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related cancer-associated
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Introduction: Cancer-associated fibroblasts (CAFs) are a diverse group of cells

that significantly contribute to reshaping the tumor microenvironment (TME),

and no research has systematically explored the molecular landscapes of

senescence related CAFs (senes CAF) in NB.

Methods: We utilized pan-cancer single cell and spatial transcriptomics analysis

to identify the subpopulation of senes CAFs via senescence related genes,

exploring its spatial distribution characteristics. Harnessing the maker genes

with prognostic significance, we delineated the molecular landscapes of senes

CAFs in bulk-seq data. We established the senes CAFs related signature (SCRS) by

amalgamating 12 and 10 distinct machine learning (ML) algorithms to precisely

diagnose stage 4 NB and to predict prognosis in NB. Based on risk scores

calculated by prognostic SCRS, patients were categorized into high and low

risk groups according to median risk score. We conducted comprehensive

analysis between two risk groups, in terms of clinical applications, immune

microenvironment, somatic mutations, immunotherapy, chemotherapy and

single cell level. Ultimately, we explore the biological function of the hub gene

JAK1 in pan-cancer multi-omics landscape.
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Results: Through integrated analysis of pan-cancer spatial and single-cell

transcriptomics data, we identified distinct functional subgroups of CAFs and

characterized their spatial distribution patterns. With marker genes of senes CAF

and leave-one-out cross-validation, we selected RF algorithm to establish

diagnostic SCRS, and SuperPC algorithm to develop prognostic SCRS. SCRS

demonstrated a stable predictive capability, outperforming the previously

published NB signatures and clinic variables. We stratified NB patients into high

and low risk group, which showed the low-risk group with a superior survival

outcome, an abundant immune infiltration, a different mutation landscape, and

an enhanced sensitivity to immunotherapy. Single cell analysis reveals

biologically cellular variations underlying model genes of SCRS. Spatial

transcriptomics delineated the molecular variant expressions of hub gene JAK1

in malignant cells across cancers, while immunohistochemistry validated the

differential protein levels of JAK1 in NB.

Conclusion: Based on multi-omics analysis and ML algorithms, we successfully

developed the SCRS to enable accurate diagnosis and prognostic stratification in

NB, which shed light on molecular landscapes of senes CAF and clinical

utilization of SCRS.
KEYWORDS
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Introduction

Neuroblastoma (NB), a common extracranial solid tumor in

children, presents both challenges and opportunities for innovative

diagnostics and treatment plans (1).While NB accounts for only 6-10%

of pediatric tumors, it is responsible for up to 12-15% of cancer-related

deaths in children (2). The prognosis for NB patients varies

significantly: patients with low to intermediate-risk disease

experience a 5-year event-free survival (EFS) exceeding 80%, whereas

the high-risk group, comprising about half of all cases, faces a 5-year

EFS of merely 50% (3). Researchers often employ the International

Neuroblastoma Staging System (INSS) for diagnosis. Patients over one

year of age with metastatic disease are typically classified as INSS Stage

4 NB, with a 5-year EFS of approximately 50% (4).

NB growths exhibit remarkable diversity and heterogeneity, with

neoplastic cells engaging in complex dialogues with their surrounding

microenvironment, creating an intricate biological system (5).

Among the various cellular populations within the tumor milieu,

cancer-associated fibroblasts (CAFs) have emerged as a dominant

and numerous group (6), attracting considerable scientific interest

recently. The nuanced interplay between CAFs, stromal elements,

and immune components critically shapes the restructuring of the

tumor microenvironment. This process encompasses the formation

of new blood vessels, alterations to the extracellular scaffold, and

mechanisms for evading immune detection (7). Notably, most

current therapeutic approaches, including those targeting the
02
immune system and cytotoxic agents, have largely neglected the

pivotal role of CAFs. Our grasp of how CAFs interact with other

tumor milieu constituents remains inadequate for developing robust

treatment protocols. Additional investigation is essential to enhance

our comprehension of these relationships and lay the groundwork for

potent clinical interventions.

Cellular senescence, a distinctive state acquired by stromal

elements like CAFs, confers unique immunomodulatory

capabilities (8). This condition can be induced by diverse

stressors, including oncogene activation, DNA-damaging agents,

and oxidative imbalance, all converging on persistent genomic

injury signaling (9). The subsequent activation of p53/p21 and

p16/Rb tumor suppressor cascades leads to an irreversible halt in

cell division, functioning as a potent intrinsic defense against

malignant transformation. The extrinsic effects of senescence are

mediated by senescence-associated secretory phenotypes (SASP),

encompassing context-specific extracellular matrix components,

growth modulators, cytokines, and immunological messengers

(10). Senescent stromal cells have been proved to play a role in

SASP-mediated alterations of the milieu in chronic inflammatory

and fibrotic conditions, cancer included. In liver cancer models, for

instance, senescence of activated hepatic stellate cells limited

scarring by reducing matrix deposition and enhances immune-

mediated clearance through increased IL6 and IFNg production,

promoting natural killer cell and macrophage activity (11).

Contrastingly, in squamous carcinoma studies, IL6 secretion of
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senescent fibroblasts leads to granulocyte infiltration and impaired

CD8+ T-cell function (12). Thus, SASP composition varies greatly

depending on context, with senescence capable of exerting both

tumor-promoting and tumor-suppressing influences within the

tumor microenvironment (8). However, the therapeutic

mechanisms of senescence related CAFs (senes CAFs) in NB

remain poorly understood, with limited research on senes CAFs

related genes and their prognostic and diagnostic value for

NB patients.

The landscape of medical research is experiencing a profound

shift, propelled by cutting-edge bioinformatics tools. Novel

approaches in gene expression analysis, genetic variation

mapping, and high-resolution single cell studies are reshaping our

understanding of disease mechanisms. These methodologies,

particularly when applied to the study of senes CAFs in NB, offer

unprecedented insights into potential therapeutic avenues.

Leveraging multiple machine learning algorithms (13), our goal

was to establish a novel model based on senes CAFs related genes

for identifying INSS 4 NB patients, evaluating the efficacy of

immunotherapy, and predicting patient outcomes, by utilizing

extensive multi-omics sequencing data.
Materials and methods

Source data

Analyzing the bulk-seq data, we obtained five transcriptome

datasets of NB: GSE49710 and GSE85047 sourced from GEO

database, TARGET-NB from TARGET database, and E-MTAB-

8248 and E-MTAB-179 from ArrayExpress database. We utilized

the log2 (x+1) algorithm to normalize transcriptomic data, and

conducted the combat function of the “sva” R package to solve

batch effects (14). After excluding patients with incomplete follow-up

data, we incorporated 1617 patients in total. We used the GSE49710

cohort as the training cohort to develop both prognostic and

diagnostic signatures, contrastingly, the remaining four cohorts

served as validation cohorts. Comprehensive patient information in

bulk-seq cohorts was listed in Supplementary Table S1. Moreover,

scRNA-seq datasets of NB (GSE137804, GSE192906 and

GSE140819) were acquired from the GEO database, with detailed

clinic information of NB patients in GSE137804 included in

Supplementary Table S2. Another NB scRNA-seq cohort was

download from https://www.neuroblastomacellatlas.org/. There is

no requirement for ethical approval or patient consent, as the

bioinformatics data in our analysis is publicly available. The

general workflow of our study was illustrated in Supplementary

Figure S1A. For pan-cancer single cell data, GSE176078,

GSE203612, GSE138709, GSE142784, GSE166555, GSE181919,

GSE149614, GSE131907, GSE184880, GSE215120 and GSE139829

datasets were sourced from the GEO database for analysis. The

scRNA-seq data of PRAD from Chen et al. were downloaded from

http://www.pradcellatlas.com/. Genes related to senescence were

sourced from Molecular Signatures Database (MSigDB) (https://

www.gsea-msigdb .org /gsea/ms igdb/cards /FRIDMAN_
Frontiers in Immunology 03
SENESCENCE_UP.html). This search identified 77 senescence

related genes, detailed in Supplementary Table S3.
Single cell analysis of senescence
related CAFs

For pan-cancer scRNA-seq data, raw gene expression matrices

were loaded into a Seurat object and read into R software via Seurat R

package (15). We removed low-quality cells according to criteria of

>40,000 UMI per cell, <500 genes per cell, >5,000 genes per cell and

>20%mitochondrial genes. For scRNA-seq data retrieved from inDrop

platform, we filtered out cells with UMI counts >40,000, gene counts

<200, gene counts >5000, and mitochondrial gene count >20%.

Doublets were excluded by DoubletFinder R package (16). The

“Harmony” R package was used to remove technical batch effects

while keeping biological variance after batch consolidation (17). The

local inverse Simpson’s Index (LISI) was utilized to evaluate corrections

of batch effects (17). For analysis of NB, scRNA-seq data of GSE137804

was loaded as Seurat object via “Seurat” R package (15). We performed

quality control to delete low-quality cells with feature counts above

7500 or below 300, or mitochondrial counts above 20%. The function

FindVariableFeatures was used to identify the top 2000 genes with

most cell variants (18), at which PCAwas conducted. The FindClusters

function was employed to identify different clusters at a resolution of

0.5. We performed the RunUMAP function to reduce dimensions and

manually annotated major cell types based on canonical markers (5).

With the makers of CAF subtypes previously reported (19, 20), various

clusters of CAFs were identified. Obtaining markers of CAF subtypes

was performed with the criteria of log2FC >0.25 and p value <0.05 by

the FindAllMarkers function, illustrated in Supplementary Table S4.

Seven single cell scoring algorithms (AUCell in “AUCell” R package,

Ucell in “Ucell” R package, ssGSEA and GSVA in “GSVA” R package,

singscore in “singscore” R package, AddModuleScore and

PercentageFeatureSet in “Seurat” R package) were applied to

perform enrichment scoring and pinpoint senescence related cell

type (15, 21–23), visualized by the “irGSEA” R package (https://

chuiqin.github.io/irGSEA/index.html). Functional enrichment

analysis via GO and KEGG database in scRNA data was

conducted by “ClusterGVis” R package (https://github.com/

junjunlab/ClusterGVis). To explore the specific subgroup

preferences of CAF subpopulations, we calculated the odds ratios

(OR) via the computational method of Zhang et al. (24). A numeric

vector, predicting cellular status from least (1.0) to most (0.0)

differentiated was generated from the RNA matrix by

“CytoTRACE” R package (25). The “slingshot” and “Monocle3”

R package was utilized to infer cell lineages and pseudotime

states (26, 27).
Spatial transcriptomics analysis

To explore biological landscapes of CAFs in pan-cancer spatial

transcriptomics (ST) resolution, we sourced ST slide data of various

cancer types form 10x database (https://www.10xgenomics.com/cn/
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datasets), as well as GSE176078, GSE179572, GSE203612 and

GSE181300 from GEO database. To accurately acquire the cell

composition at each spot on the 10x ST slide, deconvolution

analysis was applied (28), which is based on ST and scRNA-seq

data, with particular consideration given to the corresponding

tumor type. We first obtained scRNA-seq data of various samples

with the same tumor type in Tumor Immune Single-cell Hub 2

(TISCH2) (29), and then constructed a comprehensive scRNA-seq

reference library. Ensuring the reliability of analysis, we applied

strict quality control measures to the scRNA-seq data according to

numbers of expressed genes, counts of UMI, and percentage of

mitochondrial RNA. In terms of screening parameters, we refer to

the relevant studies of sRNA-seq data sources to ensure the

scientific and accurate screening criteria. We then constructed a

signature score matrix via computing the average expressions of the

top 25 specifically expressed genes of various cell types in each site’s

scRNA reference. Subsequently, by get_enrichment_matrix and

enrichment_analysis in the “Cottrazm” R package (30), we

successfully generated the enrichment score matrix, which can

provide a powerful support for subsequent cell composition

analysis. The enrichment score for each cell type is visualized

using the SpatialFeaturePlot function via “Seurat” R package. If

the score of Malignant cells in the microregion is 1, the Malignant

group is defined. If it is 0, the Normal group is defined; otherwise,

the Mixed group is defined. Wilcoxon Rank Sum Test was utilized

to assess the statistical difference in gene expression between the

three predicted areas. Meanwhile, to obtain the spatial coordinates

of CAFs, we performed combined analysis of the scRNA-seq data

and ST data via CellTrek R package (31) with its default parameters.

We used the run_kdist function to calculate the spatial k-distance

between different CAF subtypes and cell subpopulations.
Establishing models via integrative
machine learning algorithms

Utilizing marker genes of senes CAF with prognostic value, we

established senes CAF related signature (SCRS) for diagnosing INSS

stage 4 NB and predicting prognosis in NB. We unified 10

prognostic machine learning (ML) methods, involving random

survival forest (RSF), elastic network (Enet), Lasso, Ridge,

stepwise Cox, CoxBoost, partial least squares regression for Cox

(plsRcox), supervised principal components (SuperPC), generalized

boosted regression modeling (GBM), and survival support vector

machine (survival-SVM) for prognosis prediction. Subsequently, 12

diagnostic ML procedures were applied, such as random forest

(RF), Lasso, Ridge, elastic net (Enet), stepwise Glm, GlmBoost,

LDA, partial least squares regression for Glm (plsRglm), GBM,

XGB, SVM and Naives Bayes for the diagnosis of stage 4 NB among

all NB patients. A total of 101 prognostic ML methods and 113

predictive ML algorithms were trained within the training cohort,

via the leave-one-out cross-validation (LOOCV) framework to

establish the prognostic and diagnostic models. Models with

fewer than five genes were removed. GSE49710 cohort served as

the training set, while GSE85047, TARGET-NB, E-MTAB 8248 and
Frontiers in Immunology 04
E-MTAB 179 cohorts served as testing sets. The concordance index

(C-index) and the average area under the curve (AUC) was

calculated in each ML combination across the five sets (13). AUC,

Area under precision-recall curve (PRAUC), accuracy, sensitivity,

specificity, precision, cross-entropy, Brier scores, balanced accuracy

and F1 Score, calculated by “mlr3” R package, were used to select

the best diagnostic model (32). We employed precision-recall curve

(PRC) to evaluate the performance of classification models in

handling imbalanced datasets. Logarithmic loss, recall and

decision calibration were utilized to select the best prognostic

model, among the top five prognostic models with the highest C-

index, via “mlr3proba” R package (33). Risk scores were retrieved

with a linear combination method for each prognostic ML

combination by including gene expression data from multiple

feature selection patterns. Likewise, the most powerful diagnostic

model was utilized to calculate the possibility of stage 4 NB.
Model verification in precision, stability
and reliability

Comprehensive validation methods were carried out to validate

the superior precision, stability, and replicability of SCRS. With the

prognostic SCRS, patients were divided into high or low-risk groups

by the median risk score from the training set. Validations was

performed based on Kaplan-Meier (KM) survival methods and a

log-rank test, with the “survival” and “survminer” R packages. For

the diagnostic model, a confusion matrix was utilized to test

accuracy of SCRS by “cvms” R package. Receiver Operating

Characteristic (ROC) curves, calibration curves and decision

curve analysis (DCA) were applied to assess the precision,

differentiation, and clinic utility of both diagnostic and prognostic

SCRS. Subsequently, we compared the predictive power of the

prognostic signature with conventional clinic features in time-

dependent ROC curves. Moreover, univariate and multivariate

Cox analysis were used to confirm the independent predictive

advantage of SCRS.
Consensus clustering analysis of
senescence related CAF makers

With altogether 16 model genes in diagnostic and prognostic

SCRS, we performed unsupervised clustering analysis in three NB

cohorts (GSE49710, E-MTAB 8248, and TARGET-NB). We used the

“ConsensusClusterPlus” R package and the k-means algorithm,

which involved 1,000 repetitions and sampled 80% of the total data

in each instance, to explore the molecular landscapes of senescent

myofibroblast makers (34). Principal components analysis (PCA) was

performed to depict the heterogeneity between clusters. The

effectiveness of clustering analysis was appraised by comparing

differences in clinicopathological characteristics and gene

expression levels between clusters, utilizing the “ComplexHeatmap”

R package. Moreover, survival analysis was employed to illustrate

survival outcome disparities between clusters.
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Function enrichment analysis

Differentially expressed genes (DEGs) were identified from two

clusters divided by consensus molecular clustering and from two

risk groups categorized by prognostic SCRS. DEGs were discovered

with the “limma” R package, by a False-discovery rate (FDR)

threshold of <0.05 and an absolute log2fold change (FC) of >1.

The function enrichment of DEGs was performed in Gene

Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) terms with the “clusterprofiler” R package (35). Gene set

variation analysis (GSVA) was conducted by KEGG terms with

“GSVA” R package (23), based on the “h.all.v7.4.symbols.gmt” gene

set from MSigDB. Gene set enrichment analysis (GSEA) was

applied to explore the molecular pathways associated with

different clusters and risk groups (36), with a threshold of p <

0.05 and Normalized Enrichment Score (NES) > 1.
Delineating tumor microenvironment and
immune subtypes

Weutilized several immune calculation algorithms by the “IOBR”

R package and the single sample gene set enrichment analysis

(ssGSEA) to assess the immune infiltration levels between groups

and clusters by “wilcox” test (37–45). Immune cell marker genes for

ssGSEA were sourced from literature (46). Next, the correlation

analysis was applied in the Spearman method to reveal the relation

between SCRS risk scores, model gene expressions, and immune cell

infiltrations. Further, utilizing immune function marker genes, we

performed ssGSEA to compare the immune function level between

risk groups with “wilcox” test (47). Subsequently, ssGSEA was

employed to assess the seven steps of cancer immunity cycle, with

marker genes in Tracking Tumor Immunophenotype (TIP) (http://

biocc.hrbmu.edu.cn/TIP/) (48). Lastly, we appraised the gene

expression levels of immune checkpoint genes in two risk groups.

We conducted immune subtype analysis which could identify

immune response subtypes and predict immunotherapy reactions

(49). Five immunological patterns were revealed in GSE49710

cohort, covering wound healing (C1), IFN-gamma dominant

(C2), inflammatory (C3), lymphocyte depleted (C4) and TGF-b
dominant (C6). We then compared the proportions of

immunological subtypes between groups and clusters.
Mutational landscape between clusters
and groups

Obtaining the somatic mutational data in cBioPortal database

(https://www.cbioportal.org/), we appraised the mutational types

and frequencies of SCRS model genes with “maftools” R package

(50). Moreover, we analyzed the tumor mutation burden (TMB) via

calculating the aggregate count of somatic mutations per megabase

(MB) within the exonic region of the human genome. Gene

mutations were stratified into two types namely synchronous or

nonsynchronous mutation. The latter comprised Frame_Shift_Del,

Frame_Shift_Ins, In_Frame_Del, In_Frame_Ins, Missense,
Frontiers in Immunology 05
Nonsense, Nonstop, Splice_Site, and Translation_Start_Site

aberrations. Key mutation regions were identified from the copy

number variation (CNV) data in cBioPortal database by GISTIC 2.0

(51). Besides, the gene frequency of somatic CNV was visualized in

“bubble plot”, while the chromosomal location of gene mutation

was visualized in “circle plot” via “RCircos” R package (52).
Evaluation of immunotherapy and
chemotherapy responsiveness

To assess effects of SCRS to forecast immunotherapy response, we

compared immune dysfunction and exclusion (TIDE, http://

tide.dfci.harvard.edu/) scores between risk groups. Subsequently, we

utilized submap algorithm to evaluate immunotherapy

responsiveness of patients based on an immunotherapy cohort

(53, 54). Meanwhile, we assessed the power of SCRS to predict

responses to immunotherapy in immunotherapy datasets

(IMvigor210, GSE78220, GSE135222, and GSE91061). Lastly, we

acquired the sensitivity to chemotherapy drugs of human cancer

cell lines in Cancer Therapeutics Response Portal (CTRP, https://

portals.broadinstitute.org/ctrp) database and Profiling Relative

Inhibition Simultaneously in Mixtures (PRISM, https://

depmap.org/portal/prism/) database. Cell line which is more

responsive to a chemotherapy agent could get a lower AUC,

which help explore potential therapeutics for high-risk

patients (55).
Single cell analysis of model genes

Six scRNA scoring algorithms were utilized to assess the specific

enriched cells of SCRS model genes. We utilized the ‘Scissor’ R

package to pinpoint the particular cell populations responsible for

SCRS status variations (56), which capitalizes on both aggregate

data and phenotypic data, enabling the autonomous selection of cell

subpopulations from single-cell datasets, attributing to distinct

phenotypes. Pseudotime trajectory analysis was conducted by

“Monocle” and “Monocle3” R package, depicting maps of

development trajectories devoid of preexisting knowledge about

differentiation commencement (27, 57). We used “InferCNV” R

package to determine CNVs of neuroendocrine (NE) cells, Schwann

cells, endothelial cells, and fibroblasts, referred to T cells, B cells,

monocytes and macrophages (58). “CellChat” and “NicheNet” R

package was utilized to explore intercellular communication

networks in high-SCRS and low-SCRS cells, respectively (59, 60).

Subsequently, we utilized “pySCENIC” (version 0.11.2) with Python

(version 3.7) to explore enriched transcription factor (TF) and

regulon activities of each cell type, which build TF regulatory

network and identify steady cell state (61).
Pan-cancer analysis of hub gene

We performed pan-cancer analysis by “TCGAplot” R package to

reveal the commonalities and disparities in genomic and cellular
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modifications of SCRS hub gene across various cancer types, focusing

on gene expression, tumor mutation burden (TMB), microsatellite

instability (MSI), immunological microenvironment, and prognosis

value (62). We compared gene expression in tumor and normal

samples by “wilcox” test and paired samples t-test. Spearman

correlation analysis was performed to reveal associations between

expression of hub gene and immune infiltrations. Immune cell ratio

data was obtained in The Immune Landscape of Cancer (https://

api.gdc.cancer.gov/data/b3df502e-3594-46ef-9f94-d041a20a0b9a),

and immune score was calculated by ESTIMATE method.
Immunohistochemistry staining

To verify the different expressions of JAK1 between stage 4 and

other NB samples, as well as its prognostic value, we performed

immunohistochemistry (IHC) staining in tissue samples from 24

tissue specimens of stage 4 NB and 16 NB tissue specimens of other

stages. The study was approved by the ethics committee of

Children’s Hospital of Chongqing Medical University. NB tissues

were paraffin-embedded and sectioned into 4 mm slices. After

dewaxing, hydration, and antigen retrieval, the samples were

incubated overnight at 4°C with primary antibody: Anti-JAK1

(Proteintech, Cat No: 66466-1-Ig). Subsequent steps included

incubation with a Goat anti-Rabbit IgG secondary antibody

(ZENBIO, China), DAB staining (ZENBIO, China), and blocking.

Staining was observed under a microscope. Each sample was

evaluated for staining intensity (0: none, 1: mild, 2: moderate, 3:

strong) and the percentage of positive cells (0: 0%, 1: 1–25%, 2: 26–

50%, 3: 51–75%, 4: 76–100%). The final IHC score was the sum of

intensity and percentage scores.
Results

Establishment of pan−cancer single cell
transcriptome atlas of CAFs

To construct a pan-cancer single-cell and spatial transcriptomics

landscape, we downloaded pan-cancer scRNA-seq data from GEO

database of 13 prevalent cancer types, along with ST data from 10x

website and GEO database. The cancer types of scRNA-seq data that

we retrieved from database involved: breast cancer (BRCA), colorectal

cancer (CRC), liver hepatocellular carcinoma (LIHC), lung

adenocarcinoma (LUAD), cholangiocarcinoma (CHOL), ovarian

cancer (OVCA), prostate adenocarcinoma (PRAD), head and neck

squamous cell carcinoma (HNSC), neuroblastoma (NB), skin

cutaneous melanoma (SKCM), stomach adenocarcinoma (STAD),

uveal Melanoma (UVM) and uterine corpus endometrial carcinoma

(UCEC) (Supplementary Figure S1B). To diminish the batch effects

among different scRNA-seq datasets, we independently analyzed each

dataset and annotated cells with canonicalmarkers ofmajor cell types.

We extracted CAFs from each scRNA-seq dataset and merged them

into a Seurat object to establish an integrated scRNA-seq dataset of

pan-cancer CAFs. After quality control (Supplementary Figure S1C)

and batch effect correction byHarmony (Supplementary Figure S1D),
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a total of 35,048 cells in the pan-cancer scRNA-seq datawere remained

for the following analysis.Wenext explored the heterogeneity of CAFs

in pan-cancer landscape and identify seven CAF subpopulations, as

well as pericytes and smooth muscle cells (SMCs) (Figure 1A). To

evaluate Harmony for batch effect removement, we calculated local

inverse Simpson’s Index (LISI) of four batch correction methods,

indicating well batch correction after Harmony, as well as the

superior ability of batch correction in Harmony algorithm

(Supplementary Figure S1E).
CAF heterogeneity and identification of
senescence related CAF in pan−cancer

In pan-cancer CAF atlas (Figure 1A), we annotated the CAF

subpopulation which highly expressed chemokines (CCL19, CCL21

and CXCL2, Figure 1B) as inflammatory CAF (iCAF), likely to the

previously reported iCAFs (63). A CAF subpopulation which highly

expressed extracellular matrix (ECM) remodeling genes (MMP11,

CTHRC1 and COL1A2, Figure 1B) was annotated as matrix CAF

(mCAF), resemble the previously reported mCAFs in cancer data

(64). To reveal the molecular landscape of senescence in CAF, we

utilized six scRNA scoring algorithms and senescence geneset to

conduct enrichment scoring, investigating senescence related CAF

subset with the highest enrichment scores of senescence-related

genes (Figures 1D, E). Finally, we discovered senescence related

CAF (senes CAF) subset which ranked first in senescence

enrichments scores among all CAF subpopulations (Figure 1E;

Supplementary Figure S1F), as well as highly expressed

senescence related genes retrieved from MSigDB database

(OPTN, RAB31 and IFI16, Figure 1F). Moreover, we found a

CAF subset highly expressed MHC-II-associated antigen

presentation genes (HLA-DRA, HLA-DRB1 and CD74,

Figure 1F), which we annotated it as antigen presenting CAF (ap

CAF) (65). Then, we observed a CAF subpopulation which was

associated with glycolytic process and ATP generation from ADP in

GO BP terms (Figure 1C), annotating it as metabolic CAF (meta

CAF) which was similar to previous research (66). Subsequently, a

CAF subpopulation which highly expressed cycle-related genes

(CENPF, NUSAP1, and PTTG1, Figure 1F) was annotated as

proliferative CAF (prolif CAF), consistent with previous pan-

cancer research (67). Besides, we annotated progenitor like CAF

(pro CAF) subtype with marker genes of IGF1, OGN and GSN

(Figure 1F) (68). We utilized top marker genes of each CAF subtype

to perform GO (Figure 1C) and KEGG (Supplementary Figure S1G)

functional enrichment analysis, which further verified our CAF

annotation results. In pan-cancer CAF landscape, we found

different CAF subtypes displayed significantly different

preferences of cancer types (Figures 1G, H). We found that iCAFs

and mCAFs were most abundant in CAF subpopulations, while

iCAFs were preferred in LUAD, whereas mCAFs were preferred in

OVCA (Figures 1G, H). And we observed that senes CAFs, were

preferred in UCEC and HNSC (Figure 1H). The diverse cellular

characteristics of CAF subtypes stem from their varied origins,

including both tissue-resident fibroblasts and pericytes (69). We

utilized CytoTRACE analysis to discover that prolif CAFs owned
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FIGURE 1

CAF heterogeneity in pan-cancer and identification of senescence related CAFs. (A) Visualizing the distribution of CAF subpopulations by UMAP plot
in pan-cancer landscape. (B) Visualizing each CAF subtype’s marker genes by Manhattan map. (C) GO enrichment analysis showed each CAF
subtype’s top 3 functional terms. (D) Six scRNA scoring algorithms visualized the senescence enriched scores of each CAF subpopulations by UMAP
plot. (E) AUCell scoring algorithms indicated that senescence related CAFs had the highest senescence score. *p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001. (F) Visualizing marker genes of each CAF subtype by dotplot. (G) Cell type proportions of each CAF subpopulation across several
cancer types. (H) Heatmap showing the ORs of CAF subtypes in each cancer type. (I) CytoTRACE scores were visualized with boxplot. (J) Monocle3
were used to perform pseudotime analyses to infer cellular differentiation states in CAF subpopulations. (K) Slingshot were used to perform
pseudotime analyses to infer dynamics of lineage specification. (L) Scatter plot showing the regulon specificity scores (RSSs) in each CAF subtype via
SCENIC analysis. The top 5 regulons are highlighted.
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highest CytoTRACE scores, inferring a possibility to occur in the

earlier state of prolif CAFs (Figure 1I). With prolif CAFs set as the

start point, we used Monocle3 (Figure 1J) and slingshot (Figure 1K)

respectively to conclude differentiation lineages and pseudotime

scores among CAF subtypes, revealing the complexity and

heterogeneity of CAF differentiation. Meanwhile, we explored the

differentially essential motifs within the subtypes of CAFs through

SCENIC analysis (Figure 1L), with TCF12 motif associated with

ECM remodeling ranked highly in mCAFs (70), as well as

interferon regulatory factors (IRF) family associated with

inflammaging enriched in senes CAFs (71).
Pan-cancer spatial distribution
characteristics of CAF subtypes

CellTrek is a computational tool designed to map individual cells

directly to the corresponding spatial positions in tissue sections by

integrating scRNA-seq and ST data (31). Unlike traditional ST

deconvolution techniques, this method transfers ST coordinates to

single cells, enabling resolution at the single-cell level. We utilized

CellTrek on high-quality scRNA-seq and ST datasets across various

cancer types to reconstruct spatial single-cell atlases, involving CRC

and CRC liver metastasis (72), as well as BRCA (73), BRCA brain

metastasis (74), OVCA (73) and LIHC (75) (Figures 2A–H).

Remarkably, even in the absence of corresponding scRNA-seq data

from the same patient, the ST datasets were largely represented by

scRNA-seq data through co-embedding analysis (Supplementary

Figure S1H). From left to right, the first figure depicts the spatial

distribution of various cell types by RCTD deconvolution analysis in

tumor tissue section (Figures 2A–H). The second figure displays the

spatial characteristics of malignant areas, mixed areas and normal

areas divided by Cottrazm analysis, indicating the spatial distribution

of tumor border and tumor immune barrier in tumor tissue section

(Figures 2A–H). The third figure reveals the spatial positions of CAF

subtypes in tissue sections by CellTrek mapping analysis, which

demonstrates an abundant infi ltration of various CAF

subpopulations and spatial existence of senes CAFs in tumor

microenvironment (Figures 2A–H). For the fourth figure, we

calculated the spatial k-distance between all major cell types and all

CAF subtypes in every tumor tissue section, suggesting that CAF

subpopulations exhibit the minimum spatial k-distance among

themselves (Figures 2A–H). For major cell types, we observed that

senes CAF exhibit close spatial k-distance to endothelial cells,

especially in CRC liver metastasis (Figure 2B) and OVCA

(Figure 2E), while senes CAF also show close spatial k-distance to B

cells in CRC (Figure 2A) and LIHC (Figure 2G).
Single-cell analysis of major cell types
in NB

In the GSE137804 scRNA cohort, we finally retrieved 172,564

cells after proper quality control (Supplementary Figure S2A). We

performed “harmony” algorithm for batch effect removement, with a

fine correction before and after integration (Supplementary
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Figure S2B). Based on cell markers in literature, we manually

annotated 10 major cellular subtypes, including NE cells, T cells, B

cells, NK cells, endothelial cells, macrophages, monocytes, Schwann

cells, fibroblasts, and plasmacytoid DC cells (Figure 3A), with

subpopulation of macrophages, fibroblasts, B cells and T cells

illustrated respectively (Figure 3A). Figure 3B depicted top 5

marker genes of every major cell type. We visualized top marker

genes of each major cell type in heatmap (Figure 3C), and utilized GO

and KEGG terms to functionally annotated each major cell type,

which further verified our single cell annotation (Figure 3C). We

utilized “Dimplot” to visualize expression levels of several marker

genes (CD79A for B cells, PHOX2B for NE cells, COL1A1 for

fibroblasts, CD7 for T cells, SPP1 for macrophages and LYZ for

monocytes, Figure 3D). Figure 3E demonstrated the different cell

proportions in NB patients of INSS stage 1, 3, 4 and 4S, respectively,

with NE cells predominating. Figure 3F depicted UMAP view of each

cell subsets (top) and cell density (bottom) showing cell distribution

across four stages. Downsampling was applied for four tissue groups.

High relative cell density is shown as bright magma.
Single-cell analysis of senescence related
CAF in NB

We subset 3105 fibroblasts and created a new Seurat object for

the following scRNA analysis. Supplementary Figure S2C showed a

well quality control of fibroblast subtypes and Supplementary

Figure S2D displayed a fine correction of batch effects with

Harmony. Based on CAF markers retrieved from literature review

(20, 68), we manually annotated 10 CAF subtypes in NB single cell

data,namelymyofibroblasts (ACTA2,TAGLN,MYH11), proliferative

CAF (MKI67), matrix CAF (POSTN, COL3A1), inflammatory CAF

(CFD, C3), tumoral CAF (TMEM158), heat-shock protein CAF

(HSP90AA1), reticular CAF (CCL19, CCL21), antigen-presenting

CAF (CD74, HLA-DRA, HLA-DRB1), vascular CAF (NOTCH3),

and interferon CAF (IL32) (Figure 4A; Supplementary Figure S2E).

Figure 4B depicted top 5 marker genes of every major cell type.

Figure 4C illustrated different compositions of CAF subtypes in

different INSS stages. Previous literature has reported about

senescent myofibroblasts that localize near tumor ducts and

accumulate with tumor progression (76), so we utilized seven scRNA

scoring algorithms to conduct enrichment scoring and discover

senescence related CAF subset, which highlighted myofibroblasts

closely associated with senescence (Figure 4D). Ranking results of

single cell scoring confirmed that myofibroblasts were enriched in

senescence and could possibly be identified as the senes CAFs

(Figure 4E; Supplementary Figure S2F). We have included additional

three independent scRNA-seq datasets of NB in our analysis to

discover the consistent findings (Supplementary Figures S2G, H).

We visualized top marker genes of each CAF subtype in heatmap

(Figure 4F), and utilized GO and KEGG terms to functionally

annotated each cell type, which further verified our annotation

(Figure 4F). Interestingly, marker genes of iCAFs were enriched in

aging, shedding light on its potential associations with senescence.

With the FindAllMarkers function, we identified 1088 significant

senescence related CAF markers with a criterion of absolute log2
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(fold change) > 0.25 and p-value (Padj) < 0.05 (Supplementary Table

S4). To sum up, we succeeded in identifying senes CAF subtype,

namely myofibroblasts, which is significantly related to senescence. In

CAF landscape of NB, different CAF subtypes exhibited different

preferences of INSS stages (Figure 4G). Subsequently, we utilized

CytoTRACE and pseudotime analyses to infer cellular differentiation

states and dynamics of lineage specification. Heat-shock protein CAF

owned highest CytoTRACE scores, with a likelihood to occur in the

earlier state (Figure 4H). Setting heat-shock protein CAF as the

beginning, we then utilized Monocle3 (Figure 4I) and slingshot

(Figure 4J) respectively to infer several differentiation lineages

among CAF subtypes, which showed a relatively senescent state of

senes CAF. Moreover, we analyzed the differentially essential motifs

within the subpopulations of CAFs with SCENIC analysis

(Supplementary Figure S2I), with motif SRF, highly associated with

cellular senescence, expressed in senes CAFs (77).
Development and validation of
diagnostic SCRS

We performed batch removements across five NB cohorts, with

PCA plots visualizing the well behaviors of batch correction

(Supplementary Figure S3A). Marker genes of senes CAF were

used for feature selection and model development. Ultimately, 13

marker genes with diagnosis significance were involved in the

development of diagnostic ML model, while 8 marker genes with

prognosis significance were used for establishment of prognostic

ML model (Supplementary Figure S3B). We performed 101

prognosis ML combinations and 113 predictive ML combinations

based on LOOCV framework, to select the best ML combination

(Supplementary Figure S3C). The model with the highest AUC was

established with RF in feature selection and model development,

scoring the top average AUC (0.862) in five cohorts (Figure 5A).

AUC of every ML combination was computed in every test cohort

(Supplementary Table S5). We utilized Area under precision-recall

curve (PRAUC), accuracy, sensitivity, specificity, precision, cross-

entropy, Brier scores, balanced accuracy, F1 Score and precision-

recall curve (PRC) to reveal that RF model is the best diagnostic

model with superior performance (Supplementary Figures S3D, E).

In GSE49710 cohort (Figure 5B) and E-MTAB 8248 cohort

(Figure 5C), confusion matrix exhibited a fine precision of SCRS

with RF model. ROC curves in five datasets displayed a fine

discrimination of SCRS (Figure 5D). We calculated AUC of

SCRS, clinic variable and logistic regression (LR) model including

clinic variables and SCRS, showing that SCRS and LR model

outperformed (Figure 5E). Calibration curves in five datasets

displayed well alignments between SCRS predicted possibility and

observed possibility (Figure 5F), indicates that the model’s

probability estimates are reliable and well-calibrated, as it ensures

that the risk estimates provided by the model can be trusted to

reflect the true likelihood of patient outcomes. DCA curves revealed

the great clinical benefit of SCRS and LR model, outperforming

other clinic factors (Figure 5G). We visualized the diagnostic LR

model with nomogram to help clinical decision-making

(Figure 5H). We obtained feature importance of 11 model genes
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finally selected by RF, which revealed that hub gene EPN2 was the

most powerful in RF algorithm (Figure 5I).
Utilizing prognostic SCRS to predict
prognosis in NB

TheML combinationwith the highest C-indexwas constructed by

SuperPC in feature selection and model development, obtaining the

highest averageC-index (0.763) in five cohorts (Figure 6A). C-index of

every ML combination was computed in every test cohort

(Supplementary Table S6). Logarithmic loss, recall and decision

calibration were computed to reveal that SuperPC model had the

best performance in calibration and precision (Supplementary Figure

S3F). In GSE85047 dataset, the low-risk patients had a longer overall

survival (OS) and progression-free survival (PFS) than the high-risk

patients (Figures 6B, C). ROC curves in 1-, 3- and 5-year OS displayed

fine specificity inSCRS(Figure6D).AUCvaluesof 3-yearOS indicated

that SCRS and cox regressionmodel including SCRS and clinic factors

weremore discriminative to predict prognosis than other clinic factors

(Figure 6E). Time dependent ROC curves revealed that SCRS and cox

regression model behaved better than common clinic factors in

discriminative ability (Figure 6F). Calibration curves (Figure 6G)

and DCA curves (Figure 6H) demonstrated that SCRS is powerful in

accuracy and clinical benefit, which implies that using the SuperPC

model to guide clinical decision-makingwould result inmore effective

identification of patients. Multivariate Cox regression analysis

indicated that SCRS risk score was an independent prognosis

variable in GSE85047 cohort (P < 0.001) (Figure 6I). We utilized

univariate cox regression to depict the prognosis value of each model

gene (Figure 6J). We visualized the feature importance of 8 model

genes chosen by SuperPC, with CKS2 being the most influential

(Figure 6K). These metrics of model evaluation consistently proved

that SCRS exhibited precision and robustness in model performance.
Function enrichment and gene
expression landscape

Further explorations were undertaken to elucidate the underlying

mechanism of SCRS model genes. PCA showed significant division

between two risk groups, split by prognostic SCRS (Figure 7A).

Utilizing DEGs sourced from differential analysis between two risk

groups, we employed function enrichment analysis through GO and

KEGG databases, which revealed that DEGs were enriched in outer

kinetochore in GO terms, and were enriched in DNA replication in

KEGG terms (Figures 7B, C). GSEA discovered that Ribosome and

Motor proteins were elevated in high-risk patients, and cell adhesion

molecules were decreased in high-risk patients (Figures 7D, E). Then,

GSVA with”h.all.v7.4.symbols.gmt” gene set in MSigDB website

demonstrated that high-risk patients were elevated in

myc_targets_v1, and decreased in hedgehog_signaling (Figure 7F).

Thediverse expressionsofSCRSmodel genes and thevariationof clinic

factors between two risk groups were obvious (Figure 7G). The hub

gene JAK1 expressed significantly lower in high-risk patients,

exhibiting significant protective prognosis value. Spearman
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correlation analysis indicated tight relations (correlation p value <

0.001) across SCRS model genes (Figure 7H). Utilizing CNV data to

plot, we displayed that INPP4B had the highest somatic CNV

frequency in diagnosis model genes, and VGLL4 had the highest

somatic CNV frequency in prognosis model genes (Figures 7I, J).

Moreover, we portrayed the loci of mutations within SCRS model

genes on the chromosome (Figure 7K).
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Implications of SCRS with tumor
immune microenvironment

To assess the discrimination of prognostic SCRS in immune

infiltration, we analyzed the immune cell abundance in two groups

using eight immune algorithms. We used “ComplexHeatmap” R

package to revealed the significantly lower immune cell infiltrations
FIGURE 2

Spatial distribution characteristics of CAFs in CRC (A), CRC liver metastasis (B), BRCA (C), BRCA brain metastasis (D), OV (E, F), LIHC (G, H). From left
to right: First: Spatial distribution of various major cell types by RCTD deconvolution analysis in tumor tissue section. Second: Spatial characteristics
of malignant areas, mixed areas and normal areas divided by Cottrazm analysis. Third: Spatial cell charting of CAFs in each tissue section using
CellTrek. Fourth: CellTrek calculated the average k-distance from different cell types to senes CAFs in each tissue slice.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1506256
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1506256
in high-risk patients (Figure 8A). Meanwhile, the spearman

correlation method showed associations between immune cell

abundances and SCRS risk scores, as well as relationships

between immune cell abundances and model gene expressions

(Figure 8B). Additionally, low-risk patients had higher expression

profiles of immune checkpoint genes, prompting a sensitivity to

immunotherapy (Figure 8C). Moreover, ssGSEA based on
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immunological function signatures revealed that the low-risk

group was significantly more infiltrated in immune cells

(Figure 8D). Besides, ssGSEA results of six key steps in cancer

immunity cycle was significantly higher in low-risk patients

(Figure 8E). The spearman correlation method showed inverse

associations between immune function levels and SCRS risk

scores (Figure 8F). We utilized top 10 maker genes of
FIGURE 3

Single cell sequencing analysis of NB tumor samples. (A) Visualizing the distribution of 10 major cell populations as well as subpopulations of four
major cell types in the TME by UMAP plot. (B) Visualizing top 5 marker genes of each major cell type by Manhattan map. (C) Visualizing marker
genes of each major cell type by heatmap, as well as enrichment analysis results of each major cell type by GO and KEGG. (D) Visualizing six
representative marker genes of major cell types by UMAP plot. (E) The different cell proportions in different INSS stages. (F) UMAP view of each cell
subsets (top) and cell density (bottom) in different INSS stages.
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FIGURE 4

Identification of a distinct CAF subtype namely myofibroblasts which were most associated with senescence. (A) Visualizing the distribution of 10
manually annotated CAF subpopulations by UMAP plot. (B) Visualizing each CAF subtype’s marker genes by Manhattan map. (C) Cell proportion of
each CAF subtype in different INSS stages. (D) Seven scRNA scoring algorithms visualized the senescence enriched scores of each CAF
subpopulations by UMAP plot. (E) AUCell scoring algorithms indicated that myofibroblasts had the highest senescence score. *p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001. (F) Visualizing marker genes of each CAF subtype by heatmap, as well as enrichment analysis results of each CAF
subtype by GO and KEGG. (G) Heatmap showing the ORs of CAF subtypes in each INSS stage. (H) CytoTRACE scores were visualized with boxplot.
(I) Monocle3 were used to perform pseudotime analyses to infer cellular differentiation states in CAF subpopulations. (J) Slingshot were used to
perform pseudotime analyses to infer dynamics of lineage specification.
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myofibroblasts and conducted ssGSEA to obtain immune abundance

of senescence related myofibroblasts. Then we conducted spearman

correlation analysis to reveal tight relations (correlation p value <

0.001) across immune cells and CAFs in TME, as well as their cox p

value (Figure 8G). Given the well-established diverse metabolic

inclinations and dependencies (78), we acquired various metabolic

pathways in KEGG terms to explore associations between risk scores

and cancer metabolic pathways, which revealed underlying metabolic

functions of SCRS (Figure 8H).
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Assessment of the gene mutational profiles

We demonstrated the landscapes of somatic mutation in high-

risk patients (Figure 9A) and low-risk patients (Figure 9B) with

mutational information in TARGET cohort. High-risk patients

owned more tumor mutation burden (TMB) than low-risk

patients with no significance (Figure 9C). Meanwhile, TMB was

positively related to SCRS risk scores according to spearman

correlation analysis with no significance (Figure 9D). Then, we
FIGURE 5

Construction and validation of the diagnostic SCRS to diagnose INSS 4 NB. (A) A total of 113 kinds of diagnostic models via a leave-one-out cross-
validation framework and further calculated the AUC values of each model. (B) Confusion matrix of the diagnostic SCRS in the training cohort
GSE49710. (C) Confusion matrix of the diagnostic SCRS in the validation cohort E-MTAB 8248. (D) ROC curves of the diagnostic SCRS in five
cohorts (GSE49710, E-MTAB 8248, TARGET, GSE85047 and E-MTAB 179). (E) ROC curves of the diagnostic SCRS, the logistic regression model and
clinical variables in GSE49710 cohort. (F) Calibration curves of the diagnostic SCRS in five cohorts (GSE49710, E-MTAB 8248, TARGET, GSE85047
and E-MTAB 179). (G) DCA curves of the diagnostic SCRS, the logistic regression model and clinical variables in GSE49710 cohort. (H) Visualizing the
logistic regression model via nomogram. (I) The feature importance visualization of 11 variables selected by RF, which formed the final
diagnostic model.
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FIGURE 6

Development and verification of the prognostic SCRS to predict prognosis in NB. (A) A total of 101 kinds of prognostic models via a leave-one-out
cross-validation framework and further calculated the C-index of each model. (B) Kaplan-Meier survival curves of OS for high-risk and low-risk
groups of NB patients in GSE85047 cohort. (C) Kaplan-Meier survival curves of PFS for high-risk and low-risk groups of NB patients in GSE85047
cohort. (D) ROC curves of 1-, 3- and 5-year OS of the prognostic SCRS in GSE85047 cohort. (E) AUC values of 3-year OS of the prognostic SCRS,
the cox regression model and clinical variables in GSE85047 cohort. (F) Time dependent ROC curves of the prognostic SCRS, the cox regression
model and clinical variables in GSE85047 cohort. (G) 1-, 3- and 5-year calibration curves of the prognostic SCRS in GSE85047 cohort. (H) DCA
curves of the prognostic SCRS, the cox regression model and clinical variables in GSE85047 cohort. (I) Forest plot visualized the outcome of
multivariate Cox regression analysis involving the prognostic SCRS and clinical variables. (J) Results of univariate cox regression analysis of 8
variables in SCRS. (K) The feature importance visualization of 8 variables in SuperPC algorithm.
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classified patients of TARGET cohort into high TMB and low TMB

subgroup based on median TMB. Survival analysis revealed that

high-risk patients with low TMB showed the shortest OS and EFS,

and low-risk patients with high TMB showed the longest EFS, with

significance (Figures 9E, F).
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Responsiveness of immunotherapy and
potential therapeutic targets

Utilizing TIDE and submap method, the responsiveness of

immunotherapy was assessed in high-risk and low-risk patients. In
FIGURE 7

Functional enrichment analysis and landscape of SCRS model genes in GSE49710 cohort. (A) PCA analysis plot of high-risk group and low-risk
group. (B, C) GO and KEGG enrichment analyses of DEGs among two risk groups. (D-F) GSEA and GSVA analyses of DEGs among two risk groups.
(G) Differences in the expression of model genes and differences in the clinical variables of NB patients among the two risk groups. ns: not
significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (H) Molecular interaction network plot visualized the correlations among expressions
of model genes and their prognostic prediction value. Significantly positive and negative correlations are shown as red and blue lines, respectively.
The color and size of the nodes indicate the type of model genes and P values from Cox regression. (I, J) The CNV mutation frequency of the
diagnostic model genes and the prognostic model genes. (K) Chromosome position and alteration of all model genes.
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GSE49710 dataset, high-risk group showed higher TIDE scores,

higher TIDE dysfunction and exclusion scores, which is prone to

exhibit immune escape during immunotherapy (Figure 9G). In

IMvigor210 dataset, low-risk patients responsive to immunotherapy

showed the longest OS, while high-risk patients not responsive to
Frontiers in Immunology 16
immunotherapy owned the shortest OS, with significance

(Figure 9H). Meanwhile, in E-MTAB 8248 dataset, low-risk

patients were more likely to respond to immunotherapy

(Figure 9I). Subsequently, submap method revealed that low-risk

group were more responsive to CTLA4 inhibitors (p = 0.007) and not
FIGURE 8

Analysis of the TME in different risk groups in GSE49710 cohort. (A) Differences in immune infiltration status between two risk groups were evaluated by
eight immune algorithms. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B) Heatmap visualized the correlation between
different immune cells and risk scores and the relationship between different immune cells and expressions of model genes. (C) The differences of
expressions of immune checkpoint related genes between two risk groups. (D) The differences of immune function scores calculated by ssGSEA analysis
between two risk groups. (E) The differences of cancer immunity cycle scores based on ssGSEA analysis between two risk groups. (F) The correlations
between risk scores and immune function scores in bubble plot. (G) Molecular interaction network plot visualized the correlations among immune cell
and CAFs in TME and their prognostic prediction value. (H) The correlations between risk scores and metabolic related pathways based on GSVA analysis
of KEGG terms were displayed in butterfly plot.
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responsive to PD1 inhibitors (Figure 9J). Subsequently, we compared

therapy effects in four immunotherapy datasets between risk groups,

which revealed that patients responsive to immunotherapy had lower

risk scores, with significance (Figure 9K). Ultimately, to discover

novel chemotherapy agents for high-risk patients identified by SCRS,

we forecasted the medicine reaction utilizing drug sensitivity data

sourced in CTRP and PRISM. By cross correlating the two

pharmacogenomics datasets, we triumphantly obtained five possible

medicines or compounds (BI-2536, GSK461364, SB-743921,

ispinesib and talazoparib), which exhibited therapeutic effectiveness

in high-risk patients (Figure 9L).
Identifying SCRS model genes
associated clusters

To deeply explore the expression profiles of SCRS model genes,

GSE49710, E-MTAB 8248 and TARGET-NB were involved to

perform consensus molecular clustering. We used SCRS model

genes to perform unsupervised clustering analysis in every dataset,

which revealed k = 2 with outstanding discrimination (Figure 10A).

Meanwhile, PCA displayed indispensable disparities between two

clusters (Figure 10B). Then, survival analysis showed that the

cluster 2 had shorter OS (Figure 10C) and EFS (Figure 10D), with

significance. Next, the expression landscapes of SCRS model genes

and the clinic variables between two clusters were significantly

different (Figure 10E). Using DEGs obtained between two clusters,

we employed function enrichment analysis to found that DEGs

were enriched in negative T cell selection in GO, and were enriched

in ABC transporters in KEGG (Figures 10F, G). GSEA

demonstrated that biosynthesis of cofactors was elevated in

cluster 2, and NK-kappa B signaling pathway were decreased in

cluster 2 (Figures 10H, I). GSVA, with “h.all.v7.4.symbols.gmt” gene

set in MSigDB, demonstrated that cluster 2 was elevated in

myc_targets_v2, and decreased in hedgehog_signaling

(Figure 10J). Subsequently, we utilized eight immune infiltration

methods to appraise the immunological infiltration variations in

two clusters, as well as depicting Cox P value of every cell

type (Figure 10K).
Model comparisons and immune subtypes

To validate the superior prognostic prediction ability of SCRS,

we gathered gene coefficients of 39 released public NB prognosis

signatures. Then, we compared C-index of every prognostic

signature with SCRS in five NB datasets. Ultimately, we revealed

that SCRS outperformed most of previous signatures in five datasets

in prediction performances (Figure 11A), which qualified SCRS as a

meaningful NB prognostic signature. Moreover, we demonstrated

the relationships between risk groups, clusters and clinic factors via

“sankey plot” (Figure 11B). After defining immunological subtypes

of patients in GSE49710, we found significant differences of

respective proportions of immunological subtypes between risk

groups and clusters, indicating more wound healing (C1) subtype

in high-risk patients and cluster 2 (Figure 11C). Comparisons of
Frontiers in Immunology 17
clinical factors between two risk groups revealed that low-risk

patients showed longer prognoses and better clinic status in

GSE49710 cohort (Figure 11D).
Single-cell scoring, scissor algorithm and
pseudotime trajectory

Verifying the risk-stratify ability of SCRS in single cell

landscape, we calculated the SCRS enrichment scores via scRNA

scoring algorithms, which revealed that higher-SCRS cells were

mostly abundant in NE cells (Figures 12A, B). To elucidate the

cellular origins supporting high-SCRS clinical manifestations, we

employed the “scissors” R package to make correlations between

bulk-seq data and scRNA data, which independently singles out

cells having remarkable alignment with the desired phenotype. We

labeled high-SCRS and low-SCRS states of patients as our foremost

phenotypes, thus enabling the thorough detection of 2120 high-

SCRS cells (scissors+ cells) and 1875 low-SCRS cells (scissors- cells)

(Figures 12C, D). The SCRS values of scissors+ cells were

significantly higher than scissors- cells and other cell types

(Figures 12D, E), which indicated successful discovery of scissors

+ cells representing diverse SCRS status. Subsequently, we

performed pseudotime trajectory analysis via Monocle 2

algorithm to explore the temporal sequences of cellular

differentiation in NE cells, fibroblasts, Schwann cells and

endothelial cells, with part of NE cells being poorly differentiated

(Figures 12F, G). We utilized SCRS scores calculated by singscore

and Ucell algorithm to divided cells into high-SCRS and low-SCRS

according to median SCRS score. Comparisons of pseudotime

scores revealed that high-SCRS NE cells had an earlier

differentiation trajectory than low-SCRS NE cells, which indicated

that immature NE cells scored higher SCRS points (Figures 12H–J).

Additionally, setting NE cells as differentiation starting point in

Monocle 3 algorithm, we verified that immature NE cells scored

higher SCRS points, which could serve as malignant

cells (Figure 12K).
Verification of SCRS via inferCNV, cell
communication and SCENIC

Validating the power of SCRS in single cell level, we used

inferCNV analysis to explore the clone structures of four cell types

mentioned above, which indicated that NE cells with chromosome

17q gain were probably malignant cells, while high-SCRS cells

owned more CNVs (Figures 13A, B). In cell chat analysis, we

utilized “circle plot” to display the communication frequencies and

communication strengths between every cell type, as well as the

integrative cell chatting networks in high-SCRS cells and low-SCRS

cells (Figure 13C). We visualized the cell chat landscapes in high-

SCRS cells, and demonstrated over-expressed ligand-receptor pairs

and communication profiles between B cells, myeloid cells,

Schwann cells and fibroblasts in high-SCRS cells (Figures 13D, E).

Distinct cell types would generate dissimilar contributive cues

affecting the total, inbound and outbound signals among high-
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SCRS and low-SCRS cells, with macrophages, monocytes, Schwann

cells, fibroblast, and endothelial cells noting exceptional significance

(Figures 13F, G; Supplementary Figure S3G). The cellular

communication between CAF subtypes holds significant

biological importance, we then explore the communication

network of CAF subpopulations in NB and pan-cancer landscape

(Supplementary Figure S3H). We calculated the correlations

between the hub gene of senes CAFs and cell-cell communication

strength, finding a significant association between JAK1 and

communication strength of CAF subtypes in NB, which offered a

research value of JAK1 in modulating cellular communication

(Supplementary Figure S3I). Meanwhile, we assessed the

association among regulon (TFs and target genes) activities and

cell types in high-SCRS and low-SCRS cells via SCENIC, revealing

that regulons of SMARCA4 and PBX3 were more active in high

SCRS cells (Figure 13H), and regulons of VEZF1 and PDLIM5 were

more active in low SCRS cells (Figure 13I).
Pan-cancer landscape and spatial
transcriptomics analysis of hub gene

Interestingly, we revealed that hub gene JAK1, with favorable

prognosis value in NB, was abundant in oncological research value,

which has been proved as oncogene in breast cancer and non-small

cell lung cancer (79). Therefore, we conducted pan-cancer analysis

to explore the heterogeneity of JAK1expression in tumor and

normal samples in 33 cancer types (Figure 14A). Besides, the

links between JAK1 and TMB, MSI, immune cells, and

immunological scores underscored importance of JAK1 in TME,

immune cell invasions, and immune checkpoints (Figures 14B–F).

The protective prognostic value of JAK1 was seen in KIRC, similar

to NB. The risky prognostic value of JAK1was seen in LUSC

(Figure 14G). Furthermore, we conducted pan-cancer spatial

transcriptomics analysis to comprehensively explore the

expressions of JAK1 in malignant cells and malignant spots. In

tumor types of BRCA, CRC, HNSC, CESC, GIST, KIRC, LUSC and

OVCA (Figures 14H, I; Supplementary Figures S4A–F), hub gene

JAK1 solidly exhibited positive correlations with the abundance of

malignant cells across eight cancer types, while expressing higher in

malignant areas than in normal areas in multiple spatial

transcriptomics slides, indicating the underlying oncogenic role of

JAK1. Interestingly, hub gene JAK1 abnormally exhibited negative

correlations with the abundance of malignant cells in LIHC spatial

transcriptomics slide, while expressing lower in malignant areas

than in normal areas (Figure 14J). This result suggests a unique

functional role for JAK1 in this particular cancer type, which

highlights the complexity of cancer biology and the importance of

context in gene function.
Immunohistochemistry of hub gene

Our bioinformatics analysis has revealed that three hub genes,

which were both diagnostic model genes as well as prognostic
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model genes in SCRS, were expressed significantly lower in stage 4

NB (Figure 15A) and were protective prognosis genes (Figure 15B)

in GSE49710 cohort. To validate the elevated protein levels of JAK1 in

other stages NB tissues compared to stage 4 NB tissues, as well as its

protective prognosis value, we conducted IHC staining to corroborate

our bioinformatics findings (Figure 15C). Our scoring results showed

that protein levels of JAK1 was significantly higher in other stages NB

tissues than stage 4 NB tissues (Figure 15D). Subsequently, we

categorized 40 NB patients into high and low expression groups based

on their median IHC scores of JAK1. Survival analysis indicated that

patients with high JAK1 expression had better OS than those with low

JAK1 levels, without significance (p = 0.15, Figure 15E).
Discussion

Neuroblastoma (NB), primarily diagnosed in children below the

age of five, holds significant responsibility for around 15% of tumor-

associated fatalities in pediatric settings (80). The diagnosis and

therapeutic strategies are complicated due to the unique clinical

manifestations and molecular characteristics of NB (81). In severe

disease with advanced stages, complete surgical tumor removal

becomes increasingly difficult. This is largely because the tumor

engulfs and destructs the neurovascular structure subsequent to

expansive growth. Moreover, advanced stages are typically

associated with potentially severe conditions like recurrent relapse,

remote metastasis and drug resistance. Consequently, this results in

notably unfavorable outcomes for those grappling with NB (82). This

challenging context has called the urgent need to develop more

effective individualized treatment regimens, find new therapeutic

targets, and reduce long-term drug side effects for NB patients.

The complex biological background and diverse clinic

characteristics of NB pose huge challenges for doctors and

clinicians. Advances in high-throughput sequencing methodologies

has prompted the unveiling of unique prognostic and diagnostic

markers, thus enabling more precise estimations of patient outcomes

and personalized treatment approaches. Previous studies on

senescence have focused on mechanisms, functions and treatment

innovations, our research aims to explore the biological and clinical

roles of senescence related CAFs (senes CAFs) in NB. We have

systematically gathered a detailed list of senescence-related genes for

thorough investigation. Through a comprehensive bioinformatics

analysis combining both scRNA and bulk-seq, we successfully

identified a distinct CAF subtype namely senes CAF, as well as

numerous critical marker genes of senes CAF. Subsequently, we were

able to construct senes CAF centric predictive models based on

marker genes with great prognosis value, referred to SCRS, employing

integrated machine-learning techniques. SCRS demonstrated its

proficiency for accurately diagnosing stage 4 NB and projecting the

prognosis for NB patients, showcasing an impressive ability to foresee

immunotherapy responses and to categorize patients into high or low

risk across various factors, such as immune microenvironment,

mutational landscapes, chemotherapy responsiveness, and single-

cell resolution. Moreover, we distinguished two distinct NB

subtypes via consensus clustering, each characterized by valuable
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senes CAF marker genes, which shed light on molecular landscape of

senes CAF in NB.

Machine earning (ML) serves as an essential tool in our

research, utilizing sophisticated algorithms to automatically
Frontiers in Immunology 19
manage expansive and varied datasets. Its optimal operation lies

in predictive tasks where it identifies significant patterns (83).

We relied on an integrated ML framework to establish a

consensus SCRS using the expression patterns of senes CAF
FIGURE 9

Landscape of somatic mutation, CNVs, immunotherapy and chemotherapy between high-risk and low-risk groups. (A, B) Visual summary displayed
common genetic alterations in the high-risk and low-risk groups in TARGET cohort. (C) Tumor mutation burdens between high-risk and low-risk
groups in TARGET cohort. (D) Spearman correlation between SCRS risk scores and TMB scores in TARGET cohort. (E, F) Comprehensive survival
analysis on OS and EFS based on two risk groups and two TMB groups in TARGET cohort. (G) Violin diagram illustrated the variance in TIDE scores
between high-risk and low-risk groups in GSE49710 cohort. (H) Kaplan-Meier survival analysis delineated the OS rates for patients categorized into
high-risk and low-risk groups in IMvigor cohort. (I) The TIDE algorithm predicted response to immunotherapy between high-risk and low-risk
groups in E-MTAB 8248 cohort. (J) Comprehensive submap analysis predicted response to immunotherapy between high-risk and low-risk groups
in E-MTAB 8248 cohort. (K) Box diagram depicted the disparity in SCRS risk scores among immunotherapy patients in the IMvigor210, GSE78220,
GSE135222, and GSE91061 immunotherapy cohorts. (L) Correlation study and differential drug response analysis of CTRP-derived pharmaceuticals
and PRISM-derived pharmaceuticals to explore potential drugs for high-risk NB patients. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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marker genes, aiming at diagnosing stage 4 NB and forecasting NB

prognosis. A total of 101 prognosis algorithms and 113 diagnosis

algorithms were implemented in the train set according to LOOCV

framework. Further corroborations in another four datasets
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disclosed that the most effective prognosis algorithm was

SuperPC in feature selection and model construction, and the

most reliable diagnosis algorithm was RF in feature selection and

model development. The robustness of this unified method lies
FIGURE 10

Consensus clustering analysis of SCRS model genes related clusters in three NB cohorts (GSE49710, E-MTAB 8248, TARGET). (A) Consensus
matrixes of NB patients for k = 2. (B) PCA analysis of two clusters. (C, D) Kaplan-Meier survival analysis of OS and EFS between two clusters.
(E) ComplexHeatmap of the distribution of SCRS model genes and clinical variables in the two clusters in GSE49710 cohort. ns: not significant;
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (F, G) GO and KEGG enrichment analysis indicated significant enrichment of pathways in cluster
2. (H-J) GSEA and GSVA analyses of DEGs among two clusters. (K) Differences in the proportion of various kinds of immune cells calculated by eight
immune algorithms in two clusters. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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within its capacity to assemble multiple ML algorithms, and that

results into creating models with persistent diagnosis or prognosis

abilities. This method simplifies the model for functional and

translational use by reducing the dimensionality of numerous

variables. The performance of SCRS was validated by confusion

matrix, time-dependent ROC curves, AUC values, calibration

curves, and DCA curves, all of which accentuate its supremacy
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over other clinic factors. In addition, a meta-analysis of C-index

indicated that prognostic SCRS retained highest precision and

robustness across external validation datasets, indicating its

significant prospects in clinic use and helping decision-making.

With the risk-stratify ability of prognostic SCRS, it allowed us to

discover the biological discrepancies and genetic mechanisms

between two risk groups. Notable biological diversity was
FIGURE 11

Model comparisons and landscape of two risk groups and two clusters. (A) C-index comparison analysis between the prognostic SCRS and 39
published signatures in GSE49710, E-MTAB 8248, TARGET, GSE85047, E-MTAB 179 and meta-cohort. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001. (B) Sankey diagram of distributions in two clusters and two risk groups with different clinical variables and survival outcomes. (C) Differences
in the proportion of five immune subtypes between two clusters and two risk groups. (D) Circular pie chart visualized the proportion difference of
clinical indices and immune subtypes between two risk groups in GSE49710 cohort.
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FIGURE 12

Exploration of SCRS model genes in GSE137804 scRNA-seq cohort. (A) Single cell scoring results of SCRS model genes based on six scRNA scoring
algorithm in UMAP plot. (B) Comparisons of single cell scoring results of SCRS model genes based on AUCell scoring algorithm. ns: not significant;
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (C) Visualization of high-SCRS cells (Scissor+ cells) and low-SCRS cells (Scissor- cells) in NB
cells. (D) Visualization of high-SCRS cells (Scissor+ cells) and low-SCRS cells (Scissor- cells) in UMAP plot with other cell types. (E) Comparisons of
single cell scoring results of SCRS model genes among Scissor+ cells and Scissor- cells based on AUCell scoring algorithm. ns: not significant; *p <
0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (F, G) Pseudotime trajectory analysis in NB cells, fibroblasts, endothelial cells and Schwann cells via
Monocle 2 algorithm (Cells are colored according to cell types, pseudotime, and states). (H-J) Pseudotime trajectory analysis based on Monocle 2
algorithm revealed significant differences of pseudotime scores between high-SCRS cells and low-SCRS cells (Cells are colored in single cell scoring
results and high-SCRS or low-SCRS groups). (K) Pseudotime trajectory analysis based on Monocle 3 algorithm revealed significant differences of
pseudotime scores between high-SCRS cells and low-SCRS cells.
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FIGURE 13

The landscape of CNV, cell-cell communication, transcriptional regulons in GSE137804 scRNA-seq cohort. (A, B) Significant differences of CNVs in
NE cells, fibroblasts, Schwann cells and endothelial cells in high-SCRS cells and low-SCRS cells. (C) Circle diagrams showed the interaction strength
and numbers between each cell type in high-SCRS cells and low-SCRS cells. (D) Bubble chart showed differences in communication signals
between high-SCRS cells and low-SCRS cells. Bubble size represents P value generated by the permutation test, and the color represents the
possibility of interactions. (E) Chord chart showed overexpressed ligand–receptor interactions in high-SCRS cells. (F) Heatmap showed the efferent
or afferent contributions of all signals to different cell types in low-SCRS cells (left) and high-SCRS cells (right). (G) Dot plot showed dominant
senders and receivers in low-SCRS cells (left) and high-SCRS cells (right). The X and Y axes are the total outgoing or incoming communication
probabilities associated with each cell group, respectively. The size of the dots is positively related to the number of inferred links (both outgoing
and incoming) associated with each cell block. The colors of the dots represent different cell groups. (H) SCENIC analysis indicated significant
regulons in high-SCRS cells and TF rank plots of each cell type. (I) SCENIC analysis indicated significant regulons in low-SCRS cells and TF rank plots
of each cell type.
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FIGURE 14

Pan-cancer analysis and spatial transcriptomics analysis of hub gene JAK1. (A) Differential expressions of JAK1 in tumor and normal samples across
33 tumor types. ns: not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. (B, C) Correlation analysis between expressions of JAK1 and
TMB/MSI scores. (D, E) Correlation analysis between expressions of JAK1 and immune cell proportions/immune scores calculated by ESTIMATE and
CIBERSORT. (F) Correlation analysis between expressions of JAK1 and immune checkpoint genes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001. (G) Cox regression analysis of JAK1 in multiple tumor types. (H-J) Pan-cancer spatial transcriptomics analysis of JAK1 in BRCA, CRC and
LIHC. Left one: Each dot is a microregion of spatial transcriptome sequencing, and a different color represents a different cell type. Left two: Spatial
feature plots of malignant, mixed and normal areas via “Cottrazm” analysis. Left three: Spatial feature plots of gene expression of JAK1. Left four:
Spearman correlation analysis calculated the correlations between one cell count and another cell count, and between cell count and gene
expression in all spots. Left five: The horizontal coordinate is the different microregion types, and the vertical coordinate is the average expression of
JAK1. Wilcoxon Rank Sum Tests assessed the significance of statistical differences.
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observed between two risk groups in terms of immune

microenvironment, responsiveness to immunotherapy, somatic

mutations, and chemotherapy sensitivity. We conducted a

functional enrichment analysis with DEGs between two risk

groups, which revealed that the key differences were primarily

concentrated in areas like spermatogenesis, oocyte meiosis, and

cell cycle. NB could potentially be the result of aberrant

development of neural crest stem cells, which is linked to mis-

regulation of differentiation, morphogenesis, and cell cycle. The

migratory pathways of neural crest stem cells correspond to tumoral

locations of INSS stage 4S and 4 NB, encompassing adrenal gland,

liver, and bone marrow. It’s noteworthy that most malignant

tumors have been discovered to retain stem cells or precursor-like

cells with stem cell features, which are linked to impact of genetic

and epigenetic alterations on differentiating and mature cells (84).

We perform function enrichment analysis to reveal a possibility of

SCRS model genes being implicated in development of NB tumor

cells, which could potentially affect the signals and pathways

associated with differentiation and maturation.

Immunotherapy extends survival prospects for patients with

malignant tumors, providing potential encouragement for those

afflicted with this debilitating disease. Our analysis of the

interactions between SCRS and TME exposed a negative

association between SCRS risk scores and the majority of immune

cells and immunologically regulatory genes. Function enrichment

analysis pointed towards an elevation of immunoregulatory
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function levels in low-risk group. Hence, low-risk group often

display symptoms consistent with “immune activity” or “hot

tumor”, which is typified by increased infiltration of various

immunocytes. Significantly, past research underlines that

increased presence of immune cells in tumor microenvironment

often correlates with better prognoses for NB, suggesting promising

capacity to hamper cancer progression. This conjecture was also

verified in four immunotherapy bulk-seq datasets, supporting the

viewpoint that SCRS was a promising prediction signature for

immunotherapy effectiveness.

Subsequently, we performed single cell analysis to thoroughly

explore the underlying biological functions of SCRS model genes.

Utilizing six distinct single-cell scoring algorithms, we were able to

vividly illustrate the expression landscapes of SCRS model genes at

individual cell levels, demonstrating substantial infiltration in

malignant NE cells. We utilized bulk-seq datasets to categorize

samples into two markedly different phenotypes, namely high-

SCRS and low-SCRS. The Scissor algorithm was then

implemented to map concerned phenotypes into the scRNA data,

aiming at pinpointing the cells most tightly related to high or low

SCRS profile. Consequently, the low and high SCRS statuses were

respectively represented by the Scissor- cells and Scissor+ cells,

showing significant distinctions in terms of senescence. We further

initiated pseudo-time analysis and employed the inferCNV method

individually in high-SCRS and low-SCRS cells, which elicited

remarkable disparities in cell maturation and mutational
FIGURE 15

Experimental validation of hub gene JAK1 by Immunohistochemistry. (A) Different expressions of three hub genes (JAK1, DYNC1I2 and VGLL4) in
INSS stage 4 tumors and other INSS stages tumors in GSE49710 cohort. (B) Protective prognosis value of three hub genes (JAK1, DYNC1I2 and
VGLL4) illustrated by K-M curves in GSE49710 cohort. (C) Representative IHC staining pictures of INSS 1, 2, 3, 4 and 4S tumor samples. (D) Protein
levels of JAK1 in INSS stage 4 tumors and other INSS stages tumors via IHC scores. (E) K-M curves of high-JAK1 group and low-JAK1 group.
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landscapes across two SCRS categories. We found that cells

displaying elevated SCRS scores were predominantly immature

and malignant cells, supporting the aptitude of SCRS for risk

stratification. Additionally, biological differences were highlighted

in the cellular interaction and transcriptional regulon networks in

two SCRS groups, contributing to a more comprehensive

comprehension of cancer microenvironment and cancer

heterogeneity, based on cell chat analysis and SCENIC algorithm.

Janus kinase 1 (JAK1) is a critical player in various cellular

processes, including inflammation, immune response, and

oncogenesis, due to its central role in the JAK-STAT signaling

pathway (85). Subsequently, based on spatial transcriptomics

analysis, we found expression of hub gene JAK1 was positively

correlated to the proportions of malignant cells in spatial

transcriptomics spots in most cancer types excluding LIHC,

indicating its malignant phenotypes and heterogeneity in pan-

cancer levels. Interestingly, we utilized “Cottrazm” to combine

spatial transcriptome data with HE staining images and single cell

transcriptome data, mapping the cancer boundary region linking

malignant and non-malignant regions in cancer tissue accurately.

Unlike the protective role of JAK1 in NB, we revealed that JAK1

expressed significantly higher in malignant area than in mix area

or normal area, indicating its huge abundance in tumor cells at

spatial dimension in most adult tumors. In LIHC, JAK1 might

interact with other signaling pathways in liver cells that result in

tumor suppression. For instance, it could activate STAT proteins

that induce the expression of genes responsible for cell cycle

arrest or apoptosis, thereby inhibiting cancer cell growth and

survival (86).

Our SCRS can be conveniently replicated using PCR detective

techniques, which is feasible for broader clinic application and

utilization. Sequencing the genome or transcriptome of NB patient

samples obtained from biopsies or surgeries could serve as a routine

diagnostic tool to inform treatment strategies. With this data

integrated into SCRS, clinicians could accurately stage INSS 4 NB,

assess prognosis, and design tailored treatments for patients facing

distant metastasis and challenging outcomes. Nevertheless, it’s

important to note some limitations within our study. Initially, our

study was carried out retrospectively, with sequencing data and

relevant clinical info gathered from public archives, which needs a

large-scale, multi-center prospective validation. And the lack of

details therapy procedures, metastasis organs, and recurrence data

could potentially influence our findings. Secondly, the

characteristics of JAK1 in NB have not been conclusively

identified, therefore further research involving additional tumor

samples, and more in vitro or in vivo experimental investigations

are required to explore their biological roles within NB. At last, our

present methodology of model development, which depends

entirely on transcriptome sequencing, could gain significantly

from integrative analysis of multi-omics and multi-modal data.

This well-rounded integration analysis enables a more thorough

understanding of molecular mechanism and physiological process,

refining the reliability and precision of the prediction models. The

inclusion of multi-omics and multi-modal data introduces a bevy of

variables to the analysis, which is imperative for more intricate

artificial intelligence models. Hence, deep learning, a specialized
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field within machine learning, possesses the unique ability to

independently identify crucial classification features. This option

isn’t readily available with conventional machine learning

techniques, which require manual selection and input of such

features. Consequently, the adoption and deployment of novel

deep learning algorithms, alongside the insightful benefits

afforded by multi-omics and multi-modal data integration, denote

a powerful strategy for progressing personalized medicine for

NB patients.
Conclusion

For the first time, we have been successful in developing senes

CAFs related signatures to accurately diagnose INSS stage 4 NB and

predict prognosis in NB, thanks to a wealth of machine learning

algorithms. After multiple validations in model performance,

immune microenv i ronment , muta t iona l l andscapes ,

immunotherapy, chemotherapy, single cell resolution and spatial

transcriptomics analysis, SCRS has demonstrated both stability and

potency in outcome prediction, making it a remarkable prediction

model in NB. Furthermore, we revealed hub gene JAK1 with huge

impact in SCRS, which showed heterogeneous prognosis value in

pan-cancer landscapes, suggesting potential research opportunities

associated with senes CAFs.
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SUPPLEMENTARY FIGURE 1

(A) The workflow chart of our study. (B) Visualizing the distribution of various

cancer types by UMAP plot in pan-cancer landscape. (C) Quality control of

CAF subtype in pan-cancer scRNA-seq cohort. (D) Harmony algorithm
reduced the batch effects between each cancer type. (E) Boxplot showing

the local inverse Simpson’s Index (LISI) of fibroblasts before and after batch
correction. (F) Five scRNA scoring algorithms visualized the senescence

enriched scores of each CAF subpopulation. (G) KEGG enrichment analysis
showed each CAF subtype’s top 3 functional terms. (H) UMAP plots showing

the co-embedding results of scRNA-seq and ST data using CellTrek.

SUPPLEMENTARY FIGURE 2

(A) Quality control of each major cell type in GSE137804 scRNA-seq cohort.
(B) Harmony algorithm reduced the batch effects of each sample in

GSE137804 scRNA-seq cohort. (C) Quality control of each subtype in CAF
subpopulations. (D) Harmony algorithm reduced the batch effects of each

sample in CAF subpopulations. (E) UMAP plot showed the expression profiles
of marker genes. (F) Six scRNA scoring algorithms visualized the senescence

enriched scores of each CAF subpopulation. (G) Visualizing the distribution of

major cell type and CAF subpopulations by UMAP plot in other NB datasets.
(H) scRNA scoring algorithm of AUCell ranking visualized the senescence

enriched scores of each CAF subpopulation. (I) Scatter plot showing the
regulon specificity scores (RSSs) in each CAF subtype via SCENIC analysis. The

top 5 regulons are highlighted.

SUPPLEMENTARY FIGURE 3

(A) PCAplots visualized thewellcorrectionsafterbatch removement infivebulk-
seq cohorts. (B) Acquisition of diagnostic and prognostic senescence-related

genesvia intersectionofgeneswithdiagnosisorprognosis value in fourbulk-seq
cohorts. (C) The flowchart to schematically explain the algorithmic pipeline of

machine learning algorithm integration. (D) The performance offive MLmodels
in terms of Area under precision-recall curve (PRAUC), accuracy, sensitivity,

specificity, precision, cross-entropy, Brier scores, balanced accuracy and F1

Score in five bulk-seq cohorts. (E) The precision-recall curves (PRC) in two
bulk-seq cohort. (F) Logarithmic loss, recall and decision calibration of top 5

prognosticmachine learningmodels in fivebulk-seq cohorts. (G) The combined
heatmap shows the results after NicheNet analysis of high-SCRS cells and low-

SCRS cells. (H) Circle diagrams showed the interaction strength and numbers
betweeneachCAFsubtype inhigh-SCRScellsand low-SCRScells inNBandpan-

cancer landscape. (I)The spearman correlations between the hubgene of senes

CAFs and cell-cell communication strengths in NB and pan-cancer landscape.

SUPPLEMENTARY FIGURE 4

Pan-cancer spatial transcriptomics analysis of JAK1 in HNSC (A), CESC (B), GIST
(C), KIRC (D), LUSC (E)andOVCA (F). Leftone:Eachdot is amicroregionof spatial
transcriptome sequencing, and a different color represents a different cell type.

Left two: Spatial feature plots of malignant, mixed and normal areas via

“Cottrazm” analysis. Left three: Spatial feature plots of gene expression of JAK1.
Left four: Spearmancorrelationanalysis calculated the correlationsbetweenone

cell count andanother cell count, andbetweencell countandgeneexpression in
all spots. Left five: The horizontal coordinate is the different microregion types,

and theverticalcoordinate is theaverageexpressionofJAK1.WilcoxonRankSum
Tests assessed the significance of statistical differences.
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