
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Zhiwen Luo,
Fudan University, China

REVIEWED BY

Kaige Chen,
Wake Forest University, United States
Shangke Huang,
Southwest Medical University, China

*CORRESPONDENCE

Xiaowei Tang

gdwktxw@163.com

Yana Ding

18996142021@163.com

†These authors have contributed equally to
this work

RECEIVED 05 October 2024

ACCEPTED 01 November 2024
PUBLISHED 22 November 2024

CITATION

Cao Z, Tian K, Ran Y, Zhou H, Zhou L, Ding Y
and Tang X (2024) Beclin-1: a therapeutic
target at the intersection of autophagy,
immunotherapy, and cancer treatment.
Front. Immunol. 15:1506426.
doi: 10.3389/fimmu.2024.1506426

COPYRIGHT

© 2024 Cao, Tian, Ran, Zhou, Zhou, Ding and
Tang. This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums
is permitted, provided the original author(s)
and the copyright owner(s) are credited and
that the original publication in this journal is
cited, in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Review

PUBLISHED 22 November 2024

DOI 10.3389/fimmu.2024.1506426
Beclin-1: a therapeutic target at
the intersection of autophagy,
immunotherapy, and
cancer treatment
Zhumin Cao1†, Ke Tian1†, Yincheng Ran1†, Haonan Zhou1,
Lei Zhou1, Yana Ding2* and Xiaowei Tang2*

1Department of Hepatobiliary Surgery, The Seventh People’s Hospital of Chongqing,
Chongqing, China, 2Department of Hepatobiliary Surgery, District Traditional Chinese Medicine
Hospital, Chongqing, China
The significant identification of Beclin-1’s function in regulating autophagy flow

signified a significant progression in our understanding of cellular operations.

Beclin-1 acts as a scaffold for forming the PI3KC3 complex, controlling

autophagy and cellular trafficking processes in a complicated way. This

intricate protein has garnered considerable attention due to its substantial

impact on the development of tumors. Strong evidence indicates Beclin-1

plays a critical role in controlling autophagy in various human cancer types and

its intricate connection with apoptosis and ferroptosis. The potential of Beclin-1

as a viable target for cancer therapy is highlighted by its associations with key

autophagy regulators such as AMPK, mTOR, and ATGs. Beclin-1 controls the

growth and dissemination of tumors by autophagy. It also affects how tumors

react to therapies such as chemotherapy and radiation therapy. The role of

Beclin-1 in autophagy can influence apoptosis, depending onwhether it supports

cell survival or leads to cell death. Beclin-1 plays a crucial role in ferroptosis by

increasing ATG5 levels, which in turn promotes autophagy-triggered ferroptosis.

Finally, we analyzed the possible function of Beclin-1 in tumor immunology and

drug sensitivity in cancers. In general, Beclin-1 has a significant impact on

regulating autophagy, offering various potentials for medical intervention and

altering our understanding of cancer biology.
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GRAPHICAL ABSTRACT
1 Introduction

Growing proof has shown that cell death is an essential aspect of

cellular existence. Nevertheless, the sophisticated biological studies

have showcased the genetically encoded processes that rid the body

of unnecessary, permanently damaged, or possibly dangerous cells

(1–5). It should be pointed out that regulated cell death (RCD) is

not limited to multicellular organisms. Although RCD

unquestionably aids in maintaining balance within organisms in

normal and abnormal situations, it is also present in simpler forms

in single-celled eukaryotes like Dictyostelium discoideum and

different yeast species that may gather in colonies, as well as in

specific prokaryotes like Escherichia coli. RCD relies on certain

molecular machinery, indicating that it can be modified (accelerated

or decelerated) through genetic or pharmacological interventions.

This is in stark opposition to unintentional cell demise, which is the
Abbreviations: ULK1, Unc-51 Like Autophagy Activating Kinase 1; mTOR,

Mammalian Target of Rapamycin; AMPK, AMP-Activated Protein Kinase;

Autophagy Re la ted ; ATG, Autophagy Re la t ed Gene ; P IK3C3 ,

Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3; VPS34, Vacuolar

Protein Sorting 34; AMBRA1, Autophagy and Beclin 1 Regulator 1; ATG14,

Autophagy Related 14; ATG16L1, Autophagy Related 16 Like 1; LC3,

Microtubule Associated Protein 1 Light Chain 3; GABARAP, GABA Type A

Receptor Associated Protein; ATG12, Autophagy Related 12; ATG5, Autophagy

Related 5; ATG7, Autophagy Related 7; ATG3, Autophagy Related 3; ATG4,

Autophagy Related 4; WIPI, WD Repeat Domain, Phosphoinositide Interacting;

DFCP1, Zinc Finger; FYVE-Type Containing 1.
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swift and disastrous death of cells that have been subjected to

intense physical, chemical, or mechanical injuries (6–18).

Despite the high level of similarity in the chemical reactions

involved, RCD plays a role in two distinct scenarios. RCD can occur

spontaneously, serving as a natural part of the body’s growth or tissue

renewal processes (7, 19). The term commonly used for these

completely natural types of RCD is programmed cell death (PCD).

On the other hand, RCD can be activated by changes in the

intracellular or extracellular surroundings that are too extreme or

extended for the body’s adaptive processes to handle, hindering the

restoration of cellular balance. Similarly to adaptive stress responses,

stress-induced programmed cell death is an approach used to

preserve biological equilibrium (6). Unlike adaptive stress

responses, which support cellular and overall homeostasis,

programmed cell death (RCD) targets the organism or colony

directly, independent of cellular homeostasis (6). This process of

maintaining balance in the body involves not just getting rid of

harmful or unnecessary cells, but also allows dying cells to release

chemicals that alert the organism or colony of potential dangers.

DAMPs or alarmins are common terms used to describe molecular

patterns associated with damage, serving as warning signals (20–23).

Macroscopic morphological alterations indicate the occurrence

of cell demise. In the past, these morphotypes were used to classify

cell death into three different types and determine the mechanisms

responsible for clearing dead cells and their remnants: (1) apoptosis,

characterized by cytoplasmic shrinkage, chromatin condensation,

nuclear fragmentation, and plasma membrane blebbing, leading to

the formation of apoptotic bodies that are engulfed and degraded by
frontiersin.org
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neighboring cells; (2) autophagy, showing cytoplasmic

vacuolization and eventual lysosomal degradation after phagocytic

uptake; and (3) necrosis, which lacks specific features of apoptosis

and autophagy, ending with the removal of cell corpses without

phagocytic or lysosomal involvement (24, 25). Nevertheless, despite

various limitations and constraints, this morphological

classification remains commonly utilized. Starting in 2005, the

Nomenclature Committee on Cell Death (NCDD) convened

consistently for four reasons: (1) to address problems with a

morphology-centered naming of cell death; (2) to accurately

delineate key cell death processes using genetic, biochemical,

pharmacological, and functional criteria instead of morphology;

(3) to distinguish between causes and correlations of cell death; and

(4) to set agreed-upon standards for recognizing dead cells with

irreversible plasma membrane permeabilization or complete

cellular fragmentation as signs of cell death (18, 26–29).

The disruption of cell death processes is a crucial element

involved in many diseases, especially cancer. Different pathways

of cell death, such as autophagy and apoptosis, interact in intricate

ways, impacting the advancement of cancer and how it responds to

treatment. This review examines the different functions of

autophagy in human cancers, emphasizing its significance as both

a protective and detrimental element in tumor biology. Among the

numerous regulators of autophagy that have been identified, Beclin-

1 is acknowledged as one of the most important. Beclin-1, a vital

regulatory protein, is necessary for initiating autophagy and impacts

the fine balance between cell survival and death. The present review

will comprehensively investigate how Beclin-1 controls autophagy

in human cancers, assessing its effects on tumor advancement and

drug resistance. Examining Beclin-1’s role reveals cancer cells’

reliance on autophagy for survival. This review explores Beclin-1’s

impact on cell death pathways. The connection between these

processes is essential in deciding the outcome of cancer cells

following medical treatments. Exploring how autophagy affects

cancer therapies could lead to new strategies. This review will

delve into Beclin-1’s vital role in controlling autophagy, its

influence on cancer growth, drug resistance, and interactions with

cell death mechanisms. By revealing these connections, we can offer

fresh perspectives to enhance the creation of groundbreaking

healing strategies for improved treatment of human cancers.
2 An overview of cell death

PCD could potentially regulate the equilibrium between cell

death and normal cell survival (30). PCD is important in deciding

the ultimate destiny of cancer cells when cellular balance is

disturbed (31, 32). Noteworthy is the fact that the three main

forms of PCD include apoptosis, autophagy, and programmed

necrosis. These three forms can be distinguished from each other

by their morphological differences. Kerr and colleagues were the

first to introduce apoptosis, also referred to as type I PCD.

Apoptosis involves specific changes in dying cells, including cell

shrinkage, nucleus condensation, membrane blebbing, and

detachment from neighboring cells or matrix. The breaking of

chromosomal DNA into fragments between nucleosomes, the
Frontiers in Immunology 03
movement of phosphatidylserine to the outside of the cell

membrane, and various internal substrate cleavages due to

specific proteolysis are all instances of biochemical changes (33–

38). Autophagy, or type II PCD, is a conserved degradation process

in various species. It involves the formation of autophagosomes,

enclosed by a double membrane, containing macromolecules and

organelles for recycling (39–42). Overall, autophagy is crucial in

times of famine or stress caused by a lack of growth factors (43), and

it is key in preserving cell homeostasis. However, a growing body of

evidence indicates that autophagy in cells could experience

autolysis, leading to cell death as a response to intense stress. This

phenomenon is separate from apoptosis and programmed necrosis

(34, 44). Autophagy, acting as “the Janus role,” controls various

physiological processes like starvation, differentiation, survival, and

cell death (45). Programmed necrosis is a type of programmed cell

death that happens alongside apoptosis and autophagy. It is defined

by the swelling of cells, dysfunction of organelles, and breakdown of

living cells (46–48). Hence, PCD could have a crucial impact on

maintaining tissue balance and eliminating unhealthy cells, which is

important for cancerous tissues (34).

Typically, apoptosis and autophagy-mediated cell death are

considered necessary processes of regulated cell death (49). These

processes can lead to organelle malfunction or cell death under

conditions of cellular stress. Additionally, they have a crucial role in

regulating cancer cell death and specific cancer treatments.

Apoptosis plays a crucial role in controlling cell numbers and

preserving overall organismal balance (50). Apoptosis is linked to

numerous morphological characteristics. These features consist of

cell shrinkage, chromatin condensation, membrane blebbing,

fragmentation of DNA, and the formation of apoptotic bodies

(51, 52). Apoptosis occurs via extrinsic pathway (death receptor

activation) and intrinsic pathway (mitochondria control). Ligands

like tumor necrosis factor a (TNFa), Fas ligand, and TRAIL trigger

extrinsic pathway by binding death receptors on cell surfaces. This

activation triggers caspase-8, initiating the final stage of cell death

known as apoptosis (53). Proteins in the B-cell lymphoma 2 (Bcl-2)

family typically have a function in regulating the intrinsic pathway

when there is permanent cellular harm. These proteins control the

release of Cytochrome c (Cyt-C) and SMAC/DIABLO, which is a

direct IAP-binding protein with low pI, from the mitochondria. The

joining of Cyt-C and Apaf-1 proteins triggers caspase 9 activation,

causing cancer cell apoptosis (54, 55). Autophagy is an essential

phagocytic process for ensuring cell function and balance.

Lysosomal fusion can decompose toxic proteins or organelles

(56). Autophagy plays two distinct roles in tumor growth,

showing that it can either aid or hinder cancer progression, based

on the specific tumor subtype and its mutation profile (57). In the

pre-cancer stage, inhibiting autophagy leads to the accumulation of

ROS and genomic dysfunction. When these two elements are

merged, they create pressure on the endoplasmic reticulum (ER)

to expand and cause DNA harm, ultimately resulting in tumor

development. However, autophagy can provide energy and

nutrients to tumors when triggered by a lack of food or oxidative

stress (58, 59). Autophagy-related genes, including Beclin-1, light

chain 3 (LC3), p62, forkhead box O (FoxO), and Unc-51-like kinase

1 (ULK1), regulate the autophagy process. ULK1 specifically plays a
frontiersin.org
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key role in initiating and controlling autophagy, increasing the

chances of cancer cell survival (60). Furthermore, autophagy-

associated signaling pathways, such as the phosphatidylinositol 3

kinase complex 1 (PI3KC1)-protein kinase B (Akt)-mammalian

target of rapamycin complex 1 (mTORC1) pathway, the Ras-Raf-

mitogen activated protein kinases (MAPKs) pathway, and the

nuclear factor kappa-B (NF-kB) pathway, play a crucial role in

fighting against tumor advancement and spread of metastasis.

Autophagy and apoptosis are the main mechanisms that control

cell destiny and uphold cellular balance within the cell.

Alternatively, there is a distinct relationship between apoptosis

and autophagy that can result in cell death via methods that are

separate or supportive (61). The controlled management of

apoptosis and autophagy has proven the therapeutic effectiveness

of small-molecule compounds in the development of cancer

treatments (62). For instance, studies have demonstrated that

Ampelopsin (Amp) triggers apoptosis and autophagy-related cell

death in glioma cells by stimulating ROS production and activating

c-Jun N-terminal kinase (JNK) (63). Galectin-1, a member of the

galactose lectins family, carries out a range of biological functions.
Frontiers in Immunology 04
This protein, present in many tumor structures, regulates the

proliferation, migration, and growth of tumor cells (64). Table 1

outlines the pathways of cell death involved in cancer.

Researchers developed chitosan nanoparticles that respond to

dual pH to enhance drug delivery and accumulation in MDR breast

cancer cells, named DCCA/DOX-NPs. These nanoparticles

exhibited increased cellular absorption, heightened toxicity, and

enhanced antitumor effectiveness in living organisms by

overcoming resistance mechanisms (84). In hepatocellular

carcinoma, sorafenib and its derivative SC-59 both trigger

autophagy through SHP-1-STAT3-Mcl-1-Beclin 1 pathway, with

SC-59 showing greater efficacy in decreasing cancer cell viability

and tumor growth (85). The use of Adenovirus vector to express

XAF1 in gastric cancer cells promotes autophagy through

increasing Beclin-1 levels and inhibiting the Akt/p70S6K pathway,

leading to enhanced apoptosis simultaneously (86). Rhus coriaria

extract (RCE) exhibits notable effectiveness in fighting colorectal

cancer cells by diminishing cell viability and colony formation,

triggering Beclin-1-independent autophagy and caspase-7-

dependent apoptosis, impacting the AKT/mTOR pathway, and
TABLE 1 Cell death pathways in cancer.

Cell
death pathway

Tumor Summary Ref

Immunogenic cell death Lung cancer ERO1A ablation accelerates endoplasmic reticulum stress and mediates Immunogenic cell death to
potentiate immunotherapy

(65)

Immunogenic cell death Colorectal cancer Acceleration of immunogenic cell death by aspirin in cancer immunotherapy (66)

Immunogenic cell death Hepatocellular
carcinoma

Lenvatinib promotes Immunogenic cell death and mediates toll-like receptor-3/4 ligands (67)

Immunogenic cell death Lung cancer Afzelin suppresses NQO2 to mediate cell death (68)

Immunogenic cell death Lung cancer Marsdenia tenacissima extract can enhance ER stress-related immunogenic cell death through
AXL downregulation

(69)

Apoptosis
Ferroptosis

Colorectal cancer Silencing CAPG can enhance apoptosis and ferroptosis through p53 downregulation (70)

Apoptosis Colon cancer Metformin and O-GlcNAcylation inhibitor can synergistically mediate apoptosis (71)

Apoptosis Pancreatic cancer SDR16C5 can suppress growth and metastasis, while it induces apoptosis (72)

Apoptosis Esophageal cancer Propofol accelerates apoptosis and diminishes proliferation through caspase-3/7 upregulation (73)

Apoptosis
Autophagy

Thyroid cancer Silencing KAT5/KIF11 can enhance apoptosis and autophagy (74)

Apoptosis Liver cancer Blue light irradiation increases ROS levels and upregulates Bax and Bad to mediate apoptosis (75)

Ferroptosis Oral cancer FTO downregulates ACSL3 and GPX4 to mediate ferroptosis (76)

Ferroptosis Colon cancer PR-619 as deubiquitinase inhibitor stimulates ferroptosis to boost immunotherapy (77)

Ferroptosis Hepatocellular
carcinoma

Fe3+-binding transferrin nanovesicles can deliver sorafenib and promote lipid peroxides to
mediate ferroptosis

(78)

Autophagy Thyroid cancer miR-363-3p suppresses autophagy and cancer malignancy through NF-kB downregulation (79)

Autophagy Breast cancer Bruceine A controls PI3K/AKT axis to mediate autophagy (80)

Autophagy Lung cancer Resveratrol increases paclitaxel sensitivity by autophagy induction through regulation of PINK1/Parkin axis (81)

Autophagy Endometrial cancer ICG-001 stimulates autophagy and impairs cell cycle progression (82)

Autophagy Breast cancer Lentinus edodes release b-glucan that suppresses M2 polarization of macrophages via enhancing autophagy
cell death

(83)
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influencing crucial proteins related to proteasome-mediated

breakdown (87). Tanshinone IIA (TAN) slows the growth of oral

squamous cell carcinoma (OSCC) by inducing cell death and self-

cleaning mechanisms through specific pathways, while also

decreasing the activity of other pathways, with its effectiveness

being linked to Beclin-1 levels (88). Cisplatin enhances autophagy

and apoptosis in A549 human lung cancer cells by increasing Beclin

1 and Atg5, while blocking these autophagy-related proteins

worsens apoptotic cell death (89). Autophagy may promote

programmed cell death in cancer cells exposed to cobalt chloride

(CoCl2)-induced hypoxia through an ATG5-dependent

mechanism, which includes crosstalk with endoplasmic reticulum

stress and mitochondrial pathways, and identifies two separate

autophagy-related routes that could aid in the creation of new

anti-cancer treatments (90). Thus, Beclin-1 controls cell death in

human cancers (91–93).
3 Autophagy flux

Autophagy, frequently referred to as the self-recycling process,

involves complex lysosome-dependent pathways in eukaryotic cells

to control protein, lipid, and organelle levels. Autophagy originates

from the Greek terms “auto” and “phagein,” denoting “self-

consumption.” When the body experiences a lack of nutrition or

energy, it initiates autophagy binge to compensate. Autophagy can

also be triggered by various cellular stressors, including the buildup

of harmful protein clusters that are specifically broken down

through autophagic processes. In the same way, lysosomes can

engulf cellular organelles like LDs through autophagy processes to

create metabolites. Hence, autophagy serves as an important control

mechanism for a range of cellular and tissue functions, such as

growth, coping with stress, immune reactions, and metabolic

processes. Furthermore, there are three forms of autophagy:

macroautophagy/autophagy, microautophagy, and chaperone-

mediated autophagy (CMA) (94, 95).

Autophagy dysfunction is associated with illnesses such as

neurodegeneration, macular degeneration, Crohn’s disease, and

cancer. It plays crucial roles in controlling cellular growth,

metastasis, and treatment resistance in cancer. As a result,

autophagy has garnered significant attention in cancer treatment,

with researchers focusing on regulating it using nanoparticles and

anti-cancer medications (96–100). Additionally, aging is linked to

malfunctions in the autophagy process. Autophagy is divided into

three types: (1) Microautophagy involves the direct ingestion of

cellular material by lysosomes. (2) Chaperones selectively recognize

substrate proteins, then unfold and translocate them to lysosomes

through a lysosomal receptor, and (3) Macroautophagy involves

non-selectively enclosing bulk cytoplasm in double-membraned

vesicles, which later fuse with lysosomes for degradation.

Additional information on autophagy can be found in several

scientific reviews (101–104). Many eukaryotic organisms have

over 90% of their cells participating in basic macroautophagy

processes. Macroautophagy starts with a precursor structure,

known as the phagophore, that eventually transforms into an

autophagosome. The recently created autophagosome combines
Frontiers in Immunology 05
with lysosomes, which then expose the internal cytosolic material

to enzymes that degrade it in an acidic setting. Autophagosomes

gather the lipids they need for formation from different organelles

within the cell including the Golgi complex, mitochondria,

recycling endosomes, the ER, and even the plasma membrane.

Proteins called autophagy-related (ATG) proteins supply these

lipids in vesicular form (105–109). Yoshinori Ohsumi, Daniel

Klionsky, and Michael Thumm were the first to discover and

characterize ATG genes (109–111). Activation of the ULK1/Atg1

kinase complex is necessary to initiate the process of

autophagosome formation in autophagy. The ULK1 kinase

complex primarily incorporates signals from two kinases:

mTORC1 and PRKA/AMPK, both of which are upstream

molecular signals. These complexes are vital in controlling the

initiation of the autophagy process (112–114). Another part of

creating a phagophore from scratch includes its growth in particular

ER subdomains referred to as omegasomes. The omegasomes need

the ULK1 kinase complex to be activated in order to form (115).

The second group acts as a nursery for the growth of

autophagosome (116).

The ULK1 complex phosphorylates and activates a different

protein kinase complex, called the class III phosphatidylinositol 3-

kinase (PtdIns3K) complex (BECLIN1/Vps30/Atg6-PIK3R4/

Vps15-ATG14-PIK3C3/Vps34-AMBRA1). When Beclin-1/Vps30/

Atg6 combines with PIK3R4/VPS15 and ATG14, PIK3C3/VPS34 is

triggered to produce PtdIns3P. Proteins such as DFCP1 (zinc finger

FYVE-type containing 1) (115) and phosphoinositide interacting

(WIPI) are connected through binding proteins to participate in

cellular processes (117). WIPI2 and WIPI1 collaborate to bring in

the ATG12-ATG5 complex, together with ATG16L1 (118). ATG16

combines with the ATG12-ATG5 complex to initiate the formation

of phagophores (119). The elongation complex (WDR45B/WIPI3

and WDR45/WIPI4) and WDR45, specifically interact with ATG2

(118, 120). The ATG12-ATG5-ATG16L1 conjugate acts as an E3-

like ligase (109), to attachMAP1LC3 from the LC3 protein family to

phosphatidylethanolamine (119). The LC3 protein family is made

up of seven members, with four in the MAP1LC3 group (LC3A,

LC3B, LC3C, and LC3D) and the other three in the GABA Type A

receptor-associated protein groups (GABARAP, GABARAPL1, and

GABARAPL2), representing GABA Type A receptor-associated

protein and GABA type A receptor associated protein like 1 and

2, respectively. In terms of function, LC3 proteins play a role in

selecting cargo, elongating, and closing phagophores (119, 120),

resulting in the development of fully mature autophagosomes that

merge with lysosomes to form autolysosomes (121).
4 Evolution of autophagy genes

The origins of all three domains of life - bacteria, archaea

(prokaryotes), and eukaryotes - can be traced back to the last

eukaryotic common ancestor (LECA). Thaumarchaeota is one of

the primary branches of archaea, followed by Asgard, and then

Crenarchaeota, Korarchaeota, and Aigarchaeota (TACK) (122).

Prokaryotes lack the autophagy pathway found in eukaryotic

cells. This system relies on the existence of intracellular
frontiersin.org
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membrane compartments. The diverse functions seen within

eukaryotic lineages are probably due to the presence of most, if

not all, core autophagy related (ATG) proteins in the Last

Eukaryotic Common Ancestor (LECA). Not every subgroup

participates in autophagy, but it is likely that early on in the

LECA era, two ATG protein families - Atg1/ULK and PROPPINs

- which interact with polyphosphoinositides, had already branched

out into various subgroups. Plants and vertebrates experienced

numerous duplication events. In the usual ATG conjugation

systems, ATG12 is bonded to ATG5 through a covalent

attachment. Nevertheless, essential components required for this

conjugation are absent in Toxoplasma and Plasmodium, which are

part of the Alveolata within the SAR supergroup of Stramenopiles,

Alveolata, and Rhizaria, as well as in Komagataella, a yeast genus.

Specifically, the E2-like enzyme ATG10 and the C-terminal glycine

of ATG12 are not present. Therefore, these organisms depend on

noncovalent connections involving ATG12 and ATG5 instead (123,

124). The noncovalent form is considered adaptable because it does

not depend on enzymes or ATP. Eukaryotic organisms might have

experienced as many as sixteen transitions from covalent to

noncovalent bonds.

Saccharomyces cerevisiae, frequently utilized in studies on

budding yeast, is commonly acknowledged as the gold standard

in autophagy investigations. This reputation is because of its crucial

involvement in breakthroughs like the discovery of the ATG gene.

Research indicates autophagy in S. cerevisiae is different from

other species.

In different kinds of organisms, Atg1 complex consists of Atg29

and Atg31 in addition to Atg17. Nevertheless, the S. cerevisiae Atg1

complex does not have ATG101 like other species (125), preventing

the stabilization of ATG13 and the formation of a complex. It is not

clear if the loss of ATG101 is related to the acquisition of Atg29 and

Atg31. S. cerevisiae does not have VMP1, a crucial protein for

autophagy in various other organisms such as metazoa,

Dictyostelium, and potentially green algae. VMP1 is located in

the ER and is situated after the hisT gene in the Escherichia coli

DNA gene A superfamily. Crucially, S. cerevisiae employs a

distinctive biosynthetic mechanism called the cytoplasm-to-

vacuole targeting (Cvt) pathway for delivering vacuolar

hydrolases to the vacuole. Furthermore, Schizosaccharomyces

pombe also contains an alternative metabolic pathway called the

Nbr1-mediated vacuolar targeting (NVT) pathway.

Furthermore, proteins associated with specific autophagy have

been discovered to increase in gene families. NBR1 (Atg19 in S.

cerevisiae) is found in various eukaryotic organisms, and SQSTM1

likely evolved from duplication of NBR1 and loss of NBR1 domains.

The presence of OPTN and CALCOCO families in the majority of

metazoan species indicates that they underwent expansion

in vertebrate evolutionary lineages. While most ATG proteins

are found only in eukaryotic organisms, certain ones may

have originated in prokaryotes. Many functional complexes in the

autophagy pathway have proteins in common with distant prokaryote

counterparts. Various instances of this phenomenon are demonstrated,

including the DedA superfamily proteins (TMEM41B and VMP1), the

Hop1, Rev7 and Mad2 (HORMA)-domain-containing proteins

(ATG13 and ATG101), transmembrane segment of ATG9, chorein-
Frontiers in Immunology 06
N domain at the N termini of lipid transfer proteins (ATG2), and

ubiquitin-like ATG conjugation systems. This implies that autophagy

developed partially through the utilization of genes already present.

Prokaryotes are the ancestors of the endosomal sorting complex

required for transport (ESCRT) proteins, crucial for micro- and

macroautophagy. Even though ESCRT-I, -II, and -III function

sequentially in eukaryotic cells during membrane fission, bacterial

and archaeal proteins like PspA/Vipp1 and CdvB appeared earlier in

evolution. Although the Asgard archaea group is believed to be the

initial habitat of the ESCRT-I and -II proteins, they were introduced at

a later time. Therefore, it is believed that eukaryotic organisms evolved

from the Asgard group, which had a complete ESCRT system

(although lacking ESCRT-0, found only in Opisthokonta) (123,

126–129).
5 Autophagy in cancer drug resistance

Inhibiting autophagy may enhance tumor cells’ responsiveness

to regular medications or combat the resistance they have built up

against chemotherapy (130–132). In the upcoming section, we will

explore the latest and most relevant findings on combining various

anticancer drugs with autophagy inhibitors and activators.

Combining CQ and HCQ with medicines like 5-fluorouracil

(133), cisplatin (134), and temozolomide (135, 136), enhances

their cytotoxicity. Additionally, the use of both CQ and

trastuzumab together was able to block tumor growth by over

90% in a HER2-positive breast cancer tumor xenograft that had

total resistance to trastuzumab (137). Furthermore, different

autophagy blockers have demonstrated positive outcomes, such as

verteporfin’s improvement of gemcitabine’s effectiveness in an in

vitro model of pancreatic cancer (138). SBI-0206965 was able to

overcome resistance to cisplatin in NSCLC cells (139) as well as

resistance to cabozantinib in metastatic colorectal cancer (140). The

combination of celecoxib, a specific inhibitor of cyclooxygenase-2,

with CQ and SAR405 led to an enhancement in cell death (141).

Furthermore, research demonstrated that 3MA increased the level

of cell demise caused by bortezomib in glioblastoma cells (142).

Furthermore, the use of CQ analog lys05 with the second generation

tyrosine kinase inhibitor, nilotinib, has shown to have an extra effect

on reducing the amount of leukemia stem cells in mouse models of

chronic myelogenous leukemia (143). By inhibiting autophagy,

UAMC-2526 can improve the effectiveness of oxaliplatin in a

colorectal cancer mouse model. In addition, UAMC-2526

treatment led to a more differentiated phenotype in tumors (144).

Research has investigated using both autophagy activators and

inhibitors together; for instance, CQ and HCQ have been shown

to boost the impact of mTOR inhibitors like temsirolimus (145) or

everolimus (146), in colorectal cancer (147), melanoma (145), and

neuroendocrine neoplasms (146). This indicates that blocking

autophagy can be utilized to address resistance to mTOR

inhibitors. In addition, research has shown that CQ can improve

the cancer-fighting abilities of vorinostat (148). Moreover, the

synergistic effects of combining everolimus with SAR405 have

been shown in studies (149, 150). In light of these observations, it
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can be inferred that suppressing autophagy proves to be a more

efficient approach to treatment. This happens due to the fact that

autophagy has a protective function in the models being studied.

Autophagy inducers, however, can also help overcome

chemoresistance, although to a lesser extent. Studies have

demonstrated that Temsirolimus can enhance the efficacy of

gemcitabine and cisplatin in bladder cancer cell lines (151).

Furthermore, studies have demonstrated that it can decrease the

susceptibility of colon cancer cells to cetuximab (152). In the same

way, curcumin has been found to enhance the effectiveness of

gefitinib in primary gefitinib-resistant small-cell lung cancer cells

through autophagy-dependent synergism (153). However, studies

conducted before clinical trials have revealed that controlling

autophagy can lead to conflicting outcomes under specific

circumstances. Lab research shows mTOR + ULK1 inhibitor

combo induces A549 cell apoptosis (154, 155). SBI-0206965

sensitizes neuroblastoma cells to TRAIL, not mTOR inhibitors.

This implies that autophagy does not have a protective function

within this model (155). At this point, it is essential to utilize

molecular markers that can anticipate how tumors will react to

autophagy modulators. One illustration of such an indicator is the

BRAF V600E mutation, linked to protective autophagy (156).

5-FU, antimetabolite chemo used long term for solid tumors like

head/neck, breast, GI, and pancreatic cancer (157, 158). In S phase,

halts thymidylate synthetase, decreasing thymidylate for DNA

replication, affecting cell cycle progression (159). Nevertheless, the

effectiveness of 5-FU is limited by the promotion of protective

autophagy as an unintended consequence in different cancer types

through multiple pathways: (1) augmentation of Beclin-1 expression,

aiding in the transformation of LC3I to LC3II (160); (2) JNK-

triggered protective autophagy and activation of Bcl-2

phosphorylation, resulting in resilience to 5-FU; and (3) increased

autophagy flow when 5-FU is present (161). Despite its purpose of

damaging DNA in the guanine residue, TMZ, an alkylating

medication utilized for treating glioma (162), often shows restricted

effectiveness. This is partly because it triggers protective autophagy,

which may play a role in building resistance (163, 164). Following

temozolomide treatment, various mechanisms have been

demonstrated to trigger protective autophagy. Some of these

mechanisms involve ATM increasing the AMPK-ULK1 pathway

(165), generating ROS, activating the signal-regulated kinase (ERK)

pathway (166), and creating mitochondrial and ER stress (167).

Cisplatin-based chemotherapeutic regimens are standard

treatments for solid tumors due to their DNA damage and

mitochondria apoptosis effects, although drug resistance can limit

their effectiveness (168, 169).

Autophagy plays a significant role in various pathways of

cisplatin-induced chemoresistance, specifically in ovarian cancer,

where it is triggered by the activation of the ERK pathway (170), and

the upregulation of Beclin-1 (171). Cisplatin induces protective

autophagy in esophageal cancer by increasing Beclin-1 levels,

converting LC3-I to LC3-II (172), and upregulating ATG7

expression (173). Consequently, inhibiting autophagy along with

cisplatin treatment results in increased cell death in esophageal

cancer (174).
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6 Major regulators of
autophagy machinery

6.1 Beclin-1

Beclin-1 is a new protein containing only the BH3 domain of

Bcl-2 (175). Unlike other animals lacking autophagy genes, which

die in early embryo development (before E7.5) because of issues

with proamniotic canal closure, Beclin-1 null mice have a

significantly more severe embryonic phenotype (176). Beclin-1

located in cytoplasm, ER, mitochondria, and perinuclear

membranes. Found in various human and mouse tissues. Also

seen in different regions of human colon cancer tissue via

immunohistochemistry (177). Beclin-1 is comprised of three

specific structural regions: a BH3 domain at the N-terminal

(amino acids 114-123), a coiled-coil domain (CCD) (amino acids

144-269), and an evolutionarily conserved domain (ECD) (amino

acids 244-337). ECD domain important for Beclin-1 to regulate

autophagy, prevent cancer.

The short leucine-rich amino acid sequence makes the nuclear

export signal (NES) of Beclin-1 effective. The Beclin-1 NES

mutation hinders its capacity to induce autophagy during food

scarcity and to inhibit cancer progression. Twelve Bcl-2 family

members, known for their ability to prevent cell death, bind to the

BH3 domain of Beclin-1. Activators such as activating molecule in

Beclin-1-regulated autophagy (Ambra1), UV radiation resistance-

associated gene (UVRAG), and Atg14L interact with the CCD,

while both the ECD and CCD are connected to PI3KC3/Vps34

(Figure 1, Table 2) (191, 192). Beclin-1 not only controls autophagy,

but also regulates mitophagy, a specific form of autophagy (193).

Beclin-1 is crucial for maintaining cellular balance and

controlling autophagy, acting as a key center that combines

different cellular cues. Its dual role involves promoting autophagy

cell death and also inhibiting apoptosis by interacting with the Bcl-2

protein family. Maintaining a delicate balance between these

processes is essential for how cells respond to stress and keep

tissues healthy. Beclin-1 plays a crucial role in autophagy and is

involved in various cellular processes like inflammation and

immune responses. Its significance extends beyond autophagy

regulation and dysfunction is linked to cancer. Targeting Beclin-1

for treatments may offer new approaches in cancer therapy, making

it a potential biomarker and therapeutic target.
6.2 mTOR

Cell growth and metabolism are influenced by hormonal,

nutrient, and energy signals via signaling pathways and

transcription factors. mTOR, a crucial kinase, regulates cellular

metabolism and responds to environmental cues, with its

overactivity associated with diseases. mTOR interacts with

multiple proteins to create two complex entities known as mTOR

complex 1 (mTORC1) and mTORC2 (194). A fundamental list of

individuals found in both mTORC1 and mTORC2 consists of the

Tti1/Tel2 complex, mLST8, and DEPTOR, all functioning in both
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groups (195–198). RICTOR, mSin1, and PROCTOR1/2 are unique

to mTORC2, whereas RAPTOR and PRAS40 are dedicated solely to

mTORC1 (199–209). Two kinase complexes can activate signal

cascades and control cellular activities independently based on
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various substrate preferences. mTOR creates two distinct

signaling complexes called mTORC1 and mTORC2. One function

of mTORC1 is to integrate signals from growth factors and

nutrients to promote increased anabolic metabolism, including
FIGURE 1

An overview of Beclin-1 in autophagy. Upregulation of Beclin-1 can induce autophagy. AMPK upregulates ULK1 to increase Beclin-1 levels for
autophagy induction. On the other hand, an increase in mTOR levels can suppress ULK1 to reduce Beclin-1 levels in autophagy suppression.
TABLE 2 Beclin-1-mediated regulation of cancer progression.

Tumor type Molecular aspects Remark Ref

Urinary bladder cancer p53/PCDH17/Beclin-1 The downregulation of p53 and PCDH17 can mediate muscle-invasive bladder cancer
Beclin-1 determines the T stage
The patients with p53 mutation, PCDH17 downregulation and Beclin-1 poor expression have
poor survival rate

(178)

Gastric cancer Beclin-1 Beclin-1 stimulates apoptosis and decreases metastasis (179)

Ewing sarcoma Beclin-1 Silencing Beclin-1 downregulates MMP-9 to reduce metastasis (180)

Non-small cell lung cancer Beclin-1 Beclin-1 shows low expression, while Bcl-2 is upregulated in lung tumor (181)

Esophageal cancer Beclin-1 Upregulation of Beclin-1 enhances occurrence and development of cancer (182)

Colorectal cancer Beclin-1 Upregulation of Beclin-1 triggers desirable prognosis (183)

Cholangiocarcinoma Beclin-1
ARID1A

Upregulation of ARID1A and Beclin-1 mediate undesirable survival and tumor relapse (184)

Thyroid cancer Beclin-1 Beclin-1 upregulation increases potential of proteasome inhibitors in cancer therapy (185)

Breast cancer Akt
Beclin-1

Selenium suppresses proliferation through decreasing levels of Akt and Beclin-1 (186)

Primary
duodenal adenocarcinoma

Beclin-1 Upregulation of Beclin-1 enhances drug sensitivity and mediates desirable outcome (187)

Colorectal cancer Beclin-1 Beclin-1 expression is related to the distant metastasis (188)

Breast cancer miR-124-3p
Beclin-1

miR-124-3p downregulates Beclin-1 and LC3I in the cancer therapy (189)

Lung cancer Beclin-1 Apoptosis induction and metastasis inhibition by Beclin-1 (190)
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elevated protein and lipid synthesis, and inhibition of autophagy or

lysosome production. The TSC complex prevents mTORC1

activation by stimulating Rheb GTPase, a requirement for

mTORC1 activity. The compound is blocked by signaling

pathways triggered by growth factors like PI3K/AKT or Ras/Erc,

or stimulated by cellular stressors that involve mTORC1. During

stressful situations like low energy or oxygen levels, AMPK activates

and also inhibits the TSC complex by converting ATP to AMP. This

inhibition also includes AMPK’s phosphorylation of RAPTOR,

which directly impacts mTORC1. Moreover, Rag GTPases move

mTORC1 to the lysosomal surface upon amino acid stimulation,

where Rheb GTPase subsequently triggers its activation. On the

other hand, mTORC2 is activated by growth factor/RTK/PI3K

signaling and has important functions in cell metabolism, the

cytoskeleton, and survival through AGC family kinases.

Activation of mTORC1 has the ability to block IRS and enhance

GRB10 functionality, leading to the suppression of RTK/PI3K/AKT

signaling. An mTORC1 effector, S6K, additionally suppresses IRS

and indirectly impacts mTORC2 via inhibitory phosphorylation

(Figure 2) (210).
6.3 AMPK

AMPK is believed to be made up of three parts - a, b, and g
subunits - with slight structural differences seen in various species

(211). The a subunit of AMPK has a Ser/Thr kinase domain at the

start of the protein. Phosphorylation at Thr-172 is crucial for
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regulating its activity in humans. LKB1, TAK1, and CaMKKb are

upstream kinases targeting Thr-172. Circac1 also plays a role in

controlling AMPK function (212). Thr-172. Circac1 is also involved

in controlling AMPK function (212). Moreover, AMPK also

includes multiple allosteric activation sites. These consist of the

self-inhibiting domain (AID) on the a subunit, as well as domains

for interacting with the b and g subunits. The main functions of the

b-regulatory subunit are found in two key areas: the carbohydrate

binding region (CBM) which helps with energy supply, and the end

area which links to the a and g subunits. The g regulatory subunit

contains multiple cystathionine-b-synthase (CBS) tandem repeats

that make up the Bateman domain, which is essential for detecting

energy levels and interacting with ATP and AMP (213). Nutrient

depletion will result in elevated AMP/ATP ratio and lowered ATP

levels. It was previously believed that activation of AMPK g subunit
required extremely high levels of 5′-AMP when AMP was present in

millimolar concentrations (214). AMPK Thr-172 can be targeted by

a very high concentration of AMP through calcium ion-dependent

CaMKKb and AMP through the AMP-dependent LKB-1. Before, it

was thought that AMPK only controlled bioenergetic metabolism,

but now it is understood that it also protects the nervous system,

lengthens telomeres, triggers the tumor suppressor p53, and

improves mitophagy and synthesis. It has been experimentally

demonstrated that boosting the AMPK signaling pathway in the

body-wall muscles of nematodes can extend their average lifespan.

Moreover, the longevity of the nematode is prolonged by neuronal

TORC1 through the reduction of mitochondrial activity by

activating AMPK (215). Alpha-ketoglutarate (AKG) prolongs the
FIGURE 2

An overview of mTOR axis. There are two complexes including mTORC1 comprised of Raptor, Deptor, mTOR, mLST8 and PRAS40, and mTORC2
comprised of Rictor, Deptor, mTOR, mLST8, mSIN1 and Protor. The upstream regulator of mTORC1 is AMPK which suppresses the mTORC1 axis.
Lack of glucose and an increase in ATP/AMP levels can regulate the AMPK/mTORC1 axis. Changes in amino acid levels can affect both mTORC1 and
mTORC2 levels. Moreover, PI3K/Akt axis is considered as the upstream regulator of mTORC1. Therefore, most of the molecular pathways are related
to mTORC1.
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lifespan of fruit flies by blocking the mTOR pathway and boosting

the AMPK signaling pathway when glucose is transformed into

blood sugar in periods of high energy, ultimately raising insulin

levels. Insulin indicates a surplus of nutrients, causing cells to

absorb and use more resources by attaching to receptors on the

cell surface and initiating the PI3K-AKT pathway through IRS1.

The AKT-TSC1/2-RheB-mTORC1 pathway is known to be the

route through which insulin inhibits AMPK activity and stimulates

mTORC1 (216).
6.4 ULK1

Only one autophagy-linked kinase has been identified in S.

cerevisiae, which is known as Atg1 and is a conserved serine/

threonine kinase (217, 218). Atg1 loss leads to early termination of

yeast autophagy (218). In mammals, Atg1 is similar to ULK1 and

ULK2, which are kinases that resemble uncoordinated-51. ULK1

and ULK2 work together; the absence of ULK1 results in a slight

phenotype in mice (219). In mammals, Papinski and Kraft (2016)

(220), discovered that the start of autophagy is triggered by ULK1

combining with FIP200, ATG13, and ATG101. ULK1 activity is

regulated by AMPK and MTORC1 as energy and nutrient sensors.

In environments with abundant nutrients, MTORC1 suppresses

autophagy, but fasting or rapalog treatment inhibits MTORC1,

causing an increase in ULK1 kinase activity in mammalian cells

(221). Studies indicate that MTORC1 might regulate the

phosphorylation of two proteins in the initiation complex, ULK1
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and ATG13 (112). The discovery was made that MTORC1

phosphorylation on Ser757 can inhibit the activity of ULK1 and

interfere with its interaction with AMPK (222). AMPK

phosphorylation initiates autophagy by activating ULK1, in

contrast to MTORC1 phosphorylation. During amino acid

deprivation, AMPK adds phosphate groups to ULK1, assisting in

the degradation of mitochondria via mitophagy (223). AMPK

phosphorylates ULK1 at Ser555, regulating hypoxia-triggered

autophag ic breakdown of mi tochondr i (224) . ULK1

phosphorylates autophagy regulators. ULK1 phosphorylates its

binding partners ATG13, FIP200, and ATG101. The PI3KC3

complex 1, which is specific to autophagy, consists of Beclin-1,

Vps34/PIK3C3, and Ambra, all phosphorylated by ULK1 (220).

Phosphorylation of FUNDC1 by ULK1 is crucial for promoting the

proper association of the mitophagy adapter LC3 with FUNDC1,

which helps advance mitophagy (225). Additionally, ULK1 helps

maintain autophagy flow by triggering a feedback inhibition of the

MTORC1 complex via phosphorylating Raptor, ultimately leading

to its inhibition (226). AMPK phosphorylation accompanies ULK1-

regulated autophagy, leading to the formation of a negative

feedback loop (Figure 3) (227).
6.5 Autophagy-related genes

Essential for autophagosome formation are core ATG genes

(228). They are made up of 20 genes or gene families. These genes

are responsible for producing six different proteins: ATG1 (known
FIGURE 3

The function and regulation of ULK1 during low and high glucose levels. High glucose levels deactivate AMPK by suppressing its activity, whereas
low glucose levels activate and upregulate AMPK, which in turn mediates autophagy. This process provides necessary energy through the
degradation of macromolecules and aged organelles.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1506426
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2024.1506426
as ULK in mammals), ATG9 vesicle, ATG14-containing PtdIns 3-

kinase complex, ATG2-ATG18 complex, ATG12 conjugation

system, and ATG8 conjugation system make up the initial six

complexes (107, 229). ATG8(s) and their counterparts in

mammals are known as microtubule-associated protein 1 LC3

and GABARAP, respectively, unless the need arises to specifically

name each ATG8. ATG8 and ATG12 systems serve a role similar to

ubiquitin through covalent conjugation mechanisms (230–232).

ATP-driven mechanism triggers the starting point of activating

ATG12’s C-terminal glycine by E1-like enzyme ATG7 in ubiquitin-

like protein. After that, thioester intermediates are gradually formed

by ATG12, ATG7, and E2-like enzyme ATG10. The final stage

involves the formation of an isopeptide bond between ATG12 and

the lysine residue in ATG5. Two pairs of ATG12-ATG5 conjugates

unite within a compound containing ATG16(L) dimer. The ATG8

system begins with the production of ATG8, a protein that is

comparable to ubiquitin, in its proform state. Enzymes belonging

to the ATG4 family cut the C-terminal region of this proform to

expose a glycine residue. Afterwards, the ATG8 that has been

processed is activated by ATG7 and ATG12 enzymes, with the

help of E2-like enzyme ATG3, and then attaches to the PE head

group. The membranes of autophagy contain ATG8-PE. Although

ATG12 conjugation remains unchanged, ATG8-PE can be re-
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conjugated by ATG4. Remarkably, by interacting with ATG3,

ATG12 enhances the ATG8-PE conjugation through ATG12-

ATG5 conjugate functioning as an E3-like enzyme (233–236).

ATG16L1’s membrane binding dictates where ATG8 lipidation

occurs, despite not being essential for the process (237–239).

ATG8 lipidation can occur on non-autophagy membranes, but it

can be reversed through deconjugation carried out by ATG4, a

process regulated by ATG1 and ULK1 An instance would be LC3-I

representing modified ATG8, while LC3-II represents modified

ATG8-PE. The articles that discussed the discovery of these two

systems were part of the four “key publications” for Dr. Ohsumi’s

2016 Nobel Prize, as stated in references (230, 231). These

publications significantly broadened the scope of research on

autophagy. Even though ATG8 is the most commonly used

marker for autophagosomes, ATG5 and ATG7 have been heavily

utilized in knockout mouse research (Figure 4).
7 Non-autophagy functions of
Beclin-1

Current research shows that Beclin-1 plays a role in processes

beyond autophagy in addition to its known function as an
FIGURE 4

The involvement of ATG system in the regulation of autophagy. ATG7 (E1-like) activates ATG12 in an ATP-dependent way, and a high-energy
thioester bond couples its C-terminal glycine to the cysteine of ATG7 active site. Another thioester intermediate is formed when ATG12 is
transferred to ATG10 (which is E2-like). An isopeptide bond binds ATG12 to the acceptor lysine in ATG5. Connected to ATG16(L) is ATG5. The
ATG12-ATG5-ATG16 complex is formed when ATG16(L) forms a dimer. Following proteolytic processing by ATG4 enzymes, the ATG8 system
proceeds to activate the ATG8 protein(s), which in turn produce a thioester with the E2-like enzyme ATG3. In the end, phosphatidylethanolamine
(PE) is bound to ATG8. autophagy membranes contain the conjugated ATG8 form, which is recycled by deconjugation by ATG4(s). Conjugation of
ATG8 with PE is enhanced by ATG12-ATG5 (red arrow). It is suggested that ATG8 (LC3 and GABARAP) serves various purposes during autophagy,
including as elongating the membrane, recognizing cargo, closing the edge, moving autophagosomes, and connecting them to lysosomes (228).
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autophagy effecter (240). Beclin-1 does not exhibit a pro-apoptotic

function as it is solely a BH3 protein. It is interesting that Beclin-1’s

control over autophagy and apoptosis is given through caspase-

mediated cleavage (191). Caspases can cause Beclin-1 to be divided,

resulting in cleaved N and C-terminal fragments that are no longer

capable of inducing autophagy (241–243). Unlike the N-terminal

Beclin-1 fragment containing the BH3 domain, only the C-terminal

fragment is able to make cells more sensitive to signals that trigger

apoptosis. Beclin-1-C must translocate to the mitochondria surface

in order to induce the release of cytochrome c (241). Beclin-1-C

enhances Bax translocation to mitochondria, leading to elevated

apoptosis and reduced autophagy (244). Beclin-1 controls cell death

and self-cannibalization, implying possible treatment benefits. It

plays a role in multiple pathways of controlled cell death such as

apoptosis, ferroptosis, and necroptosis. Certainly, new functions of

Beclin-1 apart from autophagy have just become evident.

Phosphorylation of Ser90, Ser93, and Ser96 in Beclin-1 by active

AMPK leads to the formation of Beclin-1-SLC7A11 complex, which

directly inhibits system Xc− activity and ultimately promotes

ferroptosis (245). Another newly discovered, adversarial

component of the necrosome complex is Beclin-1.Beclin-1 serves

as a blocker of necroptosis by linking with phosphorylated MLKL in

the necrosome complex, preventing MLKL from forming oligomers

(246). Beclin-1 is involved in ferroptosis and necroptosis, and could

be targeted for treatment in associated disorders.

In addition to autophagy, Beclin-1 has been linked to DNA

damage responses that do not depend on autophagy, whether they

need it or not. Activation of nonhomologous end joining (NHEJ) for

DNA double-strand break repair necessitates a decrease in Beclin-1-

UVRAG activity to uphold genome stability (247). Nuclear Beclin-1

and DNA topoisomerase IIb are required for effective repair of DNA

double-strand breaks caused by ionizing radiation in both autophagy-

independent and autophagy-dependent DNA damage responses

(248). Furthermore, Beclin-1 plays a role in tumor spreading, blood

vessel formation, and immune system regulation through its actions

that are not related to autophagy (249). In models of mouse

melanoma tumors, animals with Beclin-1 (+/−) showed a more

aggressive tumor growth and increased angiogenic activity,

compared to mice with Beclin-1 wild-type, by boosting the protein

expression and stability of hypoxia-inducible factor-2a (HIF-2a)
(250). Increased levels of Beclin-1 lead to a decrease in

angiogenesis in laboratory settings by lowering the production of

matrix metalloprotease 9 and vascular endothelial growth factor

(251). Beclin-1 also plays a role in regulating the immune system

(252, 253). An example is how the lack of Beclin-1 is associated with

the abnormal activation of the neutrophil MEKK3/p38 signaling

pathway, increased B cell movement through the Cxcl9-Cxcr3 axis,

and the conversion of precursor B cells into malignant ones (253).
8 Beclin-1 and ATG interaction
in cancer

Beclin-1 and ATGs regulate autophagy and cancer progression.

Understanding their interaction may lead to innovative cancer
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treatments. CUL3 E3 ligase promotes Beclin-1 degradation. This

communication not just decreases autophagy function by blocking

Beclin-1 but also includes KLHL38 as the adapter for substrates in

the ubiquitination process controlled by the CUL3 E3 ligase

complex. Moreover, elevated CUL3 levels are linked to a negative

outlook in cases of breast and ovarian cancers, indicating its

involvement in facilitating the growth of tumor cells in these

scenarios (254). Additionally, Beclin-1 and ATGs may serve as

predictive indicators in cancer. Out of 90 cancer cases, 55 showed

positive Beclin-1 staining (61.1%) and 52 showed positive Atg5

staining (57.8%). Beclin-1 and Atg5 were both expressed in 40

tumors, but not in 23 tumors. Beclin-1 expression was associated

with lymph node metastasis and tumor grade, whereas Atg5

expression was associated with tumor grade, clinical stage, tumor

size, and lymph node metastasis. Beclin-1 patients showed

increased 3-year overall survival (OS) rates and improved time to

recurrence (TTR). However, there were no significant differences in

survival between groups with positive and negative Atg5. Patients

who displayed positive levels of both Beclin-1 and Atg5 had notably

improved 3-year OS and TTR compared to those who had negative

levels of both (p=0.022 and p=0.026, respectively) (255). Hence,

ATGs and Beclin-1 serve as dependable prognostic indicators in

cancer (256).

ATGs have the ability to also control Beclin-1 in a meaningful

way. In Ca Ski cells, RCE-4 disrupted the formation of the Bcl-2-

Beclin 1 complex through various pathways, with ATG 4B proteins

playing an important role. It was shown that using an ATG 4B

siRNA plasmid led to a significant increase in Ca Ski cell sensitivity

by reducing ATG 4B expression, as proven by RCE-4 (257). The

regulation of Beclin-1 and ATG2 is essential in the autophagy

mechanisms related to cancer treatment. Exposure to cisplatin in

A549 cells increased indicators of both autophagy and apoptosis,

including conversion of LC3B-I/II, LC3B puncta, and formation of

autophagosomes. Cisplatin also raised the mRNA and protein

quantities of autophagy proteins Beclin-1 and Atg5. Nonetheless,

it did not cause a substantial change in the levels of expression of

serine/threonine-protein kinase ULK1, Atg3, Atg7, Atg12, and

sequestosome-1. Additionally, silencing Atg5 and Beclin-1 with

small interfering RNA (siRNA) led to decreased autophagy

reactions to cisplatin, heightened caspase-3 cleavage, and

diminished cell viability (89).

Although inhibiting apoptosis by silencing BAX and BAK,

obatoclax still induced acute toxicity and loss of clonogenicity

through activation of mitochondrial apoptosis via the BCL-2

antagonist killer/BAX pathway. Obatoclax greatly decreased cell

viability while also keeping the integrity of the plasma membrane.

This therapy also led to a decrease in 6 kinase S phosphorylation,

ongoing LC3 autophagy processing, and significant vacuolation

of the ultrastructure, which is unusual for autophagy.

Unexpectedly, knocking down Beclin-1 did not affect the

processing of LC3. Even though the suppression of autophagy-

related protein 7 (Atg7) stopped LC3 processing, it did not

impact the decline in clonogenicity or structural changes

caused by obatoclax. Interestingly, inhibiting Atg7 with siRNA

did not stop cell death in BAX/BAK mutant mouse embryonic

fibroblasts caused by obatoclax. In line with apoptosis, cells that
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were not affected by obatoclax exhibited decreased LC3

processing and survival (258).

Blocking autophagy increases how well tumor cells react to

cisplatin treatment. Cisplatin-sensitive FaDu cells have the potential

to generate cystatin-resistant FaDu cells in a stable manner. In

cisplatin-resistant FaDu cells, there is an increased level of

expression of autophagy-related genes and proteins, such as

Beclin-1, when compared to the control group. Treating the FaDu

cells with an autophagy inhibitor after 24 hours led to a significant

decrease in cell survival, higher rates of apoptosis, and notable

impact on cell cycle, resulting in G1 phase arrest. There was a

notable decrease in the quantity of autophagy vacuoles in the group

treated with 3-MA. After being treated with 3-MA, p62 expression

rose due to the interruption of autophagy flux. Furthermore, there

was a notable decrease in the levels of Beclin-1, LC3-I, LC3-II, and

Atg-5 proteins (259).
9 Beclin-1 and AMPK crosstalk

The relationship between Beclin-1 and AMPK is influenced by

the curcumin analog ZYX01. ZYX01 triggers cell death in A549 cells

through autophagy in a way that is influenced by both the dose and

timing. ZYX01 treatment resulted in alterations in the LC3-II/LC3-I

ratio, Beclin-1 expression, and p62 levels as indicated by Western

blot analysis. Exposure to ZYX01 verified the activation of the

AMPK/ULK1/Beclin-1 signaling pathway in A549 cells. ZYX01’s

effect on A549 cell migration was evaluated through wound healing

and transwell tests (260). Allyl Isothiocyanate (AITC) plays a role in

controlling Beclin-1 in prostate cancer. AITC increases the amount

of LC3-II protein in RV1 and PC3 cells over time, promoting

autophagy. AITC does not impact PrEC. Blocking of autophagy in

cells treated with AITC resulted in decreased viability and increased

apoptosis, indicating a potential protective role of autophagy. Cells

were exposed to varying AITC concentrations and autophagy

marker levels were assessed at different time intervals. It was

discovered that cells exposed to AITC showed activation of

numerous pathways. Phosphorylated mTOR, ERK, AMPK, JNK,

and p38 were specifically phosphorylated in the cells treated with

AITC, with ERK, AMPK, and JNK being activated. AITC did not

change the levels of Akt and its associated proteins. Nevertheless,

despite prior treatment with targeted inhibitors like rapamycin,

LY294002, and PI-103, autophagy induction persisted to rise as

AITC triggered the ERK, AMPK, and JNK signaling pathways.

AITC also induced an increase in the expression of Beclin-1. The

study showed that using its specific siRNA to block Beclin-1

decreases the level of autophagy caused by AITC, suggesting that

Beclin-1 is essential for AITC-induced autophagy (261). LETM1

controls both autophagy and apoptosis in liver cancer, with elevated

levels found in hepatocellular carcinoma tissue, cell lines, and linked

to a negative outlook. Depletion of LETM1 triggers apoptosis,

autophagy, and hindrance of growth in liver cancer cell lines.

AMPK phosphorylation of Bcl-2 after LETM1 depletion caused

disruption in the Beclin-1/Bcl-2 complex (262).
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10 Beclin-1 and mTOR interaction in
autophagy regulation

In several experiments, the levels of expression for mTOR and

Beclin-1 are evaluated separately as well as in relation to their

interaction. Xie-Bai-San (XBS) was discovered to regulate both

mTOR and Beclin-1. XBS inhibits gefitinib-induced autophagy in

NSCLC cells, promoting cell death and hindering growth. It

enhances p-mTOR and Bcl-2 levels while decreasing Beclin-1

levels, without affecting autophagosome-lysosome fusion or

lysosome act iv i ty . XBS improves Bcl-2 and Becl in-1

communication, making it an effective treatment for gefitinib-

resistant non-small cell lung cancer (NSCLC). Increased

expression of Beclin-1 in NSCLC cells leads to enhanced cell

growth and reduces cell death caused by XBS (263). Another

element that controls autophagy in liver cancer is Oroxylin A.

Oroxylin A was utilized to trigger Beclin 1-facilitated

macroautophagy in the HepG2 cell line of human hepatocellular

carcinoma. Within 12 hours, LC3-I in cells exposed to 80 mM
oroxylin A changes to LC3-II and binds to the autophagosomal

membrane, becoming water-insoluble. Nonetheless, the breakdown

of autophagosomes by lysosomes/vacuoles is hindered after 24

hours as a result of cell death triggered by oroxylin A. Moreover,

oroxylin A substantially inhibits the PI3K-PTEN-Akt-mTOR

signaling pathway. Utilizing siBeclin 1 with 3-methyladenine (3-

MA), which hinders autophagy, and enhancing autophagy-related

genes like Atg5 and Atg7, can aid in establishing if autophagy

granule protein (AGP) serves as a PCD mechanism (264).

LTX-315, a polypeptide, controls the Beclin-1/PI3K/mTOR axis

to adjust autophagy and drug responsiveness in ovarian cancer.

DDP-resistant ovarian cancer cell models were created, and LTX-

315 treatment decreased the IC50 of DDP. The use of LTX-315

halted the advancement of cell cycle, raised apoptosis rates, and

boosted levels of cleaved caspase-3, cleaved PARP, and Bax in

ovarian cancer cells. Additionally, the use of LTX-315 decreased

levels of Bcl-2 and impeded cellular movement and penetration. It

also raised Beclin-1 levels and changed the levels of phosphorylated

Akt (p-Akt) and phosphorylated mTOR (p-mTOR). However, 3-

MA managed to partially mitigate the effects of LTX-315 on OC

cells (265). It is understood that mTOR plays a role in controlling

tumor growth and spread by regulating Beclin-1 (266).

The exact function of Interleukin-7 (IL-7) in controlling tumor

cell autophagy, lymphangiogenesis, growth, and cell death is not

completely clear; studies are centered on mTOR and Beclin-1. IL-7

was discovered to lower Beclin-1 levels and activate the PI3 K/Akt/

mTOR pathway in lung cancer cells. Furthermore, the levels of

Beclin-1 and mTOR are closely linked to the clinical stage and

outcome of NSCLC patients. In cases of lung cancer, IL-7R, mTOR,

and tumor stage are important predictors of prognosis (267).

Prodigiosin (PG), found in gram-negative bacteria, is a strong

inducer of cell death and a red pigment that does not dissolve. It has

shown effectiveness against lung cancer by inhibiting half of the

maximum tumor growth at a dose of 10 mM in cells that are both

sensitive and resistant to doxorubicin, suggesting comparable toxic
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effects. Autophagy was indicated in both cell types due to a slight

rise in the sub-G1 phase and an increase in the levels of

microtubule-associated proteins 1A/1B light chain 3B-

phosphatidylethanolamine conjugate (LC3-II). Moreover, an

increase in cleaved-poly ADP ribose polymerase (cleaved-PARP)

suggested a subset susceptible to cell death. Impeding the PI3K-p85/

Akt/mTOR signaling pathways hindered autophagy initiation in

both cell types. Nonetheless, PG-induced autophagy was associated

with the decrease of Beclin-1/PI3K-Class III, indicating the

triggering of alternative autophagy mechanisms. While the

growth of tumors in the animals’ tracheas increased during PG

treatment, the therapy effectively decreased their size, validating

PG’s effectiveness against both Dox-S and Dox-R lung cancers (92).

Piceatannol’s inhibition of Beclin-1 may hinder the advancement of

gastric cancer. Piceatannol boosts protein binding of UV radiation

resistance-associated genes and supports Beclin-1-dependent

autophagy signaling while also interfering with Beclin-1 and Bcl-2

interactions. Everolimus, a type of mTOR inhibitor, stimulates

autophagy to enhance the anticancer effects of piceatannol (268).
11 Beclin-1-mediated autophagy
regulation in cancer drug resistance
and radioresistance

Chemotherapy and radiotherapy are the primary conventional

treatments for cancer. These treatment methods are commonly

used to control cell death and genetic damage in cancer cells

hindering their advancement. Nonetheless, if the tumor cells

spread and migrate to different parts of the body, it becomes

challenging to completely eliminate all of them, leading to

potential tumor relapse and recurrence. Yet, a major obstacle in

cancer treatment currently lies in tumor cells’ capacity to become

resistant to cancer medications. The resistance frequently occurs

due to the dysfunction of molecular pathways and drug efflux

transporters, among other reasons, leading to a difficult challenge

for researchers (269, 270). The current portion concentrates on

Beclin-1-mediated autophagy regulation’s involvement in cancer

drug resistance and radioresistance. Hypoxia in glioblastoma

(GBM) can lead to drug resistance. It has been shown that

HIF1A-triggered autophagy plays a crucial role in the

radioresistance of GBM. Suppressing HIF1A increased the

radiosensitivity of GBM in both lab settings and living organisms.

One possible explanation for this impact is the decrease in Beclin-1

caused by the suppression of HIF1A, which could provide

protection for cells. Another option is that the blocking effect of

3-MA is partly influenced by Beclin-1; therefore, boosting Beclin-1

levels could offset the sensitivity caused by 3-MA. Moreover, there

could be undiscovered resistance pathways that help cells sustain

their radioresistance. Hence, the autophagy controlled by HIF1A

and Beclin-1 is essential in the radioresistance seen in GBM (271).

miR-216a has also been proven to control Beclin-1, impacting

radiosensitivity. MiR-216a levels were noticeably decreased

compared to controls, while autophagy activity was elevated. The

presence of miR-216a inhibited autophagy and the key autophagy
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factor Beclin-1 by directly interacting with the 3’-UTR of Beclin-1.

Moreover, increased levels of miR-216a in radio-resistant

pancreatic cancer cells resulted in improved apoptosis under

irradiated conditions, along with reduced cell proliferation and

colony formation abilities. Increasing the levels of Beclin-1 reversed

the impacts of reducing miR-216a. In general, miR-216a increases

xenograft tumors’ responsiveness to radiotherapy and prevents

radiation-triggered autophagy by controlling Beclin-1 (272).

Nevertheless, the majority of research has concentrated on the

role of Beclin-1-mediated autophagy in chemoresistance. EGFR has

the ability to control Beclin-1 in order to inhibit autophagy and

manage chemoresistance. When there is an active EGFR signaling

pathway, Beclin-1 may be contained, resulting in its tyrosine

phosphorylation, increased inhibitory binding, and the

interference of its linked VPS34 kinase function. In NSCLC cells

with sensitive EGFR mutations, EGFR kinase inhibitors can trigger

autophagy by disrupting tyrosine phosphorylation of Beclin-1,

leading to enhanced tumor growth and resistance to TKI

treatment (273).

Interplay between non-coding RNAs can influence drug

sensitivity by regulating Beclin-1. Increased levels of PVT1 were

linked to unfavorable outcomes in NSCLC patients (*P < 0.05).

Overexpressing PVT1 negatively affected A549 cells, while reducing

PVT1 intensified cisplatin’s effects on cell viability and apoptosis in

A549/DDP cells. PVT1 upregulation promoted autophagy and

tumor growth in NSCLC cells, with miR-216b interacting with

PVT1 and Beclin-1. Beclin-1 reversed miR-216b’s impact on

autophagy and apoptos i s , and PVT1 and miR-216b

communication controlled Beclin-1 expression. (*P < 0.05, #P <

0.05) (274).

In human cancers, increasing drug sensitivity is possible by

inhibiting protective autophagy. In particular, miR-30a hinders

Beclin-1, decreasing autophagy and enhancing the susceptibility

of gastrointestinal tumors to imatinib (275). Low miR-30a linked to

osteosarcoma drug resistance, upregulating Beclin-1 for increased

survival autophagy (276). Research showed that reducing miR-30a-

5p levels in lung cancer can increase Beclin-1 expression, causing

drug resistance. Similar effects were seen in colon cancer (277).

Enhancing sensitivity to oxaliplatin in colon cancer can be achieved

by suppressing the Beclin-1/autophagy axis through the restoration

of miR-409-3p expression (278).
12 Beclin-1-mediated autophagy
regulation and apoptosis

In apoptosis, proteins like caspases 3, 6, and 7 destroy cells by

cutting numerous proteins (279, 280). The development of pores in

target cells by perforin can initiate apoptosis, along with the release

of granzymes from cytotoxic granules of T-cells and Natural Killer

(NK) cells (281). DNA in the cell nucleus is usually packed in a

dormant state due to the fact that the vast length of DNA would not

be able to fit inside the cell if it was completely stretched out. This

method consists of coiling DNA in a counter-clockwise direction

around protein clusters to create nucleosomes. Nonetheless,
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somatic topoisomerase 2 enzyme has the ability to interfere with

this arrangement by turning the DNA coils in a different direction.

This process causes the DNA to resemble a ladder pattern when

viewed on an agarose gel (282, 283). This occurrence does not only

happen in nuclear apoptosis but also when cells are preparing and

experiencing apoptosis. In this procedure, the nuclear membrane

forms blebs, necessitating the breaking down of lamins by caspase 6.

Moreover, a significant indicator of apoptosis, especially the

activation of caspase 3, is the cleavage of PARP, which takes place

during cell death (284). Serum M30, a form of cleaved cytokeratin

18 by caspase 3, is detected in patients with tumor response to

treatment, signifying cell death (285, 286). Western blotting and the

TUNEL assay are frequently utilized methods to identify cleaved

caspases and fragmented DNA in tissue samples, showing presence

of Serum M30, a caspase 3-cleaved cytokeratin 18, in patients with

successful tumor responses. Immunohistochemistry detects

granzyme B in cytolytic T cells inducing cell death (287). Flow

cytometry is able to detect apoptosis in cultured cells by assessing

different indicators like cleaved caspases (288), phosphatidylserine

externalization, or sub-G1 DNA content. Furthermore, caspase

enzyme functioning and assessments done on cells, along with

imaging tests on humans, can also identify caspase activation (289,

290). The identification of apoptosis has made preclinical studies in

drug development easier, utilizing PET scans to show markers like

Granzyme B (291) as signals of drug effectiveness and impact in

clinical specimens. Using standardized terminology for cell death

enables the categorization of different forms of cell death and the

use of suitable techniques for identifying these mechanisms (5).

Beclin-1 plays a crucial role in linking autophagy and apoptosis

in the control of cancer advancement. It acts as a central regulator

connecting these pathways. The pairing of bortezomib and

mitomycin C mainly led to cell death and cytotoxicity, with little

involvement of autophagy, either through additive or synergistic

effects. This specific therapy resulted in Akt being inactivated,

leading to the dephosphorylation of Beclin-1 at Ser 234/295.

Dephosphorylating Beclin-1 inhibited autophagy and caused a

pro-apoptotic effect, leading to the cleavage of Beclin-1 and

disruption of the R-BiP/Beclin-1/p62 complex. Significantly, this

combination greatly diminished autophagy, inactivated Akt, and

triggered Beclin-1 cleavage in vivo, leading to a substantial decrease

in the growth of intraperitoneal xenografted LS174T tumors in

mice. Additionally, in both laboratory and live settings, LS174T

xenografted tumors containing a mutated caspase 8 cleavage site of

Beclin-1 showed significant resistance to the anti-tumor effects of

the combined treatment (292).

Apoptosis caused by radiotherapy (RT) is affected by autophagy

mediated by Beclin-1. Both apoptosis and autophagy are

mechanisms that RT activates to cause death in thyroid cancer

cells. Beclin-1 and LC3, proteins related to autophagy, saw an

increase after exposure to radiation. Furthermore, blocking

autophagy with 3MA and Beclin-1 siRNA increased radiation-

induced cell death and led to higher levels of p53 expression (293).

The relationship between apoptosis and autophagy is significant

in prostate tumors, with autophagy-like changes seen in miR-139-

treated cancer cells. Although miR-139 antagomir successfully

blocked the conversion of LC3-I to LC3-II through autophagy,
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miR-139 promoted this process. Confocal microscopy data

additionally validated the elevated levels of LC3-II. MiR-139

controlled the regulation of two important molecules, mTOR and

Beclin-1, in autophagy. After miR-139 treatment, there was an

increase in the accumulation of cargo receptor protein p62 which is

typically degraded during autophagy (294).

The primary andmost effective component in the water extract of

Scutellaria baicalensis Georgi’s root, known as Baicalein (BA), can

effectively overcome cephalotin resistance. This discovery establishes

a theoretical foundation for utilizing BA in clinical settings to combat

cephalosporin-resistant strains and endorses its capacity as a

promising alternative treatment option. BA was discovered to block

cell growth and induce cell death in ovarian cancer cells. BA therapy

led to elevated levels of vacuoles stained with acridine orange, puncta

of GFP-LC3, and expression of LC3-II. Additionally, both the HEY

andA2780 ovarian cancer cell lines showed increased cleavage of poly

(ADP-ribose) polymerase (PARP) and decreased cell viability when

treated with both chloroquine and BA. This implies that BA may

induce cyto-protective autophagy in these cells. Reducing Beclin-1

rates in HT29 cells resulted in a decline in BA-induced LC3-II

lipidation. BA treatment led to elevated rates of AKT

phosphorylation at Ser473 and extracellular signal-regulated kinase

(ERK) phosphorylation at Thr202/Thr204 (295), illustrating an

association among autophagy, apoptosis, and the role of Beclin-1

(93, 242, 296–300).
13 Beclin-1-mediated autophagy
regulation and ferroptosis

Lipid peroxidation, which is influenced by the amount of iron in

cells, is the primary cause of ferroptosis. Regulation of ferroptosis is

closely associated with different aspects of iron metabolism, such as

iron absorption, transfer, retention, and use. The activation of lipid

metabolic pathway enzymes, including LACS4, LPLAT5, LOX, and

NOX, also impacts this process by promoting ferroptosis and lipid

peroxidation. Furthermore, the cystine-glutamate antiporter (system

xc−) is crucial in the classic pathway that prevents ferroptosis by

aiding in the synthesis of glutathione (GSH), a necessary cofactor for

glutathione peroxidase 4 (GPX4) to convert phospholipid

hydroperoxides into alcohols. The system involving ferroptosis

suppressor protein 1 (FSP1) and coenzyme Q10 (CoQ10) also

plays a role in controlling phospholipid peroxidation. Iron

metabolism affects ferroptosis by two main routes of non-heme

iron intake in cells: uptake of TF-bound iron through TFR1 and

uptake of non-TF-bound iron through ZIP14. The Fenton reaction,

triggered by haem degradation and ferritinophagy mediated by

nuclear receptor coactivator 4 (NCOA4), can result in heightened

vulnerability to ferroptosis (301–308).

Beclin-1, an important controller of autophagy, plays a role in

connections with ferroptosis and its related pathways, molecules,

and proteins (309). Proteins that control various cellular functions,

such as autophagy and cell death, have been identified through

proteomic studies of the Beclin-1 interactome (191). Erastin triggers

the formation of Beclin-1-SLC7A11 complexes, leading to
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ferroptosis activation. These complexes are said to not be necessary

for cell death and do not contribute to ferroptosis triggered by type

2 activators (RSL3 and FIN56) (310). Moreover, by phosphorylating

Beclin-1 at Ser90/93/96, PRKAA/AMPKa boosts the assembly of

the Beclin-1-SLC7A11 complex, inhibits system xc−, and stimulates

the resulting ferroptotic demise of cancer cells (311). Moreover, by

phosphorylating Beclin-1 at Ser90/93/96, PRKAA/AMPKa boosts

the assembly of the Beclin-1-SLC7A11 complex, inhibits system xc

−, and stimulates the resulting ferroptotic demise of cancer cells

(311). The Tat-Beclin-1 peptide boosts the erastin reaction in a

laboratory setting or within a living organism (311). ELAVL1,

present in normal livers, also produces Beclin-1 in stellate cells

leading to an elevated chance of ferroptosis (312). This information

backs the claim that Beclin-1 directly inhibits system xc− to

facilitate the beginning of ferroptosis. Still unknown whether

OTUB1 affects the stability of SLC7A11 by influencing the

interaction between Beclin-1 and SLC7A11 (313).

Nanoparticles have been designed to regulate this process since the

finding of autophagy-induced ferroptosis in treating cancer. Ultrasmall

iron oxide nanostructures have been created with excellent water

solubility to induce ferroptosis in glioblastoma. These nanoparticles

also decrease the levels of factors that protect against ferroptosis.

Suppression of autophagy reduces the ability of these

nanoparticles to induce ferroptosis, indicating a potential

interaction between autophagy and ferroptosis. Noticeably, tiny

iron oxide structures enhance Beclin-1 production, leading to

increased ATG5 levels, promoting autophagy-triggered ferroptosis

in the treatment of glioblastoma (Table 3) (310).
14 Beclin-1 modulators in
cancer therapy

Quercetin suppressed HeLa cell proliferation and triggered

autophagy in a manner that was dependent on the dosage used
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(319). It decreased cell growth, elevated Beclin-1 and LC3-I/II levels,

and lowered S6K1 phosphorylation levels (320). Examination of

omics data in LGG discovered that ZFP36L2 and RAB13 are

involved in regulating autophagy by enhancing Beclin-1 and

other crucial autophagy elements. The presence of Gallic acid,

which can block RAB13, has been shown to reduce autophagy

and induce cell death in SW1088 cells (62). The collaboration of

nobiletin and vorinostat in small cell lung cancer (SCLC) causes

autophagy and apoptosis by interfering with the BCL-2 and Beclin-

1 complex, releasing Beclin-1 to initiate autophagy and inhibiting

PI3K-AKT-mTOR signaling, suggesting nobiletin’s potential as a

BH3 mimetic for SCLC combination treatment (321). Resveratrol

increases Beclin-1, LC3-II, and p53 expression in A549 NSCLC

cells, inducing apoptosis and autophagy, reducing cell survival via

p53 pathway activation. Autophagy inhibition partly reverses this

effect (322). Resveratrol alleviates doxorubicin-induced heart

damage by inhibiting S6K1 and reducing autophagy. Beclin-1

overexpression counteracts Resveratrol’s protective effects (323).

Resveratrol induces apoptosis in MCF-7 breast cancer cells through

caspase-dependent and -independent pathways . This

unconventional type of autophagy cell death is significant in

caspase-3-deficient cells (324). Resveratrol induces cell death in

MCF-7 breast cancer cells through caspase-dependent and caspase-

independent pathways, triggering macroautophagy independently

of Beclin 1. This atypical form of autophagic cell death is especially

important in cells that do not have caspase-3 (325). Resveratrol

induces a defensive autophagy mechanism that boosts cancer cell

demise by raising caspase activation and cell death in the absence of

autophagy; this mechanism includes Beclin-1 binding with p53 and

results in impaired mitochondrial function marked by decreased

mtDNA content (326). Resveratrol enhances cell death in ovarian

cancer cells by blocking STAT3 signaling, leading to higher

autophagosome production and elimination of mitochondria,

ultimately leading to inhibition of growth and cell death (327).

Resveratrol prevents the spread of breast cancer and its growth in
TABLE 3 Beclin-1-mediated autophagy regulation in cancer.

Molecular
aspects

Outcome Ref

CircHIPK3 CircHIPK3 disrupts the VCP and Beclin-1 complex to suppress autophagy in bladder tumor (314)

Beclin-1 Piceatannol enhances the expression of Beclin-1-related autophagy to impair cancer malignancy and enhance the potential of
everolimus in gastric tumor

(268)

miR-409-3p miR-409-3p downregulates Beclin-1 to suppress autophagy and increase oxaliplatin sensitivity (278)

Beclin-1 Allyl Isothiocyanate stimulates autophagy through Beclin-1 upregulation in prostate tumor (261)

Beclin-1 Thymoquinone disrupts autophagy, LC3 and Beclin-1 in the treatment of breast cancer through suppressing growth and metastasis (315)

Beclin-1 and ERK Hydroxysafflor yellow A stimulates autophagy through Beclin-1 upregulation and ERK downregulation (316)

Beclin-1 Aspirin induces triggers autophagy in hepatocellular carcinoma through Beclin-1 upregulation (317)

miR-129-5p Norcantharidin downregulates miR-129-5p to upregulate Beclin-1 in the induction of autophagy in prostate tumor (84)

Beclin-1 CUL3 Beclin-1 degradation by CUL3 impairs autophagy (254)

USP5-Beclin 1 Silencing USP5-Beclin 1 axis disrupts autophagy and promotes senescence (318)

XIAP and cIAP1 Overexpression of XIAP and cIAP1 can mediate Beclin-1-related autophagy through increasing NFkB expression (297)
frontier
sin.org

https://doi.org/10.3389/fimmu.2024.1506426
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2024.1506426
other areas by reversing TGF-b1-induced EMT and boosting

autophagy through the SIRT3/AMPK pathway (328). Therefore,

increasing research indicates the significance of pharmacological

compounds in modulating Beclin-1 in human cancer and

overseeing autophagy (153, 260, 329–332). Figure 5 provides a

comprehensive view of Beclin-1’s regulation of autophagy in

human cancer.
15 The multifaceted role of Beclin-1 in
tumor immunology and
drug sensitivity

Beclin-1 is a key regulatory factor in the autophagy process, and

research advancements regarding its role in the tumor immune

microenvironment, immunotherapy, and drug sensitivity indicate

its potential application value in cancer treatment (333, 334). In the

tumor immune microenvironment, Beclin-1 influences the

interaction between tumor cells and immune cells by regulating

autophagy. Specifically, the expression of Beclin-1 can alter the

polarization state of tumor-associated macrophages (TAMs),

enhancing their immunosuppressive function and thus promoting

tumor development (252, 335). Additionally, Beclin-1 affects the

antigen presentation capability of tumor cells, altering how tumor

cells are recognized and attacked by the immune system, which

allows tumor cells to partially evade immune surveillance.

Regarding immunotherapy, studies have found that Beclin-1 may

enhance the efficacy of immune checkpoint inhibitors, making it a
Frontiers in Immunology 17
potential target for combination therapy. By combining Beclin-1

modulators with immunotherapeutic agents, it is possible to

significantly improve anti-tumor immune responses (336).

Furthermore, the expression level of Beclin-1 may serve as a

biomarker for evaluating patient responses to immunotherapy,

aiding clinicians in developing more targeted personalized

treatment plans (337). In terms of drug sensitivity, Beclin-1 also

plays an important role in the sensitivity of tumor cells to

chemotherapy. Research indicates that the regulation of

autophagy is closely linked to the survival and death of tumor

cells, with the overexpression of Beclin-1 being closely associated

with chemotherapy resistance (336, 338). Therefore, based on the

function of Beclin-1, researchers are exploring drugs that

target autophagy regulation to enhance the sensitivity of tumor

cells to chemotherapy and targeted therapy. Overall, the complex

roles of Beclin-1 in the tumor immune microenvironment,

immunotherapy, and drug sensitivity make it an important focus

of cancer treatment research. Future studies need to further

investigate the specific mechanisms of Beclin-1 to develop more

effective therapeutic strategies, particularly in personalized and

combination therapies, which will help improve the survival rates

and quality of life for cancer patients.
16 Conclusion

Autophagy is one of the most frequently disrupted processes in

cancer. Autophagy dysregulation has been noted in both solid and

hematological cancers. Additionally, autophagy is a versatile
FIGURE 5

The overall function of Beclin-1 in the regulation of cancer hallmarks and cell death mechanisms.
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process that controls different characteristics of cancer. Autophagy

in clinical trials led to new cancer drugs. It plays roles in both cell

survival and death. Hence, dual blocking and stimulation of

autophagy are significant. Even though several autophagy

regulators like mTOR, ULK1, and AMPK have been identified,

Beclin-1 is considered a crucial controller of autophagy in cancer.

The present study shows that controlling autophagy through

Beclin-1 can impact cell growth, resistance to drugs, and response

to radiotherapy. In addition, Beclin-1 regulates autophagy in

human cancers by interacting with ATGs, mTOR, and AMPK.

Hence, manipulating Beclin-1 can impact regulators both before

and after it in the signaling pathway. Additionally, there have been

reports stating that Beclin-1 controls autophagy, which can

potentially affect apoptosis and ferroptosis in human cancer.

Hence, purposeful adjustment of Beclin-1 and autophagy could

greatly increase cell mortality in human cancers. This evaluation

can be viewed from various angles. In terms of fundamental

research, the dysregulation of Beclin-1 has been extensively

documented in numerous studies. Nevertheless, Beclin-1 poses

difficulties because of its dual function. While its role in cancer is

intricate, Beclin-1 is crucial clinically, as its levels can impact how

cancer patients respond to chemotherapy. Furthermore, Beclin-1

has the potential to influence survival, prognosis, growth, and

tumor recurrence. Hence, regulating the Beclin-1 expression can

result in the creation of innovative treatments. Beclin-1 plays a

crucial role in regulating autophagy, impacting immunogenic cell

death, necroptosis, and ferroptosis. This is important for timely

detection and outcome prediction in cancer patients, with potential

implications for cancer treatment (21, 339–343). Hence, it is

recommended that upcoming research assess the relationship

between the Beclin-1/autophagy axis and immunogenic cell death

in treating human cancers. Moreover, addressing cancer is greatly

challenged by drug resistance and radioresistance (344–347). Thus,

the utilization of immunotherapy and checkpoint inhibitors has

risen for the removal of tumors (348–352). Current research studies

are limited because they fail to consider the impact of the Beclin-1/

autophagy axis on immune interactions and how it affects cancer

cells’ reactions to immune checkpoint inhibitors. Autophagy offers

significant clinical insights in addition to Beclin-1’s basic and

clinical relevance. Autophagy genes as well as non-coding RNAs

play a crucial role in evaluating cancer diagnosis and treatment.

Beclin-1 is essential for regulating various cellular processes like

autophagy, apoptosis, and ferroptosis. Beclin-1, an essential

initiator of autophagy, interacts with VPS34, a type III

phosphatidylinositol 3-kinase, to start the process of autophagy

vesicle formation. A chemical creates PI3P, drawing in autophagy

proteins to create phagophores, which then transform into

autophagosomes. Beclin-1 aids in autophagosome development

and breakdown, merging them with lysosomes for material

degradation. Beclin-1 interactions with ATG proteins and LC3

enhance autophagy, emphasizing its role in cellular balance.

When it comes to apoptosis, Beclin-1 shows a complicated

connection and can often function as a pro-apoptotic factor in

specific situations. Beclin-1 impacts programmed cell death by

interacting with caspases, like regulating caspase-3, crucial for cell
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death. It binds to Bcl-2 proteins, trapping anti-apoptotic ones and

inducing apoptosis. Also, it affects mitochondria function, releasing

pro-apoptotic factors, triggering apoptosis. Beclin-1 can determine

cell fate through supporting survival via autophagy or aiding

apoptosis under stress. It also regulates ferroptosis, dependent on

iron and lipid peroxides. Autophagy breaks down damaged lipids,

preventing lipid peroxidation and reducing ferroptotic cell death.

Furthermore, Beclin-1 can help regulate the levels of reactive

oxygen species (ROS) by promoting the breakdown of impaired

organelles, consequently reducing the oxidative stress linked to

ferroptosis. Beclin-1’s interactions with GPX4 influence cell

susceptibility to ferroptosis. Beclin-1, a flexible protein, controls

autophagy, apoptosis, and ferroptosis processes, making it a

possible treatment focus in illnesses. Utilizing Beclin-1 in

treatments shows promise but requires caution due to potential

challenges. Beclin-1 regulates autophagy and is vital for cellular

balance, stress response, and cell death. Enhancing autophagy by

improving Beclin-1 function is being studied to overcome

blockages. Therapies targeting Beclin-1 levels can aid in removing

harmful substances and supporting cell survival by restoring

autophagy. However, Beclin-1’s involvement in autophagy and

apoptosis complicates its therapeutic use. While increasing

autophagy with Beclin-1 can help in some cases, it might

promote cancer growth by supporting cell survival. Changing

Beclin-1 levels could disrupt the balance between autophagy and

apoptosis, leading to issues like increased cell death or reduced

response to chemotherapy. Using Beclin-1 modulators may also

trigger inflammatory responses, complicating treatment.

Disruption of Beclin-1 can alter cytokine production and immune

cell function, impacting inflammatory conditions and infection

defense. Understanding Beclin-1’s roles and potential side effects

is crucial for developing treatments across diseases. Future research

should identify patient groups benefiting from Beclin-1 adjustments

and develop targeted delivery methods to enhance treatment

efficacy and minimize side effects. Further investigation is

essential to understand Beclin-1’s intricate role in cancer by

studying its interactions with pathways such as autophagy.

Autophagy is interconnected with signaling pathways controlling

cell survival, growth, and death, like the PI3K pathway crucial for

autophagy initiation. Disrupted PI3K pathway functioning can

impact autophagy levels, influencing cancer development and

treatment response. Beclin-1’s interaction with the Bcl-2 protein

family highlights the balance between cell survival and death.

Understanding how Beclin-1 integrates signals from these

pathways can uncover how cancer cells react to stress and

treatment evasion. Cancer cells change metabolism to survive,

possibly through Beclin-1 affecting metabolic reprogramming by

regulating autophagy, which links to glucose and oxidative stress.

Research must also focus on autophagy’s connection with immune

signaling pathways, impacting tumor immunogenicity and response

to immunotherapies. Fully grasping Beclin-1’s involvement in

cancer requires exploring its links to cellular pathways for new

treatment strategies. Future studies should elucidate these

relationships for advancements in cancer treatment and

patient outcomes.
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