metabolic pathway, oxidative phosphorylation,

which was highly expressed in several osteoclast subsets. Oxidative

phosphorylation (86–88) is the main process of energy production in

cells. It is mainly the energy released by the oxidation step of organic

matter (sugar, lipids, amino acids, etc.) in the decomposition process

that drives the process of ATP synthesis. Oxidative phosphorylation

(89) has a significant effect on osteoclasts, as osteoclasts have a high

energy demand during the bone resorption process, and oxidative

phosphorylation is the most efficient way for osteoclasts to obtain

energy. Therefore, we hypothesize that the oxidative phosphorylation

metabolic pathway could serve as a new therapeutic target. By

targeting this metabolic pathway to inhibit osteoclast function, it

may provide a strategy for treating OS (90).

Advances in single-cell technology had enabled further analysis of

the high-dimensional transcriptomics of OS, identifying highly active

tfs. TFs were proteins that could bind to specific DNA sequences to

regulate gene expression (91). The most active TF in C2 MKI67+

Osteoclast was PPARG. Peroxisome proliferator-activated receptor

(PPARG), a gene encoding the protein PPAR-g, had been reported to

increase fracture rates in patients when activated by agonists like

rosiglitazone (92). This finding intrigued us. Research indicated that

PPAR-g had a strong pro-osteoclast function, and activating PPAR-g
could induce osteoclastogenesis and differentiation, maintain or

increase bone resorption, and lead to bone homeostasis imbalance

and destruction (93). The WNT/b-catenin pathway was usually

expressed oppositely to PPARG, with PPAR-g activation leading to

WNT/b-catenin pathway downregulation, thereby inducing PGC1g,
promoting oxidative phosphorylation gene induction, and further

inducing mitochondrial biogenesis essential for supporting

osteoclast function (94).

This study presented the key osteoclast subpopulation and the

target genes, signaling pathways, and TFs acting on this

subpopulation. The target gene MKI67 promoted osteoclast

proliferation and differentiation, the APP signaling pathway and

its related the APP-CD74 ligand-receptor pair, and the

transcription factor PPARG promoted osteoclast proliferation,

differentiation, and bone resorption, playing significant roles in

osteoclast function. Osteoclasts, in turn, contributed substantially to

OS generation and progression. We speculated that PPARG and

others might drive OS generation and progression by mediating

osteoclasts, and targeting them to inhibit osteoclasts could

indirectly affect OS generation and progression. In order to
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support the above speculation, we carried out in vitro experiments

of PPARG. Through RT-qPCR detection, we found that

knockdown of PPARG significantly inhibited osteoclast

expression. In the Cell-Counting Kit-8 (CCK-8) Assay, we found

that the proliferation ability of PPARG knockdown osteoclasts was

significantly reduced, and the cell activity was significantly

decreased. The wound healing assay and transwell assay showed

that the migration ability of osteoclasts in the two groups of PPARG

knockdown was weakened. Experiments have confirmed that

PPARG has the ability to promote osteoclast proliferation and

differentiation. The applicability of targeting PPARG has been

confirmed, but its clinical application still needs to be

continuously explored.

In summary, the target genes MKI67, APP signaling pathway

(95), and its related receptors have the potential to become new

therapeutic targets for APP-CD74 and transcription factor PPARG,

which provides new ideas for OS treatment. The new targets

proposed above help to promote the in-depth development of OS

research and provide new strategies for the predictability,

prevention, and personalized treatment of the disease. Although

our content showed the heterogeneity of osteoclasts in OS and

provided new insights into the treatment of OS, there were still

some limitations. First of all, although many studies had shown that

osteoclasts could promote OS, it had not been further verified in this

paper. Secondly, we mainly relied on existing scRNA-seq data,

which might not have been comprehensive and could have been

biased. This paper focused solely on the analysis of single-cell data

registered under GSE152048, which may introduce biases and

impact the comprehensiveness and generalizability of the

findings. Ultimately, we identified PPARG as a key factor through

literature review and scRNA-seq, and its role in promoting

osteoclast proliferation and differentiation was validated through

cell experiments. However, as the experiments were conducted in

vitro, the results could not fully confirm the migration and invasion

capabilities of cells in vivo.
Conclusion

Osteoclasts were an important part of OS. Studies have shown

that osteoclasts could play a role in the progression and metastasis

of OS. The C2MKI67+ osteoclast has been identified as a pivotal

subgroup within the TME of OS. Experimental evidence highlighted

specific targets, such as the transcription factor PPARG, as key

regulators of osteoclast activity. The role of osteoclasts in OS

revealed a promising therapeutic approach: strategically targeting

osteoclasts to inhibit their proliferation and activity, thereby

slowing the progression of osteosarcoma.
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