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CD8+ T cells are crucial cytotoxic components of the tumor immune system. In

chronic inflammation, they become low-responsive, a state known as T cell

exhaustion (TEX). The aim of immune checkpoint blockade is to counteract TEX,

yet its dynamics in breast cancer remain poorly understood. This review defines

CD8+ TEX and outlines its features and underlying mechanisms. It also discusses

the primary mechanisms of CD8+ TEX in breast cancer, covering inhibitory

receptors, immunosuppressive cells, cytokines, transcriptomic and epigenetic

alterations, metabolic reprogramming, and exosome pathways, offering insights

into potential immunotherapy strategies for breast cancer.
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1 Introduction

Breast cancer (BC) is a prevalent cancer in women worldwide, with its mechanisms not

yet fully understood (1). Immune cells play a crucial role from immunosurveillance in

normal breast tissue to the progression of BC, including both primary and metastatic

stages. The tumor microenvironment in BC shows an increase in immune cells like CD4+

and CD8+ granzyme B+ cytotoxic T cells, B cells, macrophages, and dendritic cells (DCs)

(2). In estrogen receptor (ER)-positive tumors, neutrophils and natural killer (NK) cells are

most positively associated, while resting memory T cells and CD8+ T cells are negatively

associated. In contrast, ER-negative BC shows strong positive correlations with T

regulatory and CD8+ cells, with similar negative correlations as ER-positive cases (3).

Notably, even early-stage BC patients display exhaustion in tumor-associated CD8+ T cells

(4), which are essential for eliminating pathogens and tumors (5). Chronic antigen

exposure and inflammation in cancer can lead to CD8+ T cell exhaustion or altered

differentiation (6), with exhausted T cells showing tumor reactivity and proliferation
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signatures (7). A higher CD8+ T cell exhaustion (TEX) score is

linked to poorer disease-free survival in BC (8), highlighting the

importance of CD8+ effector T cell activation versus exhaustion in

BC progression and patient outcomes. Additionally, TEX can

predict immunotherapy responses in ER-posit ive BC,

underscoring its potential in treatment strategies (9). Recent

studies have extensively explored the mechanisms of CD8+ TEX

in BC. This article summarizes our current understanding of

these mechanisms.
2 Definition and characteristics of
CD8+ T cell exhaustion

Tex was first observed in murine models of lymphocytic

choriomeningitis virus (LCMV) infection (10). It represents T cell

dysfunction with a progressive loss of effector functions during

chronic infections and cancer (11). Tex cells exhibit elevated

inhibitory receptors (PD-1, CTLA-4, TIM-3, TIGIT, LAG-3),

reduced antitumor cytokines (IFN-g, IL-2, TNF) (6, 11, 12),

increased tumor-promoting chemokines, altered transcription

factors (TCF1, T-bet, TOX), metabolic issues, and decreased

proliferation and survival (6, 11).

In BC, immune cell distribution varies by tumor subtype and

between stromal and parenchymal regions (2). CD8+ Tex are

present in certain ER+ and triple-negative breast cancers (TNBC),

creating a unique tumor microenvironment (TME) with higher

IFN-g activity. Increased CD8+ Tex infiltration is linked to poorer

overall and relapse-free survival in premenopausal ER+ BC patients

(13). Conversely, TNBC exhibits a more immunosuppressive

environment compared to HER2+ or luminal types, with more

regulatory T cells (Tregs), exhausted CD8+ T cells, and plasma

cells (14).
2.1 Mechanism of CD8+ T cell exhaustion

Persistent antigen stimulation is essential for inducing T cell

exhaustion (15, 16). Additional key signals include pro-

inflammatory cytokines (e.g., IFN-a/b, IL-6, IL-27), suppressive
cytokines (e.g., IL-10, TGF-b), regulatory leukocytes (e.g., Tregs,

immunoregulatory APCs), and TME factors like hypoxia, nutrient

deprivation, and altered pH (17–19). Together with chronic TCR

engagement, these signals cause sustained upregulation of

inhibitory receptors, transcription factor changes, metabolic shifts,

and unique transcriptional programs (20–22). This leads to

diminished effector functions, altered homeostasis compared to

memory T cells, and cell death from overstimulation, resulting in

inadequate tumor control (23, 24). Exhausted T cells are regulated

by transcriptional and epigenetic mechanisms, including key

transcription factors such as NFAT (25), NR4A (26), TOX (27),

PTPN2 (28), TCF-1 (29), and Eomes (30). In the BC tumor

microenvironment, TEX significantly impacts immune escape and
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therapeutic response, with immune regulation central to TEX

through inhibitory receptors (e.g., PD-1), cytokines (e.g., IL-10),

and immunoregulatory cells like TAMs.
3 Inhibitory receptors

IRs include PD-1, CTLA-4, TIGIT, TIM-3, LAG-3, which are

hallmarks of TEX. Exhausted T cells often express high levels of IRs,

which act as immunomodulators, limiting immunopathology and

promoting tolerance to self-antigens. In BC, the continued

expression of inhibitory receptors is critical for TEX.
3.1 Programmed death protein 1

PD-1, an inhibitory transmembrane protein on T, B, and NK

cells, blocks key T cell pathways (PI3K-AKT-mTOR, RAS-MEK-

ERK) when binding PD-L1, leading to T cell exhaustion and

conversion to Treg cells (31, 32). Immune checkpoint inhibitors

targeting PD-1/PD-L1 are being explored to restore T cell function

in BC treatments. In PD-1-high CD8+ T cells, miR-149-3p reduces

apoptosis and downregulates exhaustion markers by targeting PD-

1, TIM-3, BTLA, and Foxp1 mRNAs (33). Additionally, miR-424-

5p targets PD-L1 and the PTEN/PI3K/AKT/mTOR pathway,

potentially reversing T cell exhaustion (34, 35). BC model DCs

overexpress PD-L1 and Gal-9, inducing TEX, but miRNA-5119

mimic-engineered DCs restored function, reduced PD-L1, and

boosted immune responses (36). In BC, miRNA-138-5p lowers

PD-L1, promoting apoptosis through Caspase-9/3 activation and

cell cycle arrest, and affects cell motility and T-cell cytokines by

interacting with MMP2, MMP9, vimentin, and E-cadherin (37).
3.2 Cytotoxic T lymphocyte-associated
protein 4

CTLA-4 (CD152) is a transmembrane protein expressed on

regulatory T cells (Tregs), CD4+, and CD8+ T cells, containing two

cytoplasmic domains with tyrosine-based signaling motifs for signal

transduction (38). Its extracellular domain, similar to CD28,

competitively binds B7-1/2 (CD80/86) on antigen-presenting cells

(APCs), modulating T cell function and preventing overactive

immune responses (39). Additionally, CTLA-4 is present in the

cytoplasm and on the surface of BC cells (40). Elevated serum

CTLA-4 in BC patients versus healthy individuals highlights its role

in BC pathogenesis and progression (41). Co-culturing CTLA-4+

BC cells with human dendritic cells (DCs) inhibits extracellular

signal-regulated kinase and activating transcription factor 3

(ATF3), suppressing DC function and maturation (42). These

impaired DCs further inhibit the proliferation of allogeneic

CD4+/CD8+ T cells, Th1 differentiation, and cytotoxic T

lymphocyte (CTL) function.
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3.3 Lymphocyte-activation gene 3

Lymphocyte-activation gene 3 (LAG-3 or CD223) is an

inhibitory immune checkpoint molecule found on the surface of

various lymphocytes (43, 44), including CD4+ and CD8+ T cells,

natural killer (NK) cells, NKT cells, and regulatory T (Treg) cells

(45, 46). It shapes the tumor immune environment by inducing T

cell exhaustion and limiting proliferation (47). LAG-3 binds ligands

like fibrinogen-like protein 1 (FGL1) to suppress T cell activation

and is often co-expressed with other checkpoints such as PD-1 or

PD-L1 in BC (48–50). Additionally, Liu et al. found that LAG-3

may synergize with multiple immune checkpoints in the BC-

induced immune response, including PD-L1, TIGIT, CTLA-4,

ICOS, and IDO1 (51).
3.4 T-cell Ig and ITIM domain

TIGIT, a member of the immunoglobulin superfamily, is

expressed on T lymphocytes and NK cells and is primarily

involved in immune responses and inflammatory activities (52).

Co-expression of TIGIT with other inhibitory receptors on

exhausted CD8+ T-cell subsets has been observed in tumors (53).

In early-stage breast cancer, high co-expression of TIGIT and other

immune checkpoint receptors—including PD-1, CTLA-4, LAG-3,

and TIM-3—on tumor-infiltrating lymphocytes correlates with

increased disease aggressiveness (54). Elevated levels of TIGIT,

TIM-3, and LAG-3 are found in locally advanced breast cancer

patients with poor prognostic factors following neoadjuvant

chemotherapy (55). TIGIT plays a role in immune and

inflammatory responses similar to PD-1 in breast cancer (56),

suggesting that TIGIT and PD-1 may synergistically promote the

development of severely dysfunctional T cells, as reported in other

cancers (57, 58).
3.5 T-cell immunoglobulin and mucin-
domain containing-3

TIM-3 is a checkpoint receptor expressed on immune cells like

dendritic cells, macrophages, and T cells (59–61), mediating

immunosuppression through ligands such as phosphatidylserine,

CEACAM-1, and galectin-9 (62, 63). In activated T cells, TIM-3

signaling induces exhaustion by decreasing proliferation, reducing

effector cytokine production, and promoting apoptosis of cytotoxic

T cells (64). In BC, TIM-3 is overexpressed, enhancing tumor cell

proliferation, migration, invasion, and inhibiting apoptosis (65–67).

High TIM-3 levels correlate with advanced clinical stages, lymph

node metastasis, increased Ki67 expression, and poorer 5-year

survival rates (65, 66). It promotes tumorigenesis by activating

the NF-kB/STAT3 pathway and altering gene expression—

upregulating CCND1, C-Myc, MMP1, TWIST, VEGF, and

downregulating E-cadherin (68, 69). Additionally, TIM-3 affects

tight junction dynamics by downregulating ZO-2, ZO-1, and

occludin, which may enhance tumor invasion and migration.
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Polymorphisms in the TIM-3 gene are also linked to BC

susceptibility, progression, and prognosis (70, 71).

Galectin-9 (Gal-9) is an immune checkpoint protein that

promotes TEX and modulates the tumor microenvironment (72,

73). As a ligand for TIM-3, Gal-9 induces apoptosis in T cells and

suppresses the cytotoxic function of antigen-specific CTLs (74). The

TIM-3/Gal-9 pathway is involved in immune evasion by BC cells,

which show higher levels of Gal-9 and TIM-3 compared to healthy

mammary tissues, with both proteins co-localizing in tumor cells.

Upregulation of LPHN2, along with expression of LPHN3 and

FLRT3, is also detected in breast tumor cells. Activation of this

pathway leads to Gal-9 translocation to the tumor cell surface,

protecting them from CTL-induced apoptosis. In patients with

TNBC, high Gal-9 expression correlates with positive PD-L1

expression on tumor cells (75).
3.6 V-set domain containing T cell
activation inhibitor 1

B7-H4 is an inhibitory member of the B7 family and functions

as an onco-fetal immune tolerance checkpoint (76, 77). Genetic

anomalies in B7-H4 are associated with immune activation and fetal

rejection in syngeneic pregnancy models. Similarly, in BC, B7-H4 is

linked to tumor progression and correlates with exhaustion of CD8+

T cells. Hormonal assays have demonstrated that progesterone

induces B7-H4 expression in both placental and BC cells (78).

In summary, exhaustion in CD8+ T cells is marked by the

concurrent upregulation of multiple immune checkpoints (ICs),

with the diversity and quantity of these ICs directly influencing the

extent of T cell dysfunction (79–82). Despite the well-documented

impacts of individual ICs on T cell functionality, investigations into

the additive influence of these ICs on T cell exhaustion in BC

remain scant. Nevertheless, compelling data supports the notion

that dual IC inhibition, particularly incorporating PD-1,

significantly surpasses single IC interventions in boosting tumor-

associated CD8+ T cell efficacy, both in vitro and in vivo (83).

Besides, nanodrug releasing anti-Galectin-9 antibody can exert local

blockade of PD-1/Galectin-9/TIM-3 interaction to enhance effector

T cells in BC via reversing the exhaustion (84).
4 Immunosuppressive cells
and cytokines

In addition to cell surface IRs, immunoregulatory cells and

cytokines in the TME—including myeloid-derived suppressor cells

(MDSCs), TAMs, and Tregs—contribute to TEX. These

immunosuppressive cells hinder immune rejection of malignant

cells via cytokine secretion, promoting tumor progression and

posing challenges to immunotherapy.

CXCR2+ MDSCs inversely correlate with infiltrating CD4+ and

CD8+ T cells. These MDSCs facilitate BC progression and

metastasis to lungs and lymph nodes, drive EMT via IL-6, and

increase levels of immunosuppressive proteins (PD-1, PD-L1,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1507283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2024.1507283
LAG3, CTLA4, TIM-3) on T cells, contributing to their partial

exhaustion mediated by IFN-g (85).
TAMs are predominant immune cells in BC and can polarize into

pro-inflammatoryM1 or immunosuppressiveM2 phenotypes (86–88).

Progranulin (PGRN) promotes CD8+ TEX by inducing TAM

polarization to M2 macrophages, which suppress T cell proliferation

and activation via ICAM-1 interactions (89–91). Elevated CHI3L2

levels in TAMs correlate with poor prognosis in BC. Y-box binding

protein 1 (YBX1) is positively associated with M2 macrophage

infiltration and TEX markers IDO1 and CTLA4 in luminal BC (92).

IL1R2 in macrophages and BC cells contributes to an

immunosuppressive TME. IL1b from TAMs activates IL1R2,

increasing PD-L1 levels by promoting YY1 degradation.

Inhibiting IL1R2 reduces macrophage recruitment, alters TAM

polarization, decreases breast tumor-initiating cell self-renewal,

and reduces CD8+ TEX (93). Sustained high levels of IL-2 in BC

induce CD8+ TEX by persistently activating STAT5, which

increases tryptophan hydroxylase 1 expression. This enzyme

converts tryptophan to 5-hydroxytryptophan (5-HTP), activating

the aryl hydrocarbon receptor (AhR) and leading to upregulation of

inhibitory receptors and decreased cytokine production, impairing

T cell function (94). Low IL-10 expression or loss of IL-10R-STAT3

signaling is linked to increased CD8+ TEX and reduced survival in

BC patients (95). Conversely, in murine BC models, Heparanase

(HPSE)-induced IL-10 upregulation promotes M2 macrophage

polarization and TEX (96). Malignant BC cells transfer active

TGF-b type II receptor (TbRII) via tumor-derived extracellular

vesicles to CD8+ T cells, inducing SMAD3 activation and TEX (97).

USP8 stabilizes TbRII by deubiquitination, enhancing its expression
in plasma membranes and TEVs. USP8 promotes TGF-b/SMAD-

induced EMT, invasion, metastasis, and facilitates TbRII+

circulating EVs to induce TEX and chemoimmunotherapy

resistance (92). RAI14 levels correlate positively with M2

macrophage marker CD163 and TEX marker PD-1, indicating its

association with M2 macrophage infiltration and TNBC (98).
5 Transcriptomics and
epigenetic regulation

Transcriptomic and epigenetic mechanisms play crucial roles in

TEX within BC. Epigenetic programming is central to regulating

various T cell subsets. In TNBC patients, dysfunctional PD-1+

CD8+ T cells are enriched with EOMES and nLSD1p. LSD1

promotes TEX by controlling the nuclear localization of EOMES

through bivalent post-translational modification at lysine 641,

directly affecting T cells (99).

TWIST1, a transcription factor that binds to the PD-L1 promoter

and significantly accelerates the exhaustion and death of cytotoxic

CD8+ T cells in BC (100). Additionally, TWIST1 induces EMT in BC

cells via the ITGB1-FAK/ILK signaling pathways and related

downstream networks (101). The expression of transcription factor

IRF8 facilitates TAM acquisition, antigen presentation of cancer cells,

and induction of CTL exhaustion in BC (102). Thymocyte selection-

associated high-mobility group box (TOX), involved in TEX during
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chronic infection and cancer, is associated with better prognosis in BC

when highly expressed, as confirmed by survival analysis (103).

Bromodomain and extra-terminal (BET) proteins are important in

regulating the PD-1/PD-L1 pathway in BC. They mediate interferon-g
(IFN-g) secretion from activated T cells and IFN-g signaling in TNBC

to induce PD-L1 expression (104).

METTL3 enhances PD-L1 expression in BC cells post-

transcriptionally through an m6A-IGF2BP3-dependent

mechanism, promoting mRNA stability and affecting the efficacy

of tumor immunotherapy (105). Glycosylphosphatidylinositol

(GPI) anchor biosynthesis, a common post-translational

modification, is elevated in BC patients with severe TEX.

Exhausted CD8+ T cells exhibit higher levels of GPI anchor

biosynthesis than normal CD8+ T cells (106).

A comprehensive evaluation of mitochondrial DNA

methylation (MTDM) in BC indicates that patients with high

MTDM have increased proliferation rates and elevated CD8+

TEX, potentially related to the secretion of growth differentiation

factor 15 (GDF15) by malignant breast epithelial cells in a high

MTDM state (107).
6 Metabolic reprogramming

Metabolic reprogramming plays a pivotal role in TEX in BC.

Metformin reduces tumor hypoxia and PD-L1 expression, enhances T

cell function, and boosts the efficacy of immune checkpoint inhibitors,

positioning it as a potential adjunct therapy for refractory tumors like

TNBC. At high concentrations, metformin suppresses mTOR

signaling and decreases transcription factors (T-bet, Eomes, STAT3),

potentially limiting T cell proliferation and cytokine secretion. Notably,

metformin reduces PD-1 expression in Jurkat cells and improves the

PD-1/CD69 ratio in primary T cells, suggesting a potential to restore T

cell activation and counter exhaustion (108).

In mouse BC models, a high-fat diet shifts PD-1- CD8+ non-

exhausted T cells to PD-1+ CD8+ exhausted T cells, fostering tumor

progression (109). Hypoxia-driven metabolic reprogramming also

exacerbates T cell dysfunction and exhaustion. Hypoxia induces

HIF1a-dependent epigenetic changes that suppress effector gene

expression in T and NK cells, leading to immune dysfunction.

Moreover, HIF1a-independent mechanisms promote TEX by

upregulating co-inhibitory molecules like TIM-3 or via metabolic

stress. Studies show that hypoxia-induced TEX in TNBC models

confers resistance to anti-PD1 therapy (110). Additionally, hypoxic

stress generates tRNA-derived fragments (tRFs) that bind and

displace the 3’ UTR of the oncogenic RNA-binding protein

YBX1, inhibiting oncogene stability and suppressing BC

progression (111).
7 Exosome pathway

Exosomes play a crucial role in intercellular communication,

with cancer cell-derived exosomes promoting tumor progression by

modulating the tumor microenvironment. Tumor cells secrete PD-
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L1 via exosomes (exoPD-L1), which binds to PD-1 on CD8+ T cells

at metastatic sites, inhibiting T cell activation and proliferation,

leading to their functional inactivation and immunosuppression

(112–115). ICAM1, a glycoprotein involved in immune functions

and cancer progression, is secreted in exosomes and regulates the

immunosuppressive microenvironment (116). Its interaction with

LFA-1 is vital for exoPD-L1 binding to PD-1 (117). Knockdown of

ICAM1 in BC cells reduces exosome-induced inhibition of CD8+ T

cells, suggesting its role in TNBC bone metastasis (116). BC-derived

exosomes also suppress CD8+ T cell glycolysis via an AKT-mTOR-

dependent mechanism, contributing to immune escape (118). In

migrating cancer cells, PD-L1 accumulates at the trailing edge,

forming migrasomes that can be internalized by adjacent cells,

increasing PD-L1 expression and immune suppression, while also

releasing chemokines to promote cell migration within the tumor

microenvironment (119). The role of migrasomes in CD8+ TEX

remains understudied.

In summary, TEX is characterized by high expression of IRs,

influenced by immune cells and cytokines, with potential
Frontiers in Immunology 05
mechanisms including transcriptomic, epigenetic, metabolic, and

exosome-related pathways (Figure 1).
8 Discussion

CD8+ TEX is critical in immune evasion and progression of BC,

involving upregulation of inhibitory receptors (PD-1, CTLA-4, LAG-

3, TIM-3), immunosuppressive cells and cytokines, transcriptional

and epigenetic alterations, metabolic reprogramming, and exosome

pathways. These interactions within the tumor microenvironment

diminish T cell function, facilitating tumor growth and metastasis

Understanding these mechanisms is essential for developing

effective immunotherapies. While targeting inhibitory receptors

with immune checkpoint inhibitors shows promise, their limited

efficacy highlights the need for comprehensive approaches. Future

research should elucidate molecular pathways of TEX in BC,

including specific transcription factors, epigenetic modifications,
FIGURE 1

The main mechanisms of CD8+ Tex in breast cancer from the aspects of inhibitory receptors, immunosuppressive cells and cytokines,
transcriptomics and epigenetic regulation, metabolic reprogramming and exosome pathway.
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and metabolic processes. Exploring combination therapies that

address multiple aspects of T cell exhaustion may enhance

efficacy. Personalizing immunotherapies based on each BC

subtype’s unique immune landscape could further optimize

patient outcomes. Investigating the role of exosomes and their

impact on CD8+ T cell function may reveal new therapeutic

targets. Integrating these insights can lead to novel interventions

to prevent or reverse CD8+ TEX, ultimately improving survival

and quality of life for BC patients.
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